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ABSTRACT

In this paper a study is described for several ap-
" proaches to the identification of models for the tem-
perature within the melter portion of a glass furnace.
The focus is on developing models from the gas input to
the throat (melter outlet) temperature. Conventional
linear techniques for system identification proved to be
inadequate for this problem, but proved useful as base-
-line comparisons for further studies involving nonlinear
techniques from intelligent control for model building.
Various combinations of input and output. variables in
a variety of model structures using fuzzy and neuro-
fuzzy system modeling approaches are developed, and
comparisons are drawn. Approaches reported on here
investigate nonlinear Takagi-Sugeno (TS) fuzzy model
formulations, where a linear-in-the-parameter identifi-
cation problem is formulated for various combinations
of measured variables and system delays. A fuzzy-neuro
formulation is then discussed for parameter selection
in the TS model structure while simultaneously opti-
mizing the membership functions associated with the
inputs of the TS fuzzy system. Simulation results for
data collected from an operating glass furnace process
are presented.

INTRODUCTION

While linear identification is by now a well estab-
lished field, thoroughly described in several textbooks
and the open literature, identification of nonlinear mod-
els is still a subject of intense research. A large variety
of methods exist, depending on whether one wishes (or
is able) to use (i) so called white-box models, where the
nonlinearities are perfectly described using prior knowl-
edge; (ii) gray-box models, where nonlinearities can be
partially suggested by physical insight (mainly nonlin-
ear combinations of some measured signals) but still
require some tuning; or, (iii) black-box models where
no physical insight can be used a priori to guide the
model builder. A comprehensive overview of nonlinear
black-box modeling is given in [1]. A specific algorithm
for grey-box modeling has been described in [2]. White-
box models are, of course, problem dependent.

When there is no clear indication of which nonlin-
ear combinations of measured signals to use in the re-
gressors of the model, then neural networks and fuzzy
models have been considered by several authors; see for
example (3] for the neural network approach and [4],
(5], [6], and [7] for work in fuzzy modeling. Following
on this work, a promising structure for nonlinear iden-
tification, and subsequent control design based on the

identified models, is the functional fuzzy system. One .
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way to view the functional fuzzy system is as a nonlin-
ear interpolator between the mappings that are defined
by the functions in the consequents of the rules. This is
especially appealing to the control engineer if one con-
siders the topical area of gain scheduling, whereby a
nonlinear controller is constructed by scheduling linear
controllers designed for linear models along an operat-
ing line. That is, in the special case where the con-
sequent takes the form of an affine mapping, we refer
to the representation as a Takagi-Sugeno (TS) fuzzy
system. Furthermore, if the mappings are linear, the
fuzzy system (when inference is performed on the rules)
essentially performs a nonlinear interpolation between
the linear mappings (in the spirit of the gain scheduling
controller).

This paper describes several approaches to the identi-
fication of models for the temperature within the melter
portion of a glass furnace, using data from an actual
process with gas flow (to the burners) as process con-
trol input and temperature at the throat (melter outlet)
as process output.” Although conventional linear tech-
niques for system identification proved to be inadequate
for this problem, they were useful in understanding the
process for subsequent nonlinear identification studies.

GLASS FURNACE PROCESSES

The glass melting process in industrial furnaces in-
volves the fusion of raw materials; followed by homog-
enization and conditioning. - Thereafter, the melt is
pulled out of the furnace (at the throat) to be processed
further, e.g. in blowing of containers, or flat glass pro-
duction in a float process. The energy required for the
melting is generally provided by fuel or gas burners,
with sometimes an additional source coming from elec-
trodes sunk in the melt. In recent years, efforts have
been spent for a better control of the melting process,
with the aim of increasing the homogeneity of the prod-
uct, the energy efficiency of the process and the lifetime
of the furnace (see [8]).

