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Abstract. This paper presents an extension of the well-known Extreme
Learning Machines (ELMs). The main goal is to provide probabilities as
outputs for Multiclass Classification problems. Such information is more
useful in practice than traditional crisp classification outputs. In sum-
mary, Gaussian Mixture Models are used as post-processing of ELMs. In
that context, the proposed global methodology is keeping the advantages
of ELMs (low computational time and state of the art performances) and
the ability of Gaussian Mixture Models to deal with probabilities. The
methodology is tested on 3 toy examples and 3 real datasets. As a re-
sult, the global performances of ELMs are slightly improved and the
probability outputs are seen to be accurate and useful in practice.
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1 Introduction

The Extreme Learning Machines and other neural networks have a successful
history of being used to solve classification problems. The standard procedure is
to convert the class labels into numerical 0/1 binary variables (or equivalently,
+1/-1), effectively transforming the situation into a regression task. When a new
sample is fed through the network to produce a result, the class is assigned based
on which numerical value it is closest to. While this leads to good performance
in terms of classification accuracy and precision, the network outputs as such are



not very meaningful. This paper presents a method which converts the outputs
into more interpretable probabilities by using Gaussian Mixture Models (GMM).

Most classifiers based on neural networks provide results which can not di-
rectly be interpreted as probabilities. Probabilities are useful for understanding
the confidence in classification, and evaluating the possibility of misclassifica-
tion. In a multiclass problem, for instance, certain misclassification results may
be considerably more harmful or expensive than others.

One example is in website filtering based on user-defined categories, where
neural networks are used to classify previously uncategorized sites [1,2]. More
reliable estimates of the risks involved are necessary for cloud security service
provider to make informed (but automated) filtering decisions. Other such cases
where the penalty for choosing the wrong class may vary greatly, include de-
tecting malicious software activity [3,4,5], bankruptcy prediction [6] and nuclear
accident prediction [7].

It is true that the optimal least-squares estimator is equivalent to the condi-
tional probability:

j() = E[Y ] = p(¥ =1 a).

In practice, however, the results can be outside the range 0-1, and this interpre-
tation is not very easy or useful.

Gaussian Mixture Models can be used to transform the values in the output
layer to more interpretable probabilities. Specifically, this is accomplished by
fitting the model to the training data and using it to calculate the probability
of a sample belonging to a class, conditional on the output of the ELM. This
procedure of refining the classification result of the ELM also leads to better clas-
sification accuracy and precision in some cases, as illustrated in the Experiments
(section 3.2).

In related work, the Sparse Bayesian Extreme Learning Machine [8] presents
another approach to use an ELM and obtain estimates of the posterior probabil-
ity for each class. In the SBELM, the parameters of the ELM and the Bayesian
inference mechanism are linked, and must be learned together through an itera-
tive optimization scheme. This contrasts the currently proposed method, where
the ELM and GMM layers are entirely decoupled, and can be trained separately.

The remainder of this paper is structured as follows: Section 2 reviews the
Extreme Learning Machines and Gaussian Mixture Models before introducing
two variants of the proposed refinement procedure. An experimental comparison
on a variety of datasets is provided in Section 3. Section 4 presents conclusions
and further works.

2 Global Methodologies

2.1 Extreme Learning Machines

Extreme Learning Machines (ELMs) [9] are single hidden-layer feed-forward neu-
ral networks where only the output weights are optimised, and all the weights
between the input and hidden layer are assigned randomly (see Figure 1). Due to



its fast computational speed and theoretical guarantees [10], the method recently
received an active development both theoretically [11,12,13], including optimally
pruned modification of ELM [14,15], and in applications [16], in particular: find-
ing mislabeled samples using ELM [17], ELM for time series prediction [18,19],
identification of evolving fuzzy systems using OP-ELM [20], accelerating ELM
using GPU [21], ELM for regression with missing data [22], solving feature se-
lection problem using ELM [23], ELM for nominal data classification [24], etc.

Training this model is simple, as the optimal output weights 38 can be calcu-
lated by ordinary least squares or various regularised alternatives.
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Fig. 1. Extreme learning machine with multiple outputs. Bias is conveniently included
as an additional constant +1 input. Hidden layer weights W are fixed, only output
layer weights 3 are calculated.

