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Abstract

In the paper, we examine the general regression problem under the missing data scenario. In order to provide
reliable estimates for the regression function (approximation), a novel methodology based on Gaussian
Mixture Model and Extreme Learning Machine is developed. Gaussian Mixture Model is used to model the
data distribution which is adapted to handle missing values, while Extreme Learning Machine enables to
devise a multiple imputation strategy for final estimation. With multiple imputation and ensemble approach
over many Extreme Learning Machines, final estimation is improved over the mean imputation performed
only once to complete the data. The proposed methodology has longer running times compared to simple
methods, but the overall increase in accuracy justifies this trade-off.

Keywords: Extreme Learning Machine, missing data, multiple imputation, gaussian mixture model,
mixture of gaussians, conditional distribution

1. Introduction

Recurring problem in many scientific domains is the accurate prediction or forecast for unknown and/or
future instances. This issue is addressed by assuming that there exist the underlying mechanism that
generates the available data, and then building a model that provides good enough approximation for that
same mechanism. Finally, any kind of inference is based on the constructed model assuming all the necessary
information is taken into account. The task of making predictions, for example, daily temperature or
retail sales for some specific time period, is considered a regression problem or estimation of the regression
function. Another issue becoming more prevalent in Machine Learning domain is related to the missing
data in databases encountered in many research areas [1, 2, 3, 4]. This issue has huge impact on both the
learning algorithms and the subsequent inference procedures. If this issue is not treated correctly, any kind
of inference results in severely biased and inaccurate estimates.

In the paper, we are interested with regression problems of the form

yi = f(xi) + ǫi (1)

in the presence of missing data where (X;Y) = {(xi; yi)}
N
i=1 are data samples with xi consisting of d

explanatory features or variables, yi the target variable and ǫi the noise term. The usual assumption behind
the noise term is that it follows a Gaussian distribution with zero mean and known variance ǫ ∼ N (0, σ2).
The regression problem is to find a model M that is a close approximation to the true underlying function f .
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The case explored in this paper is when samples or observations X contain unobserved (unknown) variables,
that is, the values are missing for certain observation and features. Values could be missing for a variety
of reasons depending on the source of the data, including measurement error, device malfunction, operator
failure, and many others. On the other hand, many modelling methods assume that data contain a fixed
number of samples lying in a fixed feature space. Presence of missing values prevents these methods to be
applied directly to the data. Simple ad hoc solutions to incomplete data include completely removing samples
containing unobserved values, mean imputation with the mean computed on available values, replacement
from correlated variables, substitution based on prior information (such as regional codes) and others. In
order to provide more reliable inference after the modelling stage, and suitable strategy must be employed.

Besides simple ad hoc procedures, there are several paradigms for dealing with missing data used in
conjunction with machine learning methods [5] and these include:

• Conditional mean imputation approach which is optimal in terms of minimising the mean squared
error of the imputed values, but suffers from biased statistics of the data. For instance, estimates of
variance or distance are negatively biased.

• Random draw imputation that is more appropriate for generating a representative instance of a fully
imputed data set. However, the imputations can be highly variable with respect to any single value
to be accurate.

• Multiple imputation. This setup draws several representative imputations of the data, analyses each set
separately, and combines the results to form an overall estimate with uncertainty taken into account
[6]. This approach can result in unbiased and accurate estimates after a sufficiently high number of
draws, but it is not always straightforward to determine the posterior distribution to draw from [7].
In the context of Machine Learning, repeating the analysis several times is however impractical as
training and analysing a sophisticated model tends to be computationally expensive.

The conceptually simplest approach to dealing with incomplete data is to fill in the missing values before
commencing any further analysis. Many methods have been suggested for imputation with the intent to
appropriately conform to the distribution of the data. These include imputation by nearest neighbours [8],
or the improved incomplete-case k-NN imputation [9]. An alternative approach is to study the input density
indirectly through conditional distributions, by fully conditional specification [10]. However, the uncertainty
of the imputed values is often not explicitly modelled in most imputation methods, and hence ignored in
the further analysis, potentially leading to biased results.

Having an appropriate model to take into consideration missing data has several advantages. First, with
any kind of imputation, many learning algorithms can be directly applied to imputed data, such as neural
networks, Gaussian processes and density estimation methods. Second, having a specific model designed
to tackle missing values allows to take into consideration the variability of imputed values, and thus, the
variance of the final estimation the practitioner is interested about.

Finite mixture models are a powerful modelling tool with a wide array of applications. Of considerate
importance is the Gaussian Mixture Model (GMM), also known as Mixture of Gaussians, which has been
studied extensively to describe distributions of a data set. This model provides a suitable estimation of the
underlying data density distribution as GMM is a universal approximator [11]. This enables GMM to model
any kind of continuous densities to arbitrary precision, and has been employed for a variety of problems in
vision [12, 13], language identification [14], speech [15, 16] and image [17, 18] processing. The parameters
of GMM are obtained via maximum likelihood (ML) estimation by the Expectation-Maximisation (EM)
algorithm [19]. EM algorithm is a general purpose algorithm for finding the ML solution with latent
variables or incomplete data and does not require any derivatives of the likelihood function. GMM has been
extended to accommodate missing values in data sets [20, 21] which has seen some resurgence in recent years
[22, 23, 24].

