
Time series forecasting with SOM and local non-linear

models - Application to the DAX30 index prediction

Simon Dablemont, Geoffroy Simon1, Amaury Lendasse2,
Alain Ruttiens3, François Blayo4, Michel Verleysen1

Universite catholique de Louvain
1 DICE - Place du Levant, 3 3CBC Banque 4 PREFIGURE Espace G2C

2 CESAME - Avenue G. Lemaitre, 4 Grand-Place, 5 Rue de Gerland, 75 B
B-1348 Louvain-la-Neuve B-1000 Bruxelles F-69307 Lyon Cedex 07

BELGIUM BELGIUM FRANCE

1Tel : +32 10 47 25 40 1Fax : +32 10 47 25 98

simdable@compaqnet.be, simon@dice.ucl.ac.be, lendasse@auto.ucl.ac.be,
alain.ruttiens@cbc.be, francois.blayo@prefigure.com, verleysen@dice.ucl.ac.be

Keywords: time series forecasting, local models, financial prediction, returns

Abstract— A general method for time series fore-
casting is presented. Based on the splitting of the past
dynamics into clusters, local models are built to cap-
ture the possible evolution of the series given the last
known values. A probabilistic model is used to com-
bine the local predictions. The method can be applied
to any time series prediction problem, but is particu-
larly suited to data showing non-linear dependencies
and cluster effects, as many financial series do. The
method is applied to the prediction of the returns of
the DAX30 index.

1 Introduction

The analysis of financial time series is of primary im-
portance in the economical world. This paper deals
with a data-driven empirical analysis of financial time
series; the goal is to obtain insights into the dynamic
of the series and out-of-sample forecasting.

Forecasting future returns on assets is of obvious in-
terest in empirical finance. If one was able to forecast
tomorrow’s return on an index with some degree of
precision, one could use this information in an invest-
ment. Unfortunately, we are seldom able to generate
a very accurate prediction for assets returns.

The Gaussian random walk paradigm (under the
form of the geometric Wiener process) is the core of
modeling of financial time series. Its robustness mostly
suffice to keep it as the best foundation for any devel-
opment in financial modeling, in addition to the fact
that, on the long run, and with enough spaced out
data, it is almost verified by the facts. Failures in its
application are however well admitted on the (very)
short term (market microstructure). To some extent,

such failures are actually caused by the uniqueness of
the modeling process.

The first breach in such unique process has appeared
with two-regime or switching processes [1], which rec-
ognize that a return process could be originated by two
different differential equations. But in such case, the
switch is governed by an exogenous cause (for example
in the case of exchange rates, the occurrence of a cen-
tral bank decision to modify its leading interest rate
or to organize a huge buying or selling of its currency
through major banks).

Market practitioners, however, have always observed
that financial markets can follow different behaviors
over time, such as overreaction, mean reversion, etc,
which look like succeeding each other with the passing
time. Such observations would justify a rather funda-
mental divergence from the classic modeling founda-
tions. That is, financial markets should not be modeled
by a single process, but rather, by a succession of differ-
ent processes, even in absence of the exogenous causes
retained by existing switching process. Such a multiple
switching process should imply, first, the determina-
tion of a limited number of competitive sub-processes,
and secondly, the identification of the factor(s) causing
the switch from one to another sub-processes. The re-
sulting model should not be Markovian, and, without
doubt, hard to determine. The aim of this paper is,
as a first step, to at least empirically verify, with help
of neural networks, that a multiple switching process
leads to better short term forecasting.

Neural networks are used here as non-linear predic-
tion tools, able to create clusters in the data; these
clusters will correspond to the sub-processes, within
which returns and volatility display different dynamic
behavior. ARMA-GARCH [2, 3] are aimed to model
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the conditional mean and variance of a series. How-
ever, the series is still characterized by a single model
even if it is adapted to transitions (switching pro-
cesses).

In this paper we will present a forecasting method
based on an empirical analysis of the past of the series.
An originality of this method is that it does not make
the assumption that a single model is able to capture
the dynamics of the whole series. On the contrary, it
splits the past of the series into clusters, and gener-
ates a specific local model for each of them. The local
models are then combined in a probabilistic way, ac-
cording to the distribution of the series in the past.
This forecasting method can be applied to any time-
series forecasting problem, but is particularly suited
for data showing non-linear dependencies and cluster
effects.

In the following of this paper, we will first describe
how Self-Organizing Maps (SOM) can be applied to
time series data (section 2), and briefly introduce the
Radial-Basis Functions Networks that will be used as
non-linear models (section 3). Then, we will describe
the forecasting method itself (section 4), and illustrate
its results on the DAX returns series (section 5).