This control requires better models describing the dy-
narmics of the heat transfer in the melt. Besides simu-
lation models based on physical properties, which are
usually extremely expensive in terms of computing time
and not appropriate for controller synthesis, identifica-
tion of black-box models has been used in several ap-
plications [9], [10]. One of the main challenges is to
identify an accurate, yet simple model using available
measurements for a process where the operating con-
ditions can vary significantly over time. One of the
main changes of operating conditions is produced by
pull changes in the furnace which are dictated by cus-
tomer demand. However, a precise and reliable mea-
surement of the pull is not always available, There are,
of course, other unmeasured perturbations affecting the
process (e.g., change of glass color, changes in electrical -
heating, gas bubbling, and so on), so that identification
of linear models is not always realistic.

The focus of these studies is a collection of data sup-
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obtained in November of 1996 from a glass furnace in
operation in the Czech Republic. The data, consisting
of 10,000 samples of several variables measured on the
furnace, have been re-sampled using one minute to one
hour sampling times for use in identification studies.
Because every 20 minutes (i.e., every 20 data points)
the gas flow is cut during inversion (that is, burners
are “cycled” on-and-off one side, then the other), some
peaks in the measurements of the process variable can
result; thus, care was taken in formulation of the various
data sets to remove any undesirable spikes. Sampling
at one-hour intervals leaves 167 samples for identifica-
tion. The identification results reported on herein are
for the full scale signals (i.e., without removal of the
mean).

Linear model identification for various combinations
of inputs and outputs has been carried out on this data.
These studies formed a baseline for comparison for the
current studies which involve nonlinear modeling and
custom code. That study produced four types of linear
throat temperature models of the furnace:

» gas setpoint (controlled) as input and the throat
temperature as output;

e actual gas as input and the throat temperature as
output;

o crown temperature (inside top of melter) as input
and the throat temperature as output;

« actual gas and crown temperature as inputs and
t:roat temperature as output.

Based on those linear modeling studies, the follow-
ing conclusions were possible: (i) Looking at the model
step responses, as well as the dominant time constants,
a one-hour sampling period was deemed appropriate.
One could even consider longer sampling periods, e.g.
two hours, which would have the advantage of cov-
ering an equal number of left and right inversions of
the control inputs. But the available data is too short
for testing such sampling periods. (ii) The best lin-
ear model simulation results exhibit variations of the
throat temperature which are not accounted for by the
model. These are primarily due to various nonlinear-
ities, including the effect of load variations in the fur-
nace, which are not measured and hence cannot be di-
rectly introduced as input in the model.

It is important to note that the results presented
here, for models developed from actual furnace data,
are simulations using the model output, as opposed
to predictive estimates which use the real data in an
"on-line” fashion for estimation. That is, past values

of the output are not considered in order to compute

the future values. However, some control strategies,
e.g., predictive control methods, rely on predictions of
the output that can be obtained using all information
available until the present time, including the actual
outputs. Prediction results are generally much better
than the simulation results, and so are not presented
herein.

TAKAGI-SUGENO FUZZY SYSTEM
FORMULATION

In this section we will describe the Takagi-Sugeno
fuzzy system formulation, and discuss how it may be
tuned via recursive least squares (RLS) techniques to
produce a nonlinear model of the plant between the gas
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input and the throat temperature output. A more com-
plete description of the theory, with extensions, may be
found in [4] and [5].

We denote the process inputs by u;, and the process
output by y. For the Takagi-Sugeno fuzzy system we
use singleton fuzzification and the i** rule has the form

If 4, is AJ and @ is A¥ and, ..., and d, is A,
Then Ci = fl()

(where “-” simply represents the argument of the func-
tion f;). The premise of this rule is defined the same as

for the rules for the standard fuzzy system (e.g., fiﬁ gtk

linguistic value on the i** universe of discourse u;, and
the notation “@;” refers to the linguistic characteriza-
tion of the input). The consequents are, of course, dif-
ferent from the standard fuzzy system in that instead of
a linguistic term with an associated membership func-
tion, in the consequent we use a crisp function ¢; = f;(*)
that has no associated membership function.