In this paper, we are considering regression estimation in the presence of missing data. First, mixture
of Gaussians is applied to original data with missing values. Second, a large number of imputations is
performed, that is, a multiple imputation approach is adopted. After all newly formed data sets are available,
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a suitable regression model is build. As the number of draws can be large and the data sets can often contain
huge number of samples, a fast (in terms of training speed) and accurate model should be used. The choice
is on Extreme Learning Machine (ELM) as it satisfies both criteria. In the case of difficult data, where
substantial number of imputed data sets is required, ELM acts a good model as fast computational models
are more viable than the alternative gradient-based neural networks or kernel methods.

Gaussian Mixture Model has been used to train neural networks in the presence of missing data [25] with
the average gradient computed for the relevant parameters by using conditional distribution for the missing
values. The method is designed to handle training of networks with back-propagation and is not applicable
to other Machine Learning methods. Extreme Learning Machine has also been adapted to handle missing
values [26, 27] with both approaches estimating distances between samples that are subsequently used for
the RBF kernel in the hidden layer. One advantage of that approach is circumventing estimation of all the
missing values and focusing only on providing required information for the methods based on distances, such
as Support Vector Machines or k-nearest neighbours. However, the method only returns expected pairwise
distances that are then employed by the ELM for regression. The downside is that other activations functions
have to be ignored, and the imputation is done once by the conditional mean. Although conditional mean
imputation provides improved results over simple ad hod solutions, it neglects the variability introduced by
the underlying Gaussian Mixture Model.

The rest of the paper is organised as follows: Section 2 explains the overall approach in more detail
focusing on the main points in the methodology. Two main components of the approach, namely mixture of
Gaussians for missing data and Extreme Learning Machine are explained in Sections 3 and 4 respectively.
Section 5 showcases the results between two types of imputation – conditional mean and multiple imputation,
combined with two different modelling strategies. Finally, summarising remarks are given in Section 6.

2. Methodology

The overall approach consist of four consecutive stages:

1. Fitting the Gaussian Mixture Model on a data set with missing values.

2. Generating new data sets via multiple imputation based on the Gaussian Mixture Model from the first
stage.

3. Building Extreme Learning Machine for each generated data set in the second stage.

4. Combining all the Extreme Learning Machines to provide final estimates.

2.1. Gaussian Mixture Model Fitting

In the first stage, a Gaussian Mixture Model Γ is fitted to the data with missing values. Since the
data contains missing values, straightforward application of the EM algorithm is not possible and certain
adjustments are necessary for both E and M-steps. In the E-step, conditional expectations with respect to
known values in samples are used to obtain means and covariances for the missing values. In the M-step,
the conditional mean fills the missing parts (per sample imputation) in order to compute GMM component
means. The covariance matrices for each component are similarly adjusted taking into account covariances
for the missing parts. The details required to carry out these corrections are explained in Section 3.1.

Besides the internal parameters of the model in the form of mixing coefficients, means and covariance
matrices for each Gaussian component, k = 1, . . . ,K, one parameter that has to be validated is the number of
components K. Validation step is important in order to prevent the model from overfitting and many model
selection criteria have been proposed to combat this problem. In GMM case, adding a single component to
the mixture can result in a large increase in the number of free parameters which is quadratic in the number
of dimensions. Two most popular criteria for model selection are Akaike’s Information Criterion (AIC) [28]
and Bayesian Information Criterion (BIC) [29]. AIC usually tends to select overly complex models [30],
which is the reason BIC is usually favoured when model selection needs to be performed and it is adopted
in our method.
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2.2. Multiple Imputation for Missing Values

Conditional mean imputation remains one of the prevalent solutions to the problem of missing data
offering better estimation than simple ad hoc procedures [27]. However, it provides insufficient information
for further inference as the whole underlying distribution is condensed into a single value. For this reason,
multiple imputation considers many replacements for the unobserved values, and subsequent inference is
based on combining inferences across all imputed versions. This way uncertainty about the missing values
is taken into account.

In the second stage of the methodology, many data sets are drawn from GMM model Γ obtained in
the first phase. The imputation is done per sample xi that contains unobserved values. The conditional
distribution for missing variables p(xmiss

i |xobs
i ) (conditioned on observed variables) is again a Gaussian

Mixture Model with adjusted components based on the parameters of Γ. Drawing from the adjusted Gaussian
Mixture Model is straightforward, but it shows that conditional mean imputation can be severely biased if
the conditional distribution p(xmiss

i |xobs
i ) is multimodal.

The filling in is done per sample until all the samples are processed. This complete sweep produces one
new data set, and the procedure is repeated for prespecified number of times, say V . The end results of this
stage is V new data sets {Xv}Vv=1. Looking from a different perspective, for each missing value there are a
total of V imputations which are then collected to form new data sets. The next step is to train the models
on these complete data sets.