2 Self-organization of regressors

In the context of time series prediction data have to
be manipulated in an adequate way before using any
kind of forecasting model. For example, using the
last known data from a scalar time series is not infor-
mative enough to predict the next value with a suffi-
cient accuracy. The common manipulation is to build
a fixed-sized regressor from the data. The regressor
contains some of the past data from the series, and
is supposed to contain the most useful information to
perform an accurate prediction. The problem of deter-
mining the most informative or optimal regressor for a
given dataset is an interesting and open question [4],
but exceeds the scope of this paper. In the following it
is supposed that the optimal, or near-optimal regres-
sor for a given dataset is known (for example through
physical knowledge of the series or the use of statistical
resampling model selection methods).

The order of a regressor is the number of past scalar
values of the series used to build this vector. Trans-
forming a scalar time series with n data into regressors
of order p thus leads to n−p+1 data in a p-dimensional
space. The prediction method described below will
make use of SOMs (Self-Organizing Maps [5]) built on
such regressors.

3 RBF Networks

Radial Basis Function Networks (RBFN) are neu-
ral networks used in approximation and classification.

They share with Multi-Layer Perceptrons the universal
approximation property [6].

Classical RBF networks have their inputs fully con-
nected to non-linear units in a single hidden layer. The
output of a RBFN is a linear combination of the hidden
units outputs. More precisely, the output is a weighted
sum of Gaussian functions or kernels (i.e. the nonlin-
earities) applied to the inputs :

y =
I∑

i=1

λi e
− ||x−ci||2

σ2
i , (1)

where x is the input vector, y is the scalar output of
the RBFN, ci, 1 ≤ i ≤ I, are the centers of the I
Gaussian kernels, σi, 1 ≤ i ≤ I, are their widths,
and λi, 1 ≤ i ≤ I, their weights. Intuitively those
last λi parameters represent the relative importance of
each kernel in the output y.

As shown in equation 1, the RBF network has three
sets of parameters ci, σi, λi, 1 ≤ i ≤ I. One ad-
vantage of RBFN networks compared to other approx-
imation models is that these three sets can be learned
separately with suitable performances. Moreover the
learning of the λi weights results from a linear system.
A description of learning algorithms for RBF networks
can be found in [7, 8].

4 The Forecasting Method

This section is devoted to a detailed description of the
time series forecasting method. This method will first
be sketched to give an intuition of how the forecasting
is performed. Then each step of the method will be
detailed. The simple case of a scalar time series will
be considered. This case can be extended easily to
non-scalar time series.

4.1 Method Description

The forecasting method is based on the ”looking in
the past” principle. To perform a prediction at time
t + 1, a regressor is built with past valued until time t.
Then similar regressors are looked for in the past of the
series, and the true next values after these regressors
are considered. These are combined in a probabilistic
way to build the prediction at time t + 1.

First the original time series is transformed into a set
of regressors of order p. This first dataset is quantized
using the SOM algorithm.

Another application of the SOM is done on extended
regressors. Indeed for n − p of the regressors built on
the series, we know the true next value. Therefore we
build extended regressors containing the p past values,
together with a supplementary one, the respective next
value of the series. The SOM algorithm is also applied
to these p + 1-dimensional vectors.
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The relation between the first and the second sets of
codewords issued from the SOM algorithms is encoded
into a frequency table constructed empirically on the
datasets.

In each of the classes determined by the second
SOM, a RFBN is built to approximate the relation
between the output value (the so-called ”next value”)
and the p-dimensional input (the regressor).

Finally, the prediction at time t + 1 is performed
by combining the local models associated to classes in
the second SOM, according to their frequencies with
respect to the class considered in the first SOM.

4.2 Quantizing the inputs

Consider a scalar time series x(t), 1 ≤ t ≤ n where
x(t) is the value at time t. As detailed in section 2, we
consider here that the order p of an adequate regressor
for this series is known. The original scalar series is
then transformed into a series of (p + q)-dimensional
input vectors X(t) as follows:

X(t) = (x(t − p + 1), x(t − p + 2), ..., x(t),
u(t − q + 1), u(t − q + 2), ..., u(t)), (2)

where u(t) is a possible exogenous variable of interest
for the prediction of x(t). (Note that other exogenous
variables could be added to X(t) without changing the
principale of the method.)

After those manipulations the SOM algorithm is ap-
plied to the input vectors X(t). After convergence
the algorithm gives an IN map of Nin codewords INi,
1 ≤ i ≤ Nin of dimension p + q; each codeword
is associated to a class of (p + q)-dimensional input
vectors.

4.3 Quantizing the outputs

For each input vector X(t), 1 ≤ t ≤ n − p, we
know the next value of the series x(t + 1). New output
vectors of dimension p + q + 1 are formed according to

X ′(t) = (X(t), x(t + 1))
= (x(t − p + 1), ..., x(t), x(t + 1),

u(t − q + 1), ..., u(t))
(3)

Note that, by definition, there is a one-to-one rela-
tion between each input and each output vector.

