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Abstract - This paper presents a global methodology to build a nonlinear regression when the
number of available samples is small compared to the number of inputs. The task is divided
in two parts: selection of the best inputs and construction of the approximator. A first SOM
is used to compute clean correlations between the inputs and the output. A second SOM is
built to link the output to the selected inputs. The good performances of this methodology are
illustrated on a spectrometric dataset.
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1 Introduction

The problem of regression is common to many fields of engineering, finance, etc. A set of
measurements is available, and one wants to investigate the relationships between them. In
the general context of regression from sparse data, we have observations (xi, yi), i = 1, ..., N ,
where xi = (xi1, ..., xin)> and yi are the input and output variables for the i − th observation,
respectively. The task for the data analyst is represented by obtaining a correct representation
of the underlying functional relationship y = f(x).

However, a characteristic of the data used in regression problems is represented by redun-
dancy. This means that it is not necessary true that all available input variables are relevant
to the output variable to be estimated. Moreover, some inputs may be dependent on other
ones: e.g., they may be collinear. In addition, it is not unusual to analyse databases con-
sisting of a number of inputs that is comparable to the number of available observations.
Operating in such conditions may led to ill-conditioned solutions and overfitting may also
appear. Furthermore, these conditions might bring up the known problem referred as to the
curse of dimensionality.

Typical examples can be found in spectrometric problems where the aim is to estimate the
content of some chemical component (the output variable) starting from its measured spec-
tra (the input variables). Usually, a large number of input spectral variables is measured
(hundreds, up to thousands) and only several dozen of samples are available.

In such a situation, it is necessary to select among all possible candidates only the inputs
that truly contribute to a correct representation of the output. More formally, being x ∈ R

n

the original set of input variables, the task is to find the subset x′ ∈ R
s, where s ¿ n, that
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builds the best regression model according to some predefined criteria [4].

In this paper, an application of the self-organizing map (SOM) to spectrophotometric mod-
elling is presented. The application refers to the problem to determining the fat content of
meat samples from its near-infrared transmittance spectroscopy. The SOM paradigm is used
as an efficient framework to accomplish both the task of variable selection and nonlinear
regression. As for the selection of the variables, the problem is approached by evaluating
the relevance of the inputs to the outputs using correlation coefficients. The correlations
are calculated from the model vectors of a SOM trained with all the input variables and
the variable to be estimated. The information extracted from this preliminary SOM is then
employed to develop a nonlinear regression model using a new SOM. This second SOM is
built in the space of the selected inputs and the output variable.

The paper is organized as follows. In Section 2, the general methodology for variable selection
and nonlinear regression using the SOM is illustrated. Section 3 presents the spectrometric
application and discusses the results.

2 Methodology

As stated in the introduction, the aim of this paper is to assess the potentialities of the
self-organizing map [1] for both variable selection and regression. In this section, the general
methodology in reported.

2.1 Variable Selection using the SOM

In practical data analysis and modeling, one of the most common tasks is to search and find
dependencies between variables. The self-organizing map can be successfully employed for
getting a visual insight of the data and to start the preliminary investigation of potential
correlations. From the SOM, dependencies can be searched by looking for similar patterns
in identical positions in the component planes and distance matrices visualizations of the
map [9]. Despite its inherent appeal, when the dimensionality of the data is large, this
qualitative approach is not practical. Moreover, the visual impression of dependency needs
to be validated with more rigorous statistical methods [2].

Alternatively, a quantification of the similarities between the variables can be accomplished
measuring their correlations from the components of the model vectors or their distance
matrices. As proposed in [10], to benefit from the noise filtering performed by the SOM
paradigm, clean correlations can be calculated directely from the model vectors instead of
the original data as:

cj,k =
1

σjσk

M
∑

l=1

(mlj − µj)(mlk − µk) (1)

where j and k represent the input and output variables, respectively. With µ and σ are
denoted their mean value and the standard deviation, and M is number of the model vectors
ml ∈ R

n+1 in the SOM.

In principles, the selection is then simply performed by ranking the inputs according to their
relevance to the output variable, and selecting an appropriate subset x′ ∈ R

s. Indeed, when
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the input variables are very similar (as in spectrometric problems), to avoid the selection of
collinear variables additional informations from a priori knowldedge can be considered.

2.2 The SOM as a Nonlinear Regression Model

As for the development of a regression model [7], a set of model vectors mj ∈ R
d (where,

d = s + 1) is trained into the selected space of the observation vectors (x′, y) ∈ R
s × R. The

estimation of y is accomplished by identifying the winner model for a set of known independent
variables x′:

mw = arg min
j

s
∑

p=1

(x′

p − mjp)
2 (2)

so that ŷ = mwp, for p = d. Using the selected inputs, the accuracy of the model is parametrized
by the number of model vectors. In general and given the usual restrictions on generaliza-
tion, the larger is the number of model vectors the more dense is the quantization of the
observations’ space and, hence, the better is the estimation accuracy.