2.3. Training Extreme Learning Machines

Extreme Learning Machine is a novel type of neural network that does not have any iterative stages in
the learning phase. The network has a single hidden layer, where the input weights coming from the input
variables are randomly initialised. The model draws its fast training times based on this initialisation while
the output weights connecting the hidden layer and the output layer are obtained by solving a linear system.
Since the result of multiple imputation is a collection of data sets {Xv}Vv=1, it is important to have a fast
model able to tackle such scenario.

The final steps involves training ELMs for each data set Xv which gives us a total of V models Mv.
Prediction for a fresh sample xnew is then combined across all models as an average over their respective
predictions, that is,

ŷnew =
1

V

V
∑

v=1

Mv(xnew) (2)

where Mv(xnew) is the output of a model Mv for a sample xnew. This way, estimation of ŷnew properly
reflects sampling variability due to incomplete data.

2.4. Two Modelling Strategies

The proposed methodology where there are V models suggests an ensembling or combining strategy
which has been researched within ELM community [31, 32, 33, 34]. The ensembling strategy provides both
empirical success over selection methods [35] and explicitly takes into account model selection uncertainty
[36]. Assigning model weights involves yet another step requiring additional computational resources. In
the case of missing data, averaging over all estimations presents a natural choice to combining as given by
Eq. (2) which implies that all the model weights are equal.

Two strategies are tested in the experiments. The first strategy involves generating the input weights
W only once. This initialisation is then used for all the V data sets giving V models. However, due to the
nature of the ELM and a linear relationship between hidden and output layer, prediction for a fresh sample
no longer requires having all the models in memory since the sum can enter the model itself. This means
that only one model is produced after the training stage with the output weights being an average of the
output weights of all the models Mv. The ELM obtained in this manner takes into account uncertainty
about missing values, and is different from a single ELM that has the same initialisation with the weights
W.
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Second strategy can be considered true combining approach, as V models are generated, one for each
data set Xv. Each model has different initialisation of the input weights, and the actual prediction is done
as given by Eq. (2).

3. Mixture of Gaussians for Missing Data

The goal of Expectation-Maximisation algorithm [19] is to find the maximum likelihood solution to the
case where there are unknown latent variables added to the data. In the case of Gaussian Mixture Model’s
with K components, the criterion to be optimised is the log-likelihood

logL(θ) = log p(X | θ) =
N
∑

i=1

log

(

K
∑

k=1

πkN (xi |µk,Σk)

)

, (3)

where N (x |µk,Σk) is the probability density function of the multivariate normal distribution, and θ =
{πk,µk,Σk}

K
k=1 is the set of parameters to be determined. The E-step consists of finding the posterior

probabilities for the latent variables, while in the M-step new values for means µk, covariances Σk and
mixing coefficients πk are recomputed based on the probabilities from the E-step. All the parameters θ are
initialised to some suitable values (with the constraints 0 < πk < 1 and

∑K

k=1 πk = 1), and then E and
M-steps are alternated until convergence either in the log-likelihood or in the parameter values. For the EM
algorithm, we are only considering the input or feature space X, ignoring the target vector Y altogether.

3.1. Extension for the Missing Data

When dealing with missing data, it is important to establish what kind of missing-data mechanism is
appropriate for the problem. In the paper, we are assuming that a missing value represents a value which is
defined and exists, but the reason for its missingness is unknown. This assumption corresponds to Missing-
at-Random mechanism [5], where the event of a measurement missing is independent from the value it would
take conditioned on the observed values.

The standard EM algorithm for mixture of Gaussians has been extended to handle missing data [20, 21].
The input data X is a set of observations {xi}

N
i=1 where for each sample there exist an index set Oi ⊆

{1, . . . , d} covering the variables with known values. For every index set Oi, there is a corresponding
complement set Mi indexing missing values in the sample xi. In the case with missing values, the observed
log-likelihood can be written as

logL(θ) = log p(XO | θ) =
N
∑

i=1

log

(

K
∑

k=1

πkN
(

xOi

i |µk,Σk

)

)

(4)

where XO = {xOi

i }Ni=1 and N (xOi

i |µk,Σk) is used for the marginal multivariate normal distribution prob-
ability density of the observed values of xi.

To account for the missing data, certain additional expectations need to computed in the EM al-
gorithm. These are conditional expectations to compute missing components of a sample with respect
to each Gaussian component k, and their conditional covariance matrices, i.e., µ̃Mi

ik = E[xMi

i |xOi

i ], and

Σ̃MMi

ik = Var[xMi

i |xOi

i ], where the mean and covariance are calculated under the assumption that xi origi-
nates from the kth Gaussian. For convenience, we also define corresponding imputed data vectors x̃ik and
full covariance matrices Σ̃ik which are padded with zeros for the known components. Then the E-step is:
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tik =
πkN (xOi

i |µk,Σk)
∑K

j=1 πjN (xOi

i |µj ,Σj)
, (5)