In the following, a multi-class classification task is assumed. The data is a set
of N distinct samples {x;,y;} with z; € R? and y; € {1,...,c} where c is the
number of distinct classes. Encode classification targets as one binary variable
for each class (one-hot encoding). T is the matrix of targets such that T;; = 1
if and only if y; = j, i.e., sample i belongs to class j. Otherwise, Tj; = 0. In the
case of two classes, a single output variable is sufficient.

A single (hidden) layer feedforward neural network (SLFN) with d input
nodes, ¢ output nodes, and M neurons in the hidden layer can be written as

M
f@) =3 Bk (wy - ), (1)
k=1

where wy, are randomly assigned d-dimensional weight vectors, the output layer
weights 3, are c-dimensional vectors, and h(-) an appropriate nonlinear acti-



vation function, e.g., the sigmoid function. The output of f is a c-dimensional
vector, and class assignment is determined by which component is the largest.

In terms of matrices, the training of the network can be re-written as finding
the least-squares solution to the matrix equation.

HB =T, where H;, = h(wk a:z) (2)

Constant bias terms are commonly included by appending a 1 to each x; and
concatenating a column of 1s to H.

2.2 PRESS Statistics for Selecting the Optimal Number of Neurons

The number of hidden neurons is the only tunable hyperparameter in an ELM
model. It is selected using a Leave-One-Out (LOO) Cross-Validation error. The
LOO method is usually a costly approach to optimize a parameter since it re-
quires to train the model on the whole dataset but one sample, and evaluate on
this sample repeatedly for all the samples of the dataset. However, the output
layer is linear for the ELM model, and the LOO error has a closed form given
by Allen’s Prediction Sum of Squares (PRESS) [25]. This closed form allows for
fast computation of the LOO Mean Square Error, which gives an estimate of the
generalization error of ELM. The optimal number of hidden neurons is found as
the minimum of that Meas Squared Error.
The Allen’s PRESS formula written with the multi-output notations of the
paper is
\ISEPRESS _ L M & T - HHIT ?
LOO ™ N¢ ;1 ]; ([1N — diag (HHY)] 1T>k ’ ®)

where HT denotes the Moore-Penrose pseudo-inverse [26] of H, and the division
and square operations are applied element-wise.

2.3 Gaussian Mixture Models

Mixtures of Gaussians can be used for a variety of applications by estimating the
density of data samples [27,28]. A Gaussian Mixture Model can approximate any
distribution by fitting a number of components, each representing a multivariate
normal distribution. See Figure 2 as an example.

The model is defined by its parameters, which consist of the mixing coef-
ficients 7y, the means p;, and covariance matrices X} for each component k
(1 <k < K) in a mixture of K components. The combination of parameters is
represented as @ = {my, py, Zr H .

The model specifies a distribution in R?, given by the probability density
function

K
p(@]6) =Y mN (x|, ), (4)

k=1
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Fig. 2. An example of 2D data with 3 Gaussian components after the convergence of
GMM.

where N (x| 1, X) is the probability density function of the multivariate normal
distribution
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The standard procedure for fitting a Gaussian Mixture Model to a dataset
is maximum likelihood estimation by the Expectation-Maximisation (EM) al-
gorithm [29,30,28]. The E-step and M-step are alternated until convergence is
observed in the log-likelihood. Initialisation before the first E-step is arbitrary,
but a common choice is to use the clustering algorithm K-means to find a rea-
sonable initialisation [27].

The only parameter to tune select is the number of components K. This can
be done by separately fitting several models with different values for K, and using
the BIC criterion [31] to select the best model. In the proposed methodology, we
are using the BIC criterion to select the value of K. Several further criteria are
discussed in [32, Ch. 6].

2.4 ELM-GMM

The main idea of the proposed method is to first train a standard ELM for
classification, and then use a GMM to refine the results into more interpretable
probabilities. This is accomplished by building a separate GMM for each class,
on the ELM outputs of the samples from that class. If Y is the output of the



ELM, the GMM is a model for the conditional distribution p(Y |C) for each
class. This leads to ¢ separate GMMs.

Given a new sample, prediction is conducted as follows: calculate the ELM
output Y, and apply Bayes’ theorem to find the posterior probability of each
class C:

p(C)
pC1Y) =¥ |05,

Specifically:
p(C1Y) x p(Y | C)p(C),

where the proportionality constant is determined by the condition of adding up
to 1. The class priors p(C') are given by the proportions in the training set (i.e.,
the maximum likelihood estimate).