For this formulation we represent the premise as we
would with a standard fuzzy system (e.g., minimum or
product), whereas defuzzification is carried out using a
center-of-gravity formulation in the manner

«»

R
y = Ei:l Cilhi
= R
. Zi:l Hi
where y; is the certainty of the premise of the rule (e.g.,
the minimum of the certainties of each of the premise

terms). Note that an underlying assumption in the def-
inition of the fuzzy system is that, regardless of inputs,

R
izt Hi # 0.
Expressing Equation (1) as
y=c'¢

where “T” denotes transpose, ¢! ={¢; - --

ey

(2)

cg] and

R P
Ef:ﬂ“ S
@)

allows us to formulate the usual TS structure of a bias
term with terms linear in the inputs and measured vari-
ables. That is, we will narrow our consequent form to
the selection

§T = [£17€2a "':gR] = |: [Pllv ot

¢ = fi4) = a0+ a1 + -+ + Gty (4)
(where the a, ; are real numbers). This fuzzy system es-
sentially performs an interpolation between affine map-
pings (or, linear mappings in the case where a0 =0
for all 7).

Training of the system essentially consists of specify-
ing (fixing) the membership functions associated with
the “inputs” to the consequent models, and then sub-
sequent adjustment of the a; ; terms of the consequents
of the rules. It is possible to show that the nonlinear
TS model is linear in these parameters, which allows us
to use RLS techniques for identification.

To show this, note that when

Ci = Q3,0 + Q;,1U1L + -+ Gipln

©®)



is substituted into
R
D Cibdi
R
Zi:l i

we obtain the relationship

(6)

y:
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r
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YR Sy i
(7)

This is key to the development, since now we can em-
ploy the definition of £ above by letting

y= +

& ] [ a1o
& a2,0
éR aR,0
w1y a1,1
u1€2 az,1

¢ = : ) 6 = o (8)

uiép @R,
uné1 a1,n
Un§2 az.n

L 'L’/nfR ] |l AR,n ]

where 6 is the vector of unknown parameters, so that
it is straightforward to write the summary relationship

y=0"¢ , 9)

which is a linear-in-the-parameter model. As is the
usual case in such formulations, specification of the “re-
gression vector” (in our case, completely specified once
the inputs to the fuzzy system are known via the £)
leads to the use of standard least squares methods to
find the value of the parameter vector 6.

Identification Results with RLS Training
Membership functions for the model inputs are fixed
at the beginning of the identification experiment. The
centers and spread are chosen systematically; the cen-
ters are chosen such that the membership functions lie
somewhere in the middle of the training data, and at
regular spacing. For these studies, the shapes of the
membership functions for the inputs of the model are

n
H(Z) = H .U'i'n(i) ’ (10)
in=1
where the index ¢ = 1... R", R is the number of mem-
bership functions per input, n is the number of inputs,

(11)

where z(in, k) represents the input data, index k runs
through the length of the data, index in = 1,...n, and
each index j;, runs from 1 to R. The membership func-
tion centers (c(-,-)) and their spread are computed ac-
cording to the general formula

c(in,jm) = MIN;p + (Jin — I)ST(m)

) _l(m(in.k)—c(en.j- ))2
Hln(l) —e ? Tin ’

(12)

Oin = 25T (in) , (13)

where MIN;, (MAX;,) is the minimum (maximum)
value over all the data for input in, and

MAXn — MIN;,

ST (in) = (scale) 71

(14)

The parameter scale is inserted to vary the
spread/spacing of the membership functions.

Many model structures using this general TS formu-
lation have been tested on the data supplied, for various
numbers of data pairs, and for various combination of
fuzzy system inputs. For purposes of brevity, we only
present a summary of those results here. In all plots
to follow, the output of the simulated model is repre-
sented by the dashed line, whereas the actual data is
represented by the solid line.

Three Membership Functions per Input: We begin with
a summary of results of models consisting of a reason-
able but large number of parameters a; ;. Consider first
the model structure derived above, and represented in

" Equation 4:
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¢ = aio+a;,1y(k—1) +a;pu(k)+a;su(k-1) , (15)
where data sampled every 60 minutes is used (that is,
167 data pairs), and where now we represent the model
inputs in terms of the throat temperature measurement
y(k) and the actual process inputs u(k) (sampled ver-
sions of the actual applied gas). With three member-
ship functions (R = 3) for each of three consequent
inputs (n = 3), this results in R™ = 3% = 27 rules, and
108 model parameters (four parameters per rule). A
typical result of this identification is given in Figure 1,
for the scale parameter set to 0.4. We note that little
improvement results if twice the data is used (sampled
every 30 minutes, for 334 data pairs).