µ̃Mi

ik = µMi

k +ΣMOi

k (ΣOOi

k )−1(xOi

i − µOi

k ), x̃ik =

(

xOi

i

µ̃Mi

ik

)

, (6)

Σ̃MMi

ik = ΣMMi

k −ΣMOi

k (ΣOOi

k )−1ΣOMi

k , Σ̃ik =

(

0OOi 0OMi

0MOi Σ̃MMi

ik

)

. (7)

The notation µMi

k refers to using only the elements from the vector µk specified by the index set Mi, and

similarly for xOi

i , etc. For matrices, ΣMOi

k refers to elements in the rows specified by Mi and columns by Oi.
The expressions for the parameters in Eqs. (6) and (7) originate from the observation that the conditional
distribution of the missing components also follows a multivariate normal distribution with these parameters
[37, Thm. 2.5.1].

The M-step is slightly altered to reflect that we are dealing with missing data. Component means are
estimated based on the imputed data vectors x̃ik and the covariance matrix estimates require an additional
term concerning covariances of imputed values:

µk =
1

Nk

N
∑

i=1

tikx̃ik (8)

Σk =
1

Nk

N
∑

i=1

tik

[

(x̃ik − µk)(x̃ik − µk)
T + Σ̃ik

]

(9)

πk =
Nk

N
. (10)

An efficient method to evaluate required matrix inverse operations in the Eqs. (6) and (7) is to use the
sweep operator [5]. These steps are explained in more detail in [26]. In the same paper, a case of high
dimensional spaces is also studied with the proposed solution based on high-dimensional data clustering
[38]. The problem in high-dimensional data is reliable estimation of the parameters as it becomes difficult
to fit Gaussians mixture model.

3.2. Sampling from Conditional GMM

The conditional distribution of the missing values of a sample with respect to a Gaussian mixture model
also follows a Gaussian mixture distribution. The parameters defining this distribution correspond to the
parameters calculated in the E-step in Eqs. (5)–(7). Specifically, the distribution of the missing values of a
sample xi is a Gaussian mixture of K components with means

µ̃Mi

ik = µMi

k +ΣMOi

k (ΣOOi

k )−1(xOi

i − µOi

k ) (11)

and covariances

Σ̃MMi

ik = ΣMMi

k −ΣMOi

k (ΣOOi

k )−1ΣOMi

k . (12)

The mixing coefficients correspond to the probabilities of the sample to originate from each component

tik =
πkN (xOi

i |µk,Σk)
∑K

j=1 πjN (xOi

i |µj ,Σj)
. (13)
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The conditional mean imputation of the missing values is then realised as the weighted average of the
component centres:

x̃Mi

i =

K
∑

k=1

tikµ̃
Mi

ik . (14)

Sampling from the conditional distribution is accomplished by first fixing the component k (drawing
from the categorical distribution defined by probabilities tik), drawing |Mi| independent standard normal
variables into a vector z, and using the Cholesky factor L of the covariance matrix Σ̃MMi

ik corresponding to
component k. A representative sample is then generated by

µ̃Mi

ik + Lz . (15)

3.3. Initialisation of Parameters

The parameters µk and Σk are initialised in the following way. The means µk are chosen randomly from
the observed data, favouring samples without missing values if possible. If the data does not have enough
complete samples, some of the centres are set to incomplete samples where the missing values are replaced
by the sample means. The covariances Σk are initialised with the sample covariance of the data ignoring
the samples with missing values.

3.4. Selecting Number of Components K

The number of components is selected according to the Bayesian Information Criterion (BIC), also
known as Schwarz’s criterion [29]. BIC is useful when model selection aims at identifying the true model
in the candidate set, as it is a consistent criterion, that is, it correctly picks the true models as the number
of samples goes to infinity. For likelihood based models, BIC can be easily computed with the following
formula:

BIC = −2 logL(θ) + P logN (16)

where P is the number of free parameters. In the case of full covariance matrix for each component k, there
are in total P = Kd + K − 1 + Kd(d+ 1)/2 parameters to estimate: Kd for the means, Kd(d + 1)/2 for
the covariance matrices and K − 1 for the mixing coefficients. As the number of dimensions d increases,
the number of parameters quickly tends to become larger then available samples making the BIC criterion
invalid. One possibility to circumvent this issue is by imposing restrictions on the structure of covariance
matrices making the model less powerful.

A simple and commonly applied method to determine appropriate number of components is the following:
start with a single component K = 1, learn the model with this single component Γ1, then set K = 2 and
check whether the newly fitted Γ2 is more suitable than the model with K = 1. If this is the case, keep
increasing K until the criterion (BIC in our case) no longer improves.