The end result is now interpretable as a probability. A summary of the train-
ing and testing algorithms is presented in Algorithm 1.

Algorithm 1 Training the model and finding the conditional class probabilities
for unseen data.
> Training step
Requlre Input data X, targets T
: Randomly assign input vectors wy and form H
Calculate 3 as the least squares solution to eq. (2)
Calculate outputs on training data: Y = H3
For each class C' do
Fit a GMMc¢ to the rows of Y corresponding to the class C'
End for
Calculate p(C) based on proportions of each class
Return wg, 3, GMM¢, p(C)

V] NPk @y

Testing step
Requlre Test data X, weights wg, 3, GMM¢ and p(C) for each class C
: Form H; by using the weights wg
Calculate outputs: Y = H,3
For each class C' do
Use GMM¢ to calculate p(Y; | C) for each sample
End for
Calculate p(C'|Y:) « p(Y: | C)p(C) for each sample
Return Conditional probabilities p(C' | Y;) for each class for each sample

To evaluate performances of this model for each sample, we consider the
class with the highest conditional probability as the result of classification. A
second criterion is presented and used in the Experiments Section 3.4 in order
to evaluate the quality and the applicability of the predicted probabilities.



2.5 Refine the Training for GMM

It is obvious that GMM built of the ELM outputs would inherit the error of
the ELM model. To avoid this error accumulation, we are proposing to build
GMM using only the correct classifications of the ELM. This training approach
will be denoted by suffix ‘r’ added to the corresponding GMMs. Compared to
the algorithm presented in Algorithm 1, the only change is an additional step
between steps 3 and 4 of the training phase: delete the rows of Y corresponding
to misclassified samples. In the Experiments Section 3.4, it is shown that this
second approach is especially relevant when the original multiclass classification
task is challenging.

3 Experiments

In the following subsections, three methodologies are compared using several
classification tasks. These compared methods are the original ELM, and the
two variants of the proposed combination of ELM and GMM: ELM-GMM and
ELM-GMMTr.

3.1 Datasets

Six different datasets have been chosen for the experiments: three small datasets
and three large ones. Datasets are collected from the University of California at
Irvine (UCI) Machine Learning Repository [33] and they have been chosen by
the overall heterogeneity in terms of number of samples, variables, and classes
for classification problems. Furthermore, the large datasets have high number
of variables and a large number of classes. This is done in order to validate the
quality of the predicted probabilities.

Table 1. Information about the selected datasets

Samples

Dataset Variables Classes Train Test
Wisconsin Breast Cancer 30 2 379 190
Pima Indians Diabetes 8 2 512 256
Wine 13 3 118 60

Image Segmentation 18 7 1540 770
First-Order Theorem Proving 51 6 4078 2040
Cardiotocography 21 10 1417 709

Table 1 summarizes the different attributes for the six datasets. All datasets
have been preprocessed in the same way. Two thirds of the points are used to
create the training set and the remaining third is used as the test set. The First-
Order Theorem Proving dataset has predefined training, validation and testing



sets in proportion of 2:1:1. We have have performed random permutation for
the validation set. Afterwards, the result of permutation for the validation set
was split in two parts to be added to the test and train sets in such a way that
the resulting ratio between these sets becomes 2:1. Then for all datasets, the
training set is standardized to zero mean and unit variance, and the test set is
also standardized using the same mean and variance calculated and used for the
training set. Because the test set is standardized using the same parameters as
for the training set, it is most likely not exactly zero mean and unit variance.

It should also be noted that the proportions of the classes have been kept
balanced: each class is represented in an equal proportion, in both training and
test sets. This is important in order to have relevant test results.

3.2 Experimental Procedure

All experiments have been run on the same Windows machine with 16 GB of
memory (no swapping for any of the experiments) and 3.6 GHz processor, single-
threaded execution on one single core, for the sake of comparisons.

Because ELM is a single hidden-layer feed-forward neural network with ran-
domly assigned weights wy, we run each method 1000 times and average its
performance. We also compute the optimal value of neurons for ELM on each
step using the PRESS Leave-One-Out Cross-Validation technique [25,34] with
a maximum number of neurons equal to 300 based on the performance results
obtained by [11].

3.3 Results

Table 2 shows the test results for the three models and six datasets. In this
Table 2, each GMM is built of the ELM outputs for a certain dataset. In that
table, we have removed ELMs from the names of the global methodologies for
the sake of clarity.

