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Abstract ~ Time series forecasting is usually limited to one-step 
ahead prediction. This goal is extended here to longer-term 
prediction, obtained using the least-square support vector 
machines model. The influence of the model parameters is 
observed when the time horizon of the prediction is increased 
and for various prediction methods. The model selection to 
optimize the design parameters is performed using the Fast 
Bootstrap methodology introduced in previous works. 

1. INTROOUCTLON 

Time series forecasting is a general problem 
encountered in many field as engineering (electrical 
consumption, gas consumption, ...), finance (share or stock 
evolution, . . .), environment (river flood, . . .) to give only a 
few examples. The general problem of time series 
forecasting can be rephrased as the problem of finding a 
model able to forecast the future evolution of a time series 
given its past evolution. Most of the time, the forecasting 
problem is limited to a short-term time series prediction. In 
other words, as one tries to model the future evolution of a 
time series, the usual goal is to be able to perform a one- 
step ahead prediction. The main reason motivating such 
approach is reliability of the predicted values. One-step 
ahead predictions can be reasonably reliable, while the 
uncertainty on future values increases with the time horizon. 
The idea is thus to see how models that have been used to 
perform one-step ahead predictions behave in the more 
general framework of multiple steps ahead predictions 
(where multiple steps can mean a relatively large number of 
future values). Furthermore, as these models are 
parameterised, the relative importance of their parameters 
will be observed on longer-term prediction. The influence 
of these parameters will thus be underlined as the time 
horizon of the prediction increases. Since one chooses a 
family of parametensed models, there exists as many 
models as there are different values for the parameters. The 
problem is thus to be able to choose the best one among a 
family of models, according to some criterion (usually the 
generalisation error). 

Many techniques have been developed in the general 
framework of model selection. Some of them are based on a 
penalisation of the model complexity, as AIC, BIC, MDL 
[I ,  2, 31, while others are based on resampling, as k-fold 

cross-validation, leave-one-out, and bootstrap [4]. Although 
they differ in their approach, these methods, either based on 
complexity penalty or resampling, have been proved to be 
asymptotically equivalent [SI. Within the resampling 
methods, the bootstrap will be used here, as it provides a 
more robust estimate of the generalisation error [6]. 
Nevertheless, the bootstrap has an awkward limitation. The 
computation time needed to obtain an estimate of the 
generalisation error can be very large when using nonlinear 
models. 

An improvement to the bootstrap, namely the Fast 
Bootstrap, will be extended here to the case of least-squares 
support vector machines (LS-SVM) [7, 81. This 
improvement bas already been applied to radial basis 
function networks [9, IO]. In the following of this paper, 
we first recall some basic concepts about LS-SVM. The 
principle of the bootstrap will also be recalled in section 111. 
The Fast Bootstrap improvement will be introduced for LS- 
SVM in section IV. Section V deals with various 
approaches for long-term forecasting. The LS-SVM will 
then be applied to the SantaFe A time series in order to 
observe the influence of the model in the case of long-term 
forecasting. This influence will be finally discussed in the 
conclusion. 

11. LEAST-SQUARE SUPPORT VECTOR MACHINES 

Consider a given training set of N data points {xi, ,vk} 
with xk a n-dimensional input andy, a I-dimensional output. 
In feature space SVM models take the form: 

where the nonlinear mapping q(.) maps the input data into a 
higher dimensional feature space. In least squares support 
vector machines for function estimation, the following 
optimization problem is formulated: 

Y ( X )  = w r v ( x ) + b ,  

subject to the equality constraints: 

This corresponds to a form of ridge regression. The 
Lagrangian is given by: 

y ( x ) = d q ( x ) + b + e , ,  k = l ,  ..., N .  
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with Lagrange multipliers ca. The conditions for optimality 
are: 

for k = I..N. After elimination of' ek and 0, the solution is 
given by the following set of linear equations: 

where y = b,; . ..; y ~ ] ,  i = [ I ;  ... ; I], a = [a,; ... ;UN] and R 
follows Mercer's condition: 

R, = ' p ( x k  )rcp(x') k,) = 1 ,,,,, N , 
YJ(X,,X,) 

Y ( X )  = o r W  + b  , 

This finally results into the following LS-SVM model for 
function estimation: 

where a and b are the solution to (6) and o is given by (5). 
For the choice of the kernel function I+(.,.) one has several 
possibilities [7,8]. In this paper, Gaussian kernels are used 
~ ( x ,  x*) = exp{-IP-x#/o'}. The remaining unknowns are o 
and y. These model hyperparameters will be selected 
according to a model selection procedure detailed in the 
following of this paper. 

, 

111. BOOTSTRAP FOR MOOEL s"UCTVRE SELECTION 

The bootstrap [4] is a resampling method that has been 
developed in order to estimate some statistical parameters 
(like the mean, the variance, etc). In the case of model 
structure selection, the parameter to be estimated is the 
generalization error (i.e. the average error that the model 
would make on an infinite-size and unknown test set). 
When using the bootstrap, this error is not computed 
directly. Rather the boorstrap estimates the difference 
between the generalization error and the training error 
calculated on the initial data set. This difference is called 
the optimism. The estimated generalization error will thus 
be the sum of the training error and of the estimated 
optimism. The training error is computed using all data 
from the training set. The optimism is estimated using a 
resampling technique based on drawing within the training 
set with replacement. Using notation E:'" where the fmt 
exponent A, denotes the training set while the second 

exponent A, indicates the set used to estimate the model 
error, the Bootstrap method can be decomposed in the 
following stages: 
1. From the initial set I ,  one randomly draws N points with 
replacement. The new set A, has thus the same size that the 
initial set and constitutes a new training set. This stage is 
called the resampling. 
2. The training of the various model structures q is done on 
the same training set A,. One can compute the training error 
on this single set: 

with 0,' the model parameters after learning, hq the q6 model 
that is used, x:' the r" input vector from set A,, y!J the i" 

output and N the number of elements in this set. Index j 
means that the error is evaluated on the]* new sample. 
3. One can also compute the validation error on the initial 
sample which now plays the role of the validation set V=L 

Here again index j means that the error is evaluated on the 
J" new sample. 
4. The difference between these two errors (9) and ( I O )  is 
calculated and defined as the opfimism by Efron [6]: 

opm2ismj(q,e)(q)) = 

5 .  Steps I to 4 are repeated J times. The estimate of the 
optimism is then calculated as the average of the J values 
from ( I  I): 

- j 4  op/rirism( q) = 
J 

6. The training of the q model structures is done on the 
initial data set I and the training error is calculated on the 
same set. Two exponents I are used to indicate that the 
initial data set is used for both training and error estimation: 

(13 
) 

&hq(x;,e'(q))-y:)I 
E'J(q,e'(q))  = 

N 
7. An approximation of the generalization error is finally 
obtained by: 

igen(q)  = optiriri."q) + E'J(q,e'). (14 
) 

&(q) is an approximation of the generalization error for 
each model structure q. The'best structure that will be 
selected is the one that minimizes this estimate of the 
generalization error. In this paper, the Bootstrap ,632 will 
be used instead of the classical Bootstrap described above. 
In Bootstrap .632, the validation set V is made with the 
elements that are in the initial data set I but not the training 
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set A,. Since the set 6 is different for each set A,, one have 
to replace Y by in relations (IO) and (11) while the 
remaining equations remain unchanged. Finally, (14) is 
replaced by: 

kgen(q) = .632optimism(q) + ,368 E'*'(q,B') . ( I 5  
1 

The main advantage of this version is that the estimate of 
the generalization error obtained by the Bootstrap ,632 is 
unbiased [4]. 

IV. FAST BOOTSTRAP AND TOY EXAMPLE 

In this section, an improvement to the Bootstrap 
methods is presented. This improvement is called the Fast 
Bootstrap and allows reducing the computational time of 
the traditional Bootstraps [9-lo]. This method is based on 
experimental observations and is presented on a function 
approximation example. In this example, 200 inputs x has 
been drawn using a uniform random law between 0 and 1. 
The outputy has been generated by the function: 

y = sin(5x)+sin(l5x)+sin(25x)+~, (16 
) 

with E a uniformly distributed random value in [-OS OS]. 
This function is represented in Figure 1. 

0 0.2 0.4 0.6 0.8 I .3L 

Figure I :  Examplc of function (dots) and its approximatian (solid linc). 

A LS-SVM is used to approximate this function. Two 
parameters still have to be determined, namely a and y. For 
a fixed o = 0.1, the optimal y is determined using the 
Bootstrap method. The set of y that is tested ranges from 0 
to 100 with a 0.1 step. The number of resamplings in (12) is 
equal to 100. The apparent error defined in (13) is 
computed and represented in Fig.?.. The optimism is 
computed using (12) and represented in Fig.3. The 
generalization error is computed using (15) and represented 
in Fig.4. The value of y that minimizes the generalization 
error is equal to 11. In Fig.3, the optimism is very close 
from an exponential function of y. This fact has been 
observed on other examples and benchmarks. Then, using 
this information, the number of values of y to be tested can 
be considerably reduced. In this example, this set is indeed 
reduced to 5 to 100 with an incremental step of 5 .  An 
exponential approximation of the optimism is used. Thanks 

to the approximation, the number of Bootstraps is also 
reduced by a factor IO in (12). The new optimism and 
generalization error are represented as dotted lines in Fig.3 
and Fig.4 respectively. The optimum is close to the one that 
has been selected by the Bootstrap method. This new 
method, denoted Fast Bootstrap, is in this toy example 500 
times quicker than the traditional Bootstrap. In other 
examples, the Fast Bootstrap is at least 100 times quicker 
than traditional Bootstrap for the selection of the y 
parameter for a LS-SVM, without loss of precision. 

1 0.1 

Figure 2: Apparent Error with mspect toy. 
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Figure 3: Optimism with rcspect to y using Bootstrap (solid line) and Fast 
Bootsnap (dalted line). 

Figure 4 Gcncralization Error with respcct to y using Bootstrap (solid 
linc) and Fast Bootstrap (dashed line). 

V. LONG-TERM FORECASTING STRATEGIES 

A .  Definition of theproblem 
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Long-term forecasting is just an extension of the usual 
one-step ahead prediction that could be called short-term 
forecasting. More formally, having at disposal a time series 
of inputs x,  and exogenous variables U,, with t between 1 and 
n, the one-step ahead prediction problem is usually defined 
as: 

= h(x, , L ~  ,...,.L~ ,UI . f ~ , - ~  ,.-, id,-,, ,e) (17 
) 

where h(.) is the model used to predict the time series, x, are 
the model inputs, U< are some exogenous variables, 0 the set 
of model parameters and i,+l is the output at instant t+l to 
be predicted. p represents the amount of past inputs used in 
the model while q is the number of past exogenous 
variables used in the model. Note that model h(.) could he 
either a linear model or a non-linear one. In our case this 
model will be a LS-SVM. 

Long-term forecasting can he defined in a similar way, 
as a straightforward extension of (17): 

(%+* ,..., f,,,, %+I) = (18 
) h(x,, x,-, ,..., x , -~ ,  U,, U,-, ,..., u , - ~ ,  0) 

where' h denotes the final time horizon of the long-term 
forecasting. In this last relation, the goal of the long-term 
forecasting is clearly illustrated obtaining the whole set of 
h future values at time t (current time). The question arising 
now is how such a long-term forecasting can he obtained. 
Two methods are proposed here: the rolling forecasting, and 
the block forecasting. 

B. The rolling forecasting strategy 

This first strategy is a recursive one. Consider one has a 
one-step ahead prediction model. The idea to obtain long- 
term forecasting with this short-term forecasting model is 
straightforward. At time t ,  all what has to be done is to 
predict the output at time t+l as usually. Then the 
prediction at time t+l can be used to predict the output at 
t+2; this processus is repeated recursively up to the final 
time horizon h. For example, if we consider here h = 5 ,  we 
can write: 

f + l  =h(x,,x, _ l , ~ , ~ ~ . . . . r ~ , - p . ~ ) ,  

d+* = h [ i , + b x , J - I  ,..., X r - p + l , e ) ,  (19 
... 1 

f+5 = h[i,+4 &+, ,%+z ,..., ~ , - ~ + 4 ,  e), 
where the exogenous variable have been omitted for the 
sake of simplicity. 

C. The block forecasting strategy 

This second strategy is a direct one. The idea is an 
immediate application of relation ( I Q ,  i.e. the use of a 
multiple output model. The number of outputs is the same 
as the time horizon h. For the above example with h = 5 ,  the 
model has 5 outputs. 

D. Comments 

The main problem of the rolling forecasting strategy is that 
there is a certain amount of error between the prediction 

and the true next value X,+L As the first prediction is 
taken as input to obtain the second one, this error is 
propagated through the model. The second prediction has 
potentially twice more error: the difference between i,,, 
and xli2 plus the propagated error. With an increasing time 
horizon h, this accumulation can be important. The block 
forecasting strategy avoids this problem since the recursive 
step is avoided. On the other hand, the main problem with 
the block forecasting strategy is that a single model can 
perform badly on multiple outputs. Indeed, it has to model 
various dynamics since the relation with the p last inputs x, 
(and potentially the q last exogenous variables U,) is not 
necessarily the same for &+I, xl+j and x,+I,. The model should 
be able to capture various dynamics with a parameter set B 
of limited size, which is obviously a difficult task. The 
rolling forecasting approach is not subject to this problem 
since only the next value dynamics is modelled. Advantages 
and drawbacks of the two proposed methods have been 
discussed briefly. The aim now is to observe how this 
intuition is verified when applying those two strategies with 
a specific model, namely the LS-SVM. Furthermore a 
particular attention will be given to the influence of the 
model parameters (5 and y while using both long-term 
forecasting strategies. 

VI. SANTAFE A TIME SERIES 

The Time Series used here is a well-known benchmark: the 
SantaFe A time series [ 1 I]. The number of samples is 1000. 
This series is represented in Fig. 5 .  

i 3 m . p  
I 

... / a;- 

Figure 5:  SantaFf A Time Serics. 

The model based on relation (18) that is used here is: 
&+I =h(x,,*,-l,x,-z,O). (20 

) 
The number of inputs (number of past values of x in (20)) 
has been selected using the Fast Bootstrap ,632 according to 
the procedure described in the following. The 
generalization error (defined as the sum of squared errors 
on all predictions) with respect to the number of inputs is 

708 

Authorized licensed use limited to: Teknillinen Korkeakoulu. Downloaded on August 4, 2009 at 06:34 from IEEE Xplore.  Restrictions apply. 



represented in Fig.6. For each value in Fig.6, parameters a 
and y have been optimized. To obtain the optimized a and 
y, the y parameter is optimized by Fast Bootstrap ,632 for 
each value of a, in a selected range. Note that the 
generalization error used here is a one-step ahead prediction 
error. The minimum of the generalization error in Fig.3 
corresponds to a regressor of size 3 (as already mentioned 
in (20)). For this size of the regressor, the generalization 
error with respect to a is represented in Fig.7 (each value 
on this curve is the result of a Fast Bootstrap ,632 
optimization on y). The minimum is situated at a = 60. 
Fig.8 shows the generalization error with respect to y, for a 
fixed value of a = 60. 
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Figure 6 Generalization cmor wilh rcspcct to thc number of inpuls. 
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Figure 7: Gcncraliration ermr with respecl to 0 
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Figure 8: Gcncralization error with respect toy. 

The generalization error is minimum for a = 60 and y = 
525.  To explain Fig.8 and justify the use of the Fast 

Bootstrap .632 procedure, the apparent error and the 
optimism (for a= 60) are represented in Fig.9 and Fig.10 
respectively. 

Figure 9: Apparent Error wilh rcspcet 10 y, 

. .  

0943 5 

, . . , .  
100 2W 300 400 SW 600 700 800 900 IOW 

Gamma 

, . . , .  
100 2W 300 400 SW 600 700 800 900 IOW 

Gamma 

Figure 1 0  Optimism with respect lo y. 

In Fig.10, the optimism is an exponentially increasing 
function of y (similarly to Fig.3). The whole procedure 
above to select a, y and the size of the regressor is based on 
one-step ahead predictions and errors. In order to extend 
the procedure to long-term forecasting, the same 
methodology'is applied for t+2, t+3, ..., t+lO, first with the 
block forecasting seategy: 

%+I =hl(x,,x,.t,~,-2,e), 

9 + 2  = h2bt .~,-,>~,-2.~) 3 

%+IO = hlO(X, I xt-1 ,xt-2 3 e) . 
(21 

... ) 

In (21), each model hi corresponds to a LS-SVM. We 
assume that a = 60 remains valid and only y is optimized 
using Fast Bootstrap. According to equation (19), the 
rolling forecast methodology is also used: 

=h(x,,x,-,,x,-,,e), 

f,,, =h(i,+ll~,,~,-l,e), (22 
... ) 

i , + I O  = h ( ~ 1 + 9 . i , + 8 , % + 7 r ~ )  3 
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We again assume that m = 60 remains valid and only y is 
optimized using Fast Bootstrap. In this last case, it is 
interesting to note that the optimal y that is selected is very 
different from the one selected in the one-step ahead 
prediction case. This is shown in Fig.1 I .  

2r 5 

Figure I I :  Optimal y with respect to the number ofsteps ahead 

The hyperparameter y is decreasing with respect to the 
horizon of prediction. The model that is selected is thus a 
less complex one. This result is in accordance to the results 
obtained in [3] for linear models. The results of the block 
forecast and rolling forecast strategies are presented in 
Fig.12. 

.I 6 'a + i o  
Numba of steps akad 

Figure 12: Generalization error with respect to the number of stcps ahead: 
for rolling forecast (solid line) and block forecast (dashed line). , 

For prediction horizons less or equal to 4, the rolling 
forecast performs better than the block forecast strategy, 
while the opposite becomes true for larger horizons. This 
result is in accordance to the intuition presented in section 
V. 

VII. CONCLUSIONS 

In this paper, the ability of the Fast Bootstrap to select 
the hyperparameters of a LS-SVM has been shown on Toy 
example and a time series prediction benchmark. The main 
limitation of the Bootstrap is its computational load; the 
Fast Bootstrap is 10 to 100 times faster. 

Two strategies for long-term prediction have been 
presented the rolling forecasting strategy and the block 

forecasting one. Both of them have been applied 'to the 
SantaFe A prediction benchmark. Firstly, the rolling 
strategy provides better predictions for short horizons while 
the opposite becomes true for larger ones. Secondly, for the 
rolling forecasting strategy, the hyperparameter y is 
decreasing with the horizon of prediction. These two results 
are obtained in a fast and efficient manner with the Fast 
Bootstrap methodology. 
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