4. Extreme Learning Machine

Extreme Learning Machine (ELM) [39, 40] presents a novel technique for training a neural network
that has been applied to variety of cases [41, 42, 43, 44]. ELM belongs to a family of single-hidden layer
feedforward networks (SLFN) which considerably reduces the training time. These networks are particularly
appealing due to their universal approximation capability, meaning that any continuous function f can
be approximated with desired level of accuracy [45]. To reach that accuracy requires a suitable learning
algorithm that adjusts or tunes all the network parameters. The most well known algorithm for training
these networks is the back-propagation algorithm [46] which is an iterative procedure based on the gradient
of the error function. The novelty that distinguishes ELM is that certain network parameters need not be
tuned, and instead can be randomly generated.
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Let us consider a data set with N samples in d dimensional space, i.e., {(xi; yi)}
N
i=1 ∈ R

d × R. A SLFN
models the data sample xi with

L
∑

j=1

βjgj(wj · xi + bj), i = 1, . . . , N (17)

where wj are the input weights, bj the bias, operation wj · xi is the inner product and gj the activation
function for the jth neuron in the hidden layer. βj is the output weight coming from the jth neuron to the
output neuron, while L is the total number of neurons in the hidden layer. In this paper, we only consider
the case with a single output, that is, the target yi is a scalar value. The above formula can be easily
generalised to the multivariate case with a vector of outputs yi. For the univariate case, the hidden layer
output weights can be collected in a vector as β = [β1, . . . , βL]

T
.

That SLFN can approximate the data with zero error means that the output of a network is exactly the
desired target value yi across all samples, that is,

L
∑

i=j

βjgj(wj · xi + bj) = yi, i = 1, . . . , N (18)

Eq. (18) can be written in more compact form as

Hβ = y (19)

where

H =







g1(w1 · x1 + b1) · · · gL(wL · x1 + bL)
...

. . .
...

g1(w1 · xN + b1) · · · gL(wL · xN + bL)







N×V

, (20)

β =







β1

...
βL






and y =







y1
...
yL






. (21)

H is the hidden layer output matrix or feature mapping of the SLFN. The jth column of H is the output
of jth hidden neuron for all the data samples, while the ith row of the matrix is the sample xi put through
all the neuron, that is, a transformed sample in the new feature space R

L. Training SLFN requires tuning
all the parameters of the network – wj , bj and βj , i = j, . . . , L.

The novelty that ELM brings to learning of SLFN is that network parameters wj and bj need not be
tuned at all – they can be randomly generated before encountering the data and kept fixed throughout
the learning stage. This does not prevent the ELM from losing its universal approximation capability,
provided that activation functions gj(x) used in the hidden layer follow certain mild conditions [47, 48]. The
probability distribution for {(wj , bj)}

N
j=1 can be any continuous probability distribution from any interval

on R
d × R. By dropping the tuning of input weights for the hidden layer, the only remaining adjustable

parameters are the output weights β. Given that relation between hidden layer matrix H and output is y
is linear, the solution to Eq. (19) is obtained with ordinary least-squares approach, that is, the goal is to
find β for the following minimisation problem

min
β

‖y −Hβ‖2. (22)

As H might be non-square (in the case L < N), the solution is to use Moore-Penrose generalised inverse
(pseudo-inverse) H† of matrix H which gives the solution as

β = H†y = (HTH)−1HTy. (23)
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This provides a direct analytic solution to the learning process which in some cases reduces computational
time by a large margin compared to iterative approaches [47, 49].

The complete basic ELM algorithm can be summarised in three steps:

1. Randomly generate hidden node parameters wj and bj , j = 1, . . . , L.

2. Compute the hidden layer matrix H

3. Compute the output weights β = H†y.

In order to provide more stable solution to the minimisation problem Eq. (22), a regularisation term C
is added to the diagonal of HTH. The computation of output weights β is now

β = (HTH+ CI)−1HTy (24)

which is a solution to a regularised least-squares problem

min
β

‖y −Hβ‖2 + C‖β‖2 (25)

which in statistics is know as ridge regression [50]. This modified version of the basic ELM is used in the
experiments. The parameter C can be cross-validated to achieve better results for a data set at hand. In
our experiments, we are skipping this validation phase in order to speed up the execution time and we are
using a small value of C = 10−6 to prevent numerical instabilities in the computation of (HTH+ CI)−1.

4.1. Selecting Number of Neurons

One potential pitfall with the ELM model is the appropriate complexity or the number of neurons in the
hidden layer to capture the overall variations in data. This issue is also known as model structure selection.
Two general approaches have been proposed to tackle this issue: selection methods [51, 49] and model
ensembling [33, 34]. Selection methods are focused on picking the best model from a set of candidate models
where each of the models is of different complexity. The notion of the best model among the candidate set is
based on a specific criterion which usually involves having an estimate of the networks performance (either
training error plus some penalty term or a validation error). Both AIC and BIC can be again used for this
purpose. The second strategy, ensemble modelling, considers many networks structures with the aim of
having model weights to discard poor models (assigning them zero weights) and giving similar weights for
models with similar performance.

The proposed method in this paper closely follows the ensemble approach. Instead of considering different
models on the same data, in our method there is an ensemble of the models with the same complexity (same
number of neurons) trained on imputed data sets Xv. Different from the ensemble where the weights for
each model are learned based on some performance criterion, in this paper we are simply taking an average
over all the models, that is, all the model weights are equal. Surprisingly, carefully choosing the complexity
can be alleviated with the proposed approach.