Comparing the accuracies of ELMs to the ones of the GMM variants, some
datasets (Wine, Cardiotocography) are showing that the GMM is providing a
clear improvement. In the other cases, the results are not notably different, but
never statistically worse. The First-Order Theorem Proving dataset is the only
situation where ELM-GMM performs clearly worse, but ELM-GMMTr is again
better than the original ELM. For all datasets, ELM-GMMTr provides similar or
better results than ELM-GMM.

3.4 Reevaluate Performance of Probability Classification Methods

When calculating the performance of a probability-based classification method
by just picking the class with the highest probability and treating it as a result
of classification, we lose the advantage of the probability itself.

There are several possible solutions to take into account the predicted prob-
abilities. One of the most simple solutions is to consider a classification to be



Table 2. Correct classification rates (and standard deviation in brackets) for all six
datasets obtained using 3 different methods. “Wisc. B.C.” for Wisconsin Breast Cancer
dataset, “Pima I.D.” for Pima Indians Diabetes dataset, “Image Seg.” for Image Seg-
mentation dataset, “F.-O. T.P.” for First-Order Theorem Proving dataset and “Card.”
for Cardiotocography dataset

Wisc. B.C. Pima L.D. Wine Image Seg. F.-O. T.P. Card.

ELM  95.05 (1.49) 70.90 (1.69) 93.00 (2.92) 93.67 (0.66) 52.34 (0.77) 73.63 (1.34)
GMM  95.00 (1.84) 70.40 (2.22) 94.00 (3.16) 93.96 (0.68) 50.42 (0.90) 76.62 (1.27)
GMMr 95.00 (1.49) 70.98 (1.51) 96.67 (2.81) 93.92 (0.64) 52.45 (0.75) 76.59 (1.29)

correct if one of the two highest probabilities is for the correct class. If the pre-
dicted probabilities were not meaningful, the increase of performance measured
by this second criterion would be limited. For example, in the Cardiotocography
dataset with a total of 10 classes the improvement is close to 15%. The standard
deviation is decreased. The correct class is nearly certainly one of the two most
probable predicted classes. Eight classes are then certainly discarded. Similar
considerations can be made for the First-Order Theorem Proving dataset, for
which the improvement is even more significant, and the other examples.

Table 3 shows the resulting improvement in accuracy for those datasets with
more than two classes. This second criterion is imperfect, and will be replaced
in further works. For example, probabilistic classification will be investigated in
order to provide a probability distribution of the performances of the proposed
methodologies.

Table 3. Comparing the improvement in classification accuracy when considering top
2 labels. “Image Seg.” for Image Segmentation dataset, “F.-O. T.P.” for First-Order
Theorem Proving dataset and “Card.” for Cardiotocography dataset

Wine Image Seg. F.-O. T.P. Card.
GMM 94.00 (3.16) 93.96 (0.68) 50.42 (0.90) 76.62 (1.27)
GMM 2 99.50 (0.81) 97.89 (0.43) 68.48 (0.85) 91.42 (0.86)
GMMr  96.67 (2.81) 93.92 (0.64) 52.45 (0.75) 76.59 (1.29)
GMMr 2 99.50 (0.81) 97.83 (0.39) 68.79 (0.89) 91.03 (0.91)

4 Conclusions and Further Works

The proposed methodology is based on the well-known ELMs that has been
shown to provide accurate classification results.

Including GMM as postprocessing preserves the qualities of ELMs. Based
on the results obtained on six datasets, it has been shown that the provided
predicted probabilities are accurate, useful and robust.



The drawback of the given methodology is an increase of the overfitting risk
based on the fact that both ELM and GMM are trained on the same train-
ing sets. Furthermore, the optimal number of neurons for the original ELM is
probably not optimal when the GMMs are added. In the future, selecting the op-
timal number of neuron for the proposed global methodology will be rigorously
investigated.

Comparison with Sparse Bayesian Extreme Learning Machines [8] will also
be done in the future, and computational times will be compared.

As described in the Experiments Section, there are needs to develop a better
criterion to evaluate the quality and the advantages of dealing with probability
outputs.

In the future, the proposed methodology will be tested on very large datasets,
including more than one million samples, several hundreds of input variables and
ten to twenty classes. For example, to perform website classification [35] where
the number of given output classes is very large, and the number of samples is
nearly unlimited.
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