Another SOM is applied to the output vectors X ′(t).
This results in an OUT map of Nout (p+1)-dimensional
codewords OUTj , 1 ≤ j ≤ Nout, and in Nout asso-
ciated classes of output vectors.

4.4 Frequency table

The two sets of codewords of the maps IN and OUT
only contain a static information. This information
does not reflect completely the evolution of the time
series. The idea here is thus to create a data structure

that represents this dynamics, i.e. how each class of
output vectors (including the value at time t + 1) is
associated to each class of input ones (without the t+1
value).

This structure is the frequency table T (i, j), with
1 ≤ i ≤ Nin, 1 ≤ j ≤ Nout. Each element
T (i, j) of this table represents the proportion of output
vectors that belongs to the jth class of the OUT map
while their corresponding input vectors belong to class
i of the IN map. Those proportions are computed em-
pirically for the given dataset and sum to one on each
line of the table.

Intuitively the frequency table represents all the pos-
sible evolutions at a given time t together with the
probability that they effectively happen.

4.5 Local RBFN models

When applied to the output vectors, the SOM algo-
rithm provides Nout classes. In each of these classes
a RBFN model is learned. Each RBFN model has
p+q inputs (the regressor and the exogenous variables)
and one output (the prediction at time t + 1). These
models represent the local evolution of the time series,
restricted to a specific class of regressors. The local
information provided by these models will be used to
predict the future evolution of the time series.

4.6 Forecasting

The relevant information has been extracted from the
time series through the two Kohonen maps, the fre-
quency table and the local RBF networks detailed in
the previous sections. Having this information, it is
now possible to perform the forecasting itself. At each
time t, the goal is to estimate the value of x(t + 1),
denoted x̂(t + 1), at the following time step.

First the input at time t is built, leading to X(t).
This vector is presented to the IN map, and the nearest
codeword INk is identified (1 ≤ k ≤ Nin).

In the frequency table, in the kth line, there are
some columns corresponding to classes of the OUT
map for which the proportions are non zero. That
means that those columns represent possible evolutions
for the considered data X(t), since X(t) as the same
shape than data in the kth class.

For each of those potential evolutions, the respective
RBF networks are considered (remember that one RBF
has been built for each class in the OUT map). For
each of them, a local prediction x̂j(t + 1) is obtained
(1 ≤ j ≤ Nout). The final prediction is a weighted
sum of the different local predictions, the weights being
the proportions recorded in the frequency table:

x̂(t + 1) =
Nout∑

j=1

T (k, j)x̂j(t + 1) (4)
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5 Experimental Results

5.1 Data

The example presented here deals with the German
DAX30 index time series for the period starting on
January 02, 1992 and ending on January 08, 2003; it
includes the implied volatility VDAX time series.

In a few words, implied volatility reflects the ex-
pected average volatility for the market participants,
for example over the life of an option. Most market
practitioners consider this measure of volatility as the
most trustworthy forecast of the short-term volatility
of the underlying asset. In an option pricing frame-
work, the implied volatility is defined as the volatil-
ity that, when plugged in the option pricing formula,
equates the theoretical price of the option with the ob-
served market price.

On top of Fig. 1 and Fig. 2 we can see the respective
evolution of the DAX and VDAX time series. The
bottom of those two figures are the returns of the DAX
and VDAX respectively.
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Figure 1: Above : the DAX time series from 2nd Jan-
uary 1992 to 8th January 2003; below : the correspond-
ing DAX returns time series (same period).
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Figure 2: Above : the VDAX time series evolution
(same period as DAX); below : the corresponding
VDAX returns time series (also same period).

5.2 Methodology

This section begins with a few precisions over the data
considered in this experimental example.

To test the performances of the method data are di-
vided in three subsets : the learning, validation and
test subsets. Usually a proportion of respectively 80%,
10% and 10% is used. The learning set is used to learn
the SOM resulting in the IN and OUT maps. Those
learning data divided into clusters are used to learn the
local RBF models. The validation set is used to opti-
mize some meta-parameters (size of the maps, numbers
of neurons in the RBFs, etc.) within a selected range or
set. The test set is used to evaluate the performances
of the forecasting method.

Vectors X(t) and X ′(t) considered here are com-
posed according to equations 2 and 3, with x(t) the
DAX returns and u(t) the VDAX returns series.