5. Experiments

The effectiveness of the proposed approach is tested on several data sets taken from Machine Learning
repositories. Since all the data sets used do not have any missing values, the real case scenario is simulated
by removing some portion of the data before the whole methodology is applied. Values in the data set are
removed at random with a fixed probability until a prespecified number of instances are discarded. In the
experiments, we are only focused on supervised regression task, but the approach can easily be extended to
classification tasks (binary and multiclass). Although it is possible to use outputs Y as another feature to
help estimate missing values in the input samples X, they are left out during the first stage when fitting the
mixture of Gaussians.

Table 1 shows all the data sets used in the experiments. Data sets are taken from two repositories
for Machine Learning related tasks: the UCI Machine Learning repository [52] and the LIACC regression
repository [53].
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Table 1: Data sets used in the experiments. N indicates the total number of samples in the data set and d
denotes the number of features.

Name N d
Abalone 4177 8
Bank 8FM 4500 8
Boston housing 506 13
Machine CPU 209 6
Stocks 950 9
Wine quality (red) 1599 11

Table 2: Number of neurons in the ELM used for each data set.

Name min L step size max L
Abalone 100 100 1000
Bank 8FM 200 200 2000
Boston housing 25 25 300
Machine CPU 10 10 120
Stocks 50 50 500
Wine quality (red) 100 100 1000

The comparison is done between two strategies for missing values imputation: conditional mean impu-
tation (CM) and multiple imputation (MI). Both are based on the same fitted Gaussian Mixture Model
which is the first step in the methodology. In the CM case, each missing value is replaced by the conditional
mean value given by Eq. (14) which gives a data set Xcm. On the other hand, for the MI scenario a total
of V = 1000 new data sets {Xv}Vv=1 are generated using Eq. (15) that are subsequently used to train the
ELM models. The criterion for comparison is squared error risk which is estimated as an average of 10
Monte-Carlo runs on a test set. That is, the data set containing missing values is first split into training
and test parts. The training part contains two-thirds of the samples, while the remaining third belongs to
the test set. Since we are adopting this approach, it is possible to have missing values in the test set, and if
this is the case, they are replaced by their true values in order to be able to compute required risk.

Once the splitting is done, the variables are standardised to zero mean and unit variance since the ELM
is sensitive to the range of the variables. The test set is then modified according to the statistics (mean and
variance) obtained on a training set.

5.1. ELM initialisation

For the ELM, only sigmoid activation function is used for all the neurons. The number of neurons is
varied from low to high enough where some overfitting might occur. For all the data sets, the maximum
tested number of neurons is close to the available samples for training. For example, for “’Wine quality
(red)” data which has just over 1000 samples for training, the maximum number of neurons used in the
training stage is 1000. Table 2 summarises the tested structures for each data set.

5.2. Execution Time

Table 3 summarises the running time of three main parts of the methodology (GMM fitting, generating
data sets and ELM training) for the tested data sets under MI strategy. The results are for one specific set
of experiments where the number of missing values is set to 10%, the ELM networks are fixed to 100 neurons
and there are 1000 generated data sets. The experiments are done in MATLAB 2014b environment running
on Intel Xeon E31230 @ 3.20GHz and 8Gb of memory (with 4 computational threads running in parallel).
The vast majority of time (more than 98% of total running time) is spent on finding the parameters of the
GMM which in turns depends on the number of missing values in the data, the convergence speed of the EM
algorithm, the number of initialisations of the parameters (tries or restarts for the EM), number of samples,
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Table 3: Execution time (in seconds) of the proposed methodology for the case with 10% missing values,
network with 100 neurons and there are 1000 imputations. The last column is the number of components
of the GMM model (averaged over 10 Monte-Carlo runs).

data set
GMM generating training

components
fitting samples ELMs

Abalone 2631.8 1.63 8.84 4.2
Bank 8FM 1168.3 1.73 9.51 3.6
Housing 83.1 0.11 1.53 1.25
Machine CPU 62.3 0.05 1.18 3.775
Stocks 648.3 0.64 2.06 10.7
Wine (red) 618.2 0.66 3.95 4.7

dimensionality of data and the “optimal” number of components. As explained in Section 3.4, the number
of components K keeps increasing as the BIC keeps decreasing. For each value of K, there are 10 repetitions
of the EM algorithm in order to find several local maxima and return the best one. The quickest step is the
imputation part for the complete data since sampling from the GMM is straightforward.

5.3. Performance: Single Initialisation

The first set of experiments is focused on a single initialisation of the input weights of the ELM. The
complete setup (initialisation of weights, training the network, and testing) is executed 50 times and the
results are averaged to accommodate for the random initialisation of the network parameters. There are
two averaging phases necessary for risk estimation: for the random initialisation of the network and for the
splitting of the data into training and test parts.