Inputs: y(k~1), u(k), u(k~1) with three MF per input-(scale=0.4)
1300 T T T T T T T T

1295

1290

12851

1280

1275

1270

12655 20 l y 0 160 180
Fig. 1. TS model with throat temperature measurement y(k—1),
and gas inputs u(k) and u(k — 1); in this case, R = 3, and

data is sampled at 60-minute intervals (scale = 0.4).

Next we consider a structure where the process input
variables (actual gas data) are delayed upon formula-



tion in the model. That is, we consider -

Ci = Q40 + ai)ly(k - 1) + ai,gu(k - 5) + aiygu(k — 72 )
16
Again for R = 3 (three membership functions per model
input), we simulate the system with the result shown in
Figure 2, for a scale factor 1.5. The results are consid-
erably better in this case, indicating that incorporation
of delay into the consequent models can significantly

improve the results.

Inputs: y(k-1), u(k=5), u(k=7) with three MF per input (scale=1.5)
1300 T T T T T T
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12751

1270 20 ‘ ‘ % 700 120 10 160
Fig. 2. TS model with throat temperature measurement y(k—1),
and gas inputs u(k — 5) and u(k — 7); in this case, R = 3,

and data is sampled at 60-minute intervals (scale = 1.5).

Two Membership Functions per Input: When the num-
ber of membership functions per input is reduced to
R = 2, the total number of parameters to be identified
is reduced significantly, and simulations/identifications
may be carried out at a much more rapid pace!. Thus,
we can include results for models of increased “dimen-
sion” in the sense of increasing the number of model
inputs to four. Consider, for example, the structure

¢ = ag0 + a1 y(k — 1) + aspu(k = 5) +a3u(k = 7) .

17)
In this case, the total number of model parameters 2the
a;,;) is only 32. The result for the best choice of scaling
factor is shown in Figure 3. Space limitations do not
permit illustrations of results for various other struc-
tures (for example, slightly better results can be ob-
tained using an additional premise term of y(k — 2),
resulting in a model with 40 parameters).

TS Modeling with Data Clustering

One of the drawbacks of the previous methods for
fuzzy modeling is that the number of rules is determined
a priori, even when the user has no clear indication
about how many rules to use. Since the number of rules
has a major influence on the number of parameters to
be identified, this drawback can become cumbersome
in some applications. Comparisons must be made to

1On the 150MHZ Pentium PC, a system with R=3 and n =4
took approximately 150 minutes to execute with the Matlab code.
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Inputs: y(k—1), u(k~5), u(k~7) with two MF per input (scale=0.4)
T T T 3 T
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12705 ) 20 5 % 100 120 o 160
Fig. 3. TS model with throat temperature measurement y(k—1),
and gas inputs u(k — 5) and u(k — 7); in this case, R = 2,

and data is sampled at 60-minute intervals (scale = 0.4).

test several model structures, with different numbers of
rules.

As an alternative, data clustering algorithms can be
used in conjunction with fuzzy modeling techniques.
Basically, these data clustering algorithms are used to
determine the number of data clusters in a given identi-
fication (or training) data set, each cluster yielding one
rule of the fuzzy model. Then, projection of these data
clusters on each of the components of the input space
will determine the membership functions. In TS fuzzy
modeling, the parameters of the rule consequents are
subsequently identified using least squares techniques.
Results for one of these clustering methods, namely
mountain clustering, are given in this section. We refer
to [11] for further details on this and other algorithms.

For the sake of comparison with previous results,
several models using various combinations of premise
structures have been estimated (we will only illustrate
results for one here). Best results were obtained for
a structure using y(k — 1), u(k — 5) and u(k — 7) in
the premises of the rules, where, as before, y(k) is the
throat temperature and w(k) is the gas flow. This
means that the training data set is made of triples
{y(k— 1), uk - 5),u(k - 7)}.