3 The Study Case

The task for the Tecator dataset [8] consists of estimating the content of fat in a meat
sample starting from its light absorbance spectrum. The spectra are acquired by means of a
Tecator Infratec Food and Feed Analyzer operating in the 850 − 1050nm wavelength range.
The absorbance (−log10T , where T is the light transmittance) is measured on the basis of
the Near Infrared Transimission (NIT) principle for 100 wavelengths within the mentioned
range. The content in fat of the finely chopped meat samples is evaluated in laboratory tests
by analytic chemistry.
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Figure 1: A selection of near-infrared spectra
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The dataset is composed of 172 training observations (divided in 129 learning samples, and
43 samples for validation) and 43 observations for testing the final model. For the sake of
clarity, in the following the learning set is denoted with L, the validation set with V and the
testing set with T . Each observation consists of the 100−channel spectrum of absorbances
and the fat content: that is, x ∈ R

n (with, n = 100) and y ∈ R.
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Figure 2: A selection of normalized spectra

Previous studies [5, 6] on this standard dataset, pointed out the relevance of the shape of
the spectrum. Indeed, a remarkable property of the Tecator dataset is represented by the
criticality to extract interesting structural differences between nearly identical spectra. In
spectrometry, particularly in near-infrared, this problem is approached with a widely used
technique, referred as to derivative spectrometry, that employes differentiation as a general
way to discriminate against broad spectral features in favor of narrow ones. Therefore, to
implicitely embed informations on, at least, the first derivative of the spectrum, the original
observations were preprocessed so that each spectrum is normalized to zero mean and unit
variance:

xi :=
(xi − x̄i)
√

var(xi)
,∀i ∈ [1, N ] (3)

A selection of spectra from the available database is illustrated in terms of both the orig-
inal (Figure 1) and the normalized variables (Figure 2). In both figures, the vertical lines
correspond to the selected variables, as described in the following.
According to the methodology presented in Subsection 2.1, the clean correlation between
each pair (x, y) of inputs and the output was evaluated using a first bi-dimensional SOM
with 9× 7 units. The size of this preliminary SOM was evaluated according to the heuristics
discussed in [11]. On the basis of the results presented in Figure 3, the selection of the
inputs was performed considering the spectral variable that most correlate with the output
(the local maxima). In addition, to characterize the complete band of wavelengths, also the



Input Selection and Regression using the SOM

variables corresponding to the local minima were selected. This is equivalent to the following
assumption: as the linear dependence decreases, possible nonlinear dependencies might arise.
On the basis of these considerations 7 inputs were selected. In order to define a sparser model
and validate the assumptions, an exhaustive search for the best combination is performed in
the space of the selected inputs: the number of possible combinations is obviously 27. For
each possible combination of inputs a SOM-based regression model is built (see, Subsection
2.2). The selection of the best model is defined using the normalized mean square error on
the validation set (NMSEV ) as accuracy criterion:

NMSEV =

1/NV

NV
∑

i=1

(ŷi − yi)
2

1/(NL + NV + NT )

NL+NV +NT
∑

i=1

(yi − ȳ)2

=

1/NV

NV
∑

i=1

(ŷi − yi)
2

var(y)
(4)

where NL, NV , NT are the number of observations in the L, V and T set, respectively. The
observed variance var(y) of the output y estimated from all available observations is used as
a normalization term common to all the datasets.
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Figure 3: Correlation with the fat content as a function of the wavelength

The best set of inputs is represented by the first 4 spectral variables corresponding to 866,
906, 932 and 946 nm. Two of them correspond to local maxima of the clean correlations
and two of them are local minima. Note that the most correlated variables do not necessary
belong to the optimal set.
As for the final regression model, after calculating the eigenvalues of the complete observation
matrix (x′, y) ∈ R

m × R, the model vectors of a 2D map were initialized along the 2 greatest
eigenvalues of the covariance matrix of the given data. The regression of the models into
the input space was then performed according to a batch learning algorithm using euclidean
metrics and gaussian neighborhood kernel functions.
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To optimize the choice of the number of model vectors, the performances of different config-
urations of the map were compared using the accuracy measure defined in Equation 4.
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Figure 4: Simulation results: Solid line (Measured values) and Dashed line (Estimated values)

In Figure 4, the results obtained with the 4 selected variables are presented for the test
dataset. The corresponding NMSET is equal to 0.016. The achived accuracy represents an
improvement when compared to a previous work [6] that used mutual information to select
the inputs a number of traditional regression models.
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Figure 5: Evolution of the performances with the dimensionality of the SOM
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The optimal number of model vectors was found to be 1156 displaced in a 34 × 34 grid,
see Figure 5. Since the validation error does not present an evident minimum (no apparent
overfitting), we have chosen an optimal number of units that corresponded to a decrease
of the NMSEV that was smaller than the 1% when compared to the one obtained for the
immediately smaller map.

Even if, the number codebooks is clearly larger than the number of samples available for
calibration by one order of magnitude, the model appears not of suffer of overfitting and is
still able to generalize the acquired knowledge.

This unexpected result was interpreted as an indicator of the relevance of the adaptation
performed by the SOM when employed in function approximation. From an accurate analysis
of the model, it appeared that also those model vectors that do not have any data in the
corresponding Voronoi zone (“lost”, with respect to the training process) actively participate
to improve the estimation accuracy with the validation/test data. Similar results could not
be achieved using simple vector quantization (see, [3]).

This nice property of the SOM is illustrated using a simple example. Using the methodology
described in Subsection 2.2, a monodimensional SOM is trained into a 2D space (one input,
and one output) in order to approximate the function y = x2. For a new data x∗, the winner
model is identified and the estimation of y∗ is calculated. From Figure 6, it is clear how the
interpolating model contributes to the quality of the approximation.
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Figure 6: Monodimensional function approximation with the SOM: Data (?) and the SOM(-•-)

4 Conclusions and further works

In this paper, an original methodology that combines input selection and regression using the
self-organizing map is presented. From the discussed results two major considerations can be
drawn.
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Firstly, the SOM can be effectively used in the selection of the relevant inputs for a re-
gression model. Secondly, the accuracy of the results demonstrate the potentialities of the
self-organization in the regression context.
For the described application, the sparsity of the obtained models and the good quality of
the predictions is, indeed, an advantage because of the interpretability of the results.
The methodology will be further investigated and validated. It is our goal to assess its
potentiality with other problems of interest: e.g., in pharmacology and chemometrics, where
the large number of variables and the reduced number of samples represent a criticality.
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