Figure 1 shows the results of a single initialisation of the ELM for two imputation strategies. As explained
in Section 2.4, the latter case also produces one model which has same memory footprint as the former case
of imputation. The results are presented for different percentages of missing values in the data (considering
all Nd values): 5%, 10%, 15%, 20%, 25% and 30%, and for different number of neurons. The result for
no missing values is also given to showcase the effect of overfitting and the effect of missing parts on risk
estimation. As a comparison, in the figure the results for a simple strategy of removing samples with
missing values are also presented. With this simple strategy, the overall performance quickly deteriorates as
the number of samples becomes scarce. The number of available samples for Stocks data is the following 633,
392, 249, 140, 90, 47 and 29 for the cases of 5%, 10%, 15%, 20%, 25% and 30% of missing values respectively.
With lack of samples, it becomes difficult to train more complex ELMs, which is another drawback of this
simple strategy. In Figure 1e, only a model with 50 neurons is trained which gives mean test error of 10.3
which is larger by a factor of 3 than both conditional mean and multiple imputation strategies. The same
trend (quick decrease in mean test error) is observed for all other tested data sets (figures not shown).

The case with no missing values shows that ELM is prone to overfitting when the number of neurons
approaches the number of available samples, that is, there is an “optimal” model for the data. On the
other hand, multiple imputation approach can drastically improve upon conditional mean imputation in
both respects: 1) when the number of missing values increases, and 2) when the complexity of the networks
increases. This pattern where MI strategy does not suffer too much as the number of neurons increases is
also present for all other data sets. An interesting thing to notice is that the proposed approach based on MI
does not suffer as the complexity increases when data contains high percentage of missing values. With MI
approach, the model with 500 neurons remains competitive with lower complexity models for cases of 20%,
25% and 30% of missing data. The main reason is that the MI strategy has an inherent averaging mechanism
(from the imputations) which helps reduce the error and prevents overfitting. This can be thought of as
another ensembling approach, whilst not on models (as there is only one initialisation), but on data sets.
This effectively removes the model structure selection phase and can potentially save considerable amount of
time. Figure 2 shows the comparison between the most complex network versus the best performing network
to further demonstrate this effect. The best performing network is taken to be the one with the lowest value,
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Figure 1: Average test mean squared error for Stocks data set as the number of missing data increases. Blue
line indicates multiple imputation scenario (MI), red line signifies conditional mean imputation (CM) and
black line is simple removal strategy.
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that is, it is chosen once the testing is done. Although this cannot be done in practice (choosing a model
on unseen data), it is shown only to provide an insight that choosing the most complex network stays very
close to the optimal network structure, and in some cases it is actually better than the CM strategy (Boston
housing and Stocks data).

5.4. Performance: Ensemble Modelling

For convenience, denote with M(W,X) an ELM model whose input weights are initialised with values
given by matrix W and then trained on a data set X. In the case of single initialisation of input weights
for ELM, the number of models trained depends on the desired number of generated data sets, which in our
case is V = 1000. Even though the end results is a single ELM in multiple imputation case, training stage
still involves finding solutions to V linear systems. A more suitable comparison is between the ensemble

of different models for both CM and MI strategies. In this case, for the CM strategy there are different V
initialised models that are trained on the mean imputed data set Xcm. This provides us with V models
M(Wv,X

cm), v = 1, . . . , V . For the MI strategy, the models with the same initialisation as in CM strategy
are trained on the respective V generated data sets Xv which results in models M(Wv,X

v). Finally, for
both approaches, the final prediction for the test set is simply an average of predictions across all models
which is given by Eq. (2). The final predictions are given by

ŷcmnew =
1

V

V
∑

v=1

M(Wv,X
cm;xnew), ŷmi

new =
1

V

V
∑

v=1

M(Wv,X
v;xnew) (26)

for CM and MI strategies respectively. Figure 3 shows that training multiple models is definitely beneficial
compared to a single initialised ELM. In both cases, ensembling on either multiple imputed data sets or
on a date set with conditional mean imputation provides better predictions than an approach with single
initialisation. For Abalone, it is interesting to see that MI strategy with a single initialised ELM is better
than ensemble with CM strategy. The results shown are for the models with maximum complexity without
any regularisation.

Finally, Figure 4 shows how the most complex network performs compared to the best performing model
on a test set (following the same reasoning as in single initialisation case). In several cases, the ensemble
of the most complex networks is able to reach the performance of the “optimal” ensemble (Boston housing,
Machine CPU and Stocks), while remaining competitive for Abalone and Wine quality data. For Bank data,
there is a large gap between the proposed approach and the best performing result. However, the result
stay close to the ensemble of the most complex networks for mean imputed data. It is important to stress
that these ensembles on the most complex networks do not require any regularisation steps, circumventing
the tedious and long validation process.

6. Conclusion

In this paper, the task of accurate prediction is tackled on a data containing missing values. The complete
methodology consists of four steps with simple and known methods. Mixture of Gaussians is employed to
model the underlying distribution of the data, while Extreme Learning Machine enables multiple imputation
approach to be executed on a reasonable scale. Adjustments for Expectation-Maximisation algorithm for
Gaussian Mixture Model are given in order to tackle the missing values in the data, alongside the required
updates for conditional Gaussian Mixture Model needed to sample new data sets.