The mountain clustering algorithm identifies five
clusters, with consequent models of the form

¢; = Ay,y(k — 1) + Byiu(k — 5) + Boju(k ~ 7) + 'Y(i )7

18
where now, to distinguish from previous results, we al-
ter our notation slightly to indicate the (previously de-
fined) a; ; parameters associated with the model inputs
due to throat temperature measurements (4;;) and
due to gas flow (B1;, Bs;). The number of param-
eters in this fuzzy model is 16, and simulation results
are shown in Figure 4.

NEURO-FUZZY TS MODELING WITH
PREMISE OPTIMIZATION

As competing approaches for nonlinear modeling,
neural networks and fuzzy systems -each have strong
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Fig. 4. Result of clustering, with delays in model.

and weak points. Neural networks can be considered
as a powerful means of solving a nonlinear optimiza-
tion problem, which is one way of recasting a nonlinear
modeling task: one tries to minimize the modeling er-
ror, i.e., the difference between the real output of a sys-
tem and the output computed via a nonlinear model
which is basically a nonlinear function of past inputs
and outputs. For a multilayered neural network, the
output of the network can be a complicated nonlinear
function of the network inputs so that even when the
modeling error is small, little insight can be gained from
the NN model.

Fuzzy models, on the other hand, often correspond to
a description of the system that can be “linguistically”
rephrased. Hence, the insight given by a fuzzy model is
normally higher. However, even if a “gross” description
of a fuzzy model can be easily obtained from intuitive
knowledge, the fine tuning of the fuzzy model param-
eters, and in particular those parameters defining the
fuzzy sets, is not always an easy task.

Hence, it may seem appealing to combine the advan-
tages of both approaches: keep a linguistically meaning-
ful interpretation of the model, but provide an efficient
method for the optimization of the model parameters.
This can be done using the ANFIS (adaptive neuro-
fuzzy inference system) method [11], summarized next.

Problem Formulation
Figure 5 illustrates the ANFIS architecture; a multi-
layered neural network described in the following:

« Layer one contains the description of the member-
ship functions corresponding to each input of the net-
work, which are the inputs entering in the premises of
a given TS fuzzy model. The number of nodes in this
layer equals the number of inputs (n) in the premises,
times the number of linguistic values (m;,i =1,...,n)
for each input. These nodes are parameterized and the
parameters are referred to as premise parameters.

« Layer two contains as many nodes as there are rules
in the TS model (typically [, m;) and simply per-
forms the product of the memf)ership values evaluated
in layer one. .
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o Layer three contains as many nodes as there are
rules and each node ¢ calculates the ratio of the rules
firing strength to the sum of all rules firing strengths.

« Layer four contains as many nodes as there are rules
and each node is a parameterized function of past in-
puts, usually a linear or affine function. The parameters
in these nodes are referred to as consequent parameters.

« Layer five consists in one single node which com-
putes the summation of all incoming signals, which
represents the weighted average of the expressions de-
scribed in layer four.

Waty

|

Layer4

|

Layer 1 Layer2 Layer3

Fig. 5. ANFIS network structure.

From the description of this system, it is obvious that
the overall output is linear in the consequent parame-
ters and nonlinear in the premise parameters. More-
over, the results described above (where the input mem-
bership functions were scaled in various ways) indicates
that some judicious tuning of the premise characteri-
zations can improve results. This is the approach we
adopt in the next section, using the ANFIS network
structure to automate this tuning procedure.

Identification Results

Towards improved tuning of the TS model structure
along the lines discussed above, [11] suggests applica-
tion of a hybrid learning algorithm where the conse-
quent parameters are estimated in a forward pass using
the least squares method, while the premise parame-
ters are estimated in the backward pass by a steepest
descent method using back-propagated error signals; we
refer to [11] for the details of the computations. This
method has been applied to the glass furnace data with
different choices for the inputs.

Inspired by the fuzzy modeling described above, and
the best linear model (which is an ARX (2,3,1) struc-
ture), we have chosen to describe the functions in layer
four of the network as

e = ajy(k - 1) +ajy(k — 2) + ahy(k — 3) + Biu(k - 1)

+B5u(k — 2) + Biu(k — 3) ++* (19)

for appropriately defined model parameters o and ;.
The output