The size of the IN and OUT maps have been chosen
according to the Mean Absolute Error criterion com-
puted over the validation set Vset as :

MAE =
1

#Vset

#Vset−1∑

t=0

|| x(t + 1) − x̂(t + 1) || (5)

Another criteria that will be used is the Normalized
Mean Absolute Error defined as :

NMAE =
∑#Vset−1

t=0 || x(t + 1) − x̂(t + 1) ||
∑#Vset−1

t=0 || x(t + 1) − E[x(t + 1)] ||
(6)

with E[.] the statistical expectation. The intuitive in-
terpretation of this second criterion is straightforward
: we compare the obtained MAE to the MAE that we
would obtain if the orignal time series x(t) was mod-
elised by a random walk. Since the values x(t) are
here returns of the price of a market value, under the
assumption of random walk, the expectation is zero.
Therefore equation 6 simplifies in :

NMAE =
∑#Vset−1

t=0 || x(t + 1) − x̂(t + 1) ||
∑#Vset−1

t=0 || x(t + 1) ||
. (7)

Intuitively, a NMAE value of 1 would mean that the
model does not perform better than a random walk
modeling while a value near 0 value indicates a quite
perfect modeling.

Both those error criteria can be computed over each
dataset. In pratice, there are used on the validation
and test sets, to choose meta-parameters and assess
the performances respectively.

Indeed, various square SOM sizes were tried with an
increasing number of units. The model selected is the
one having the lowest MAE value on the validation set.
For both the IN and OUT datasets, 4x4 maps have
been chosen. Fig. 3 shows the X(t) vectors in their
respective classes after training of the IN map. Fig.
4 shows the corresponding code vectors for each class.
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Fig. 5 and Fig. 6 show respectively the X ′(t) vectors
in the classes obtained for the OUT map and the cor-
responding code vectors for the OUT map classes.
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Figure 3: The data of the training data sample in their
respective classes for the IN map; those classes were
obtained using the SOM algorithm.
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Figure 4: The code vectors of the IN map obtained by
the SOM algorithm (training sample).
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Figure 5: The data of the training data sample in their
respective classes for the OUT map after application
of the SOM algorithm.

Each local RBF model may have a different num-
ber of Gaussian kernels. Here again, the validation
set has been used to determine the optimal number of
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Figure 6: The code vectors of the OUT map obtained
by the SOM algorithm (training sample).

Gaussian kernels in each RBF model. Those optimal
numbers are comprised between 5 and 8.

Table 1 presents a part of the whole 16x16 frequency
table; lines correspond to INi codewords, and columns
to OUTj ones. This table reads as follows: none of the
possible evolutions for a data looking like the ones in
the first class of the IN map are present in classes 1 to
8 of the OUT map (in fact 95% of those are in class
number 13); 24% of the possible evolutions for a data
looking like the ones in class two of the IN map are in
class two of the OUT map, 13% belongs to class four
of the OUT map, 3% to class five, etc.

0 0 0 0 0 0 0 0 · · ·
0 .24 0 .13 .03 .13 0 .01 · · ·
0 0 .95 0 0 .03 0 0 · · ·

.82 0 0 0 0 0 0 0 · · ·
0 0 0 .09 0 0 0 .91 · · ·
0 .03 0 0 .79 0 .06 0 · · ·
0 .01 0 .6 .01 0 .09 0 · · ·

.15 0 .03 .06 .01 0 .21 0 · · ·
...

...
...

...
...

...
...

...
. . .

Table 1: Extract of the frequency table: upper left
corner of the whole 16x16 table.

5.3 Prediction results

This section presents a comparison of the NMAE re-
sults obtained on the DAX30 index series by the
method presented in this paper, and by two refer-
ence methods. The first reference method is a global
RBF network, trained on the same series. Indeed it
is known that global neural networks (RBFN models)
perform equivalently as the best econometrics models
[9, 10, 11]. Various global RBF networks have been
learned on the whole learning dataset, and the best
one has been chosen according to the MAE criterion
over the validation set. The performances presented
here are computed over the test set. The second refer-
ence model is the random walk that has, of course, a
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NMAE equal to 1. Table 2 presents a comparison be-
tween the results obtained with a randow walk model,
a global RBF model and our SOMs plus local RBF
models.

Random Walk Global RBF SOMs + RBFs
NMAE 1 0.674 0.454

Table 2: Forecasting results (288 observations in test
set).

It can be noticed that better predictions are obtained
by the SOMs together with the local RBF models, com-
pared to the two reference methods. As argued in the
introduction, this is probably a consequence of the data
splitting into clusters, according to the multiple switch-
ing process argument.

6 Conclusion

In this paper, a general forecasting method valid for
any series of data has been presented. The method is
particularly suited to series showing different dynam-
ics over time, therefore benefiting from the clustering
of their past. The SOM algorithm is used to create
cluster containing local information. This local infor-
mation is in turn modeled using local RBF networks.
A global prediction is obtained by combining the local
predictions obtained with the various RBF models.

The method has also been tested on a specific fi-
nancial time series, namely the daily evolution of the
German DAX30 index over a period of ten years. The
dynamics of this time series and of its related implied
volatility are modeled by the SOMs plus RBFs method.
The results obtained are promising, and largely exceed
those obtained under the random walk hypothesis, and
by global neural network models.
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