The combination of GMM and ELM allows adopting the multiple imputation approach to missing data,
which has shown to be superior in almost all tested cases over the method based on conditional mean
imputation. Having a distribution to reflect uncertainty in the data due to missing values can be beneficial
over simple ad hoc methods, but can still be severely biased as the experiments have shown. In order to
ensure stable and reliable predictions, a sufficient number of draws is required to properly represent the
underlying data distribution. In such scenario with potentially high number of data sets, ELM is a suitable
model due to its fast training times and good generalisation properties.
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Figure 2: Average test mean squared error for all tested data sets with respect to the number of missing
values. Blue colour is MI strategy and red colour represents CM strategy. Solid lines represent the most
complex networks while dashed lines are the best performing networks on a test set.
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Figure 3: Average test mean squared error for Abalone and Stocks data sets. Blue colour indicates ensem-
bling approach and red colour single initialisation of ELM. Solid lines represent MI strategy while dashed
lines are CM strategy. The graphs correspond to the most complex networks.

The disadvantage of applying the multiple imputation procedure is a notable increase in computational
time. This can be seen as a trade-off between time and accuracy compared to alternative methods of
handling the missing values. Ignoring all incomplete samples is a poor solution, and the difference in
accuracy is considerable already at low proportions of missing values, as shown by the experiments. For
larger fractions of missing data, it is necessary to apply an appropriate procedure which avoids discarding
partially known samples, and multiple imputation provides a practical approach.

An interesting side-effect of having more missing values in the data is the potential removal of model
structure selection procedure. The models with the highest complexity have competitive results with the op-
timal models on majority of data sets. This suggests that validation procedures based on training/validation
errors can simply be replaced by a model with enough neurons in the hidden layer of the ELM.

References

[1] A. R. T. Donders, G. J. van der Heijden, T. Stijnen, K. G. Moons, Review: A gentle introduction to imputation of missing
values, Journal of Clinical Epidemiology 59 (10) (2006) 1087–1091.

[2] A. Sorjamaa, A. Lendasse, Y. Cornet, E. Deleersnijder, An improved methodology for filling missing values in spatiotem-
poral climate data set, Computational Geosciences 14 (2010) 55–64.

[3] A. N. Baraldi, C. K. Enders, An introduction to modern missing data analyses, Journal of School Psychology 48 (1) (2010)
5–37.

[4] P. D. Allison, Missing data: Quantitative applications in the social sciences, British Journal of Mathematical and Statistical
Psychology 55 (1) (2002) 193–196.

[5] R. J. A. Little, D. B. Rubin, Statistical Analysis with Missing Data, 2nd Edition, Wiley-Interscience, 2002.
[6] D. B. Rubin, Multiple Imputation for Nonresponse in Surveys, Wiley, 1987.
[7] C. K. Enders, Applied Missing Data Analysis, Methodology in the Social Sciences, Guilford Press, 2010.
[8] E. R. Hruschka, E. R. Hruschka Jr., N. F. F. Ebecken, Evaluating a nearest-neighbor method to substitute continuous

missing values, in: AI 2003: Advances in Artificial Intelligence, Vol. 2903 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2003, pp. 723–734.

[9] J. Van Hulse, T. M. Khoshgoftaar, Incomplete-case nearest neighbor imputation in software measurement data, in: Pro-
ceedings of 2007 IEEE International Conference on Information Reuse and Integration (IRI 2007), Las Vegas, NV, USA,
2007, pp. 630–637.

[10] S. Van Buuren, J. P. Brand, C. G. Groothuis-Oudshoorn, D. B. Rubin, Fully conditional specification in multivariate
imputation, Journal of Statistical Computation and Simulation 76 (12) (2006) 1049–1064.

[11] D. Titterington, A. Smith, U. Makov, Statistical Analysis of Finite Mixture Distributions, Wiley, New York, 1985.

15



0 5 10 15 20 25 30
4

4.5

5

5.5

6

6.5

percentage of missing values

m
ea

n 
te

st
 e

rr
or

(a) Abalone

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4
x 10

−3

percentage of missing values

m
ea

n 
te

st
 e

rr
or

(b) Bank 8FM

0 5 10 15 20 25 30
10

15

20

25

percentage of missing values

m
ea

n 
te

st
 e

rr
or

(c) Boston housing

0 5 10 15 20 25 30
4000

6000

8000

10000

12000

14000

percentage of missing values

m
ea

n 
te

st
 e

rr
or

(d) Machine CPU

0 5 10 15 20 25 30
0.4

0.6

0.8

1

percentage of missing values

m
ea

n 
te

st
 e

rr
or

(e) Stocks

0 5 10 15 20 25 30
0.35

0.4

0.45

0.5

percentage of missing values

m
ea

n 
te

st
 e

rr
or

(f) Wine quality (red)

Figure 4: Average test mean squared error for all tested data sets with respect to the number of missing
values. Blue colour is MI strategy and red colour represent CM strategy. Solid lines represent the most
complex networks while dashed lines are the best performing networks on a test set. The results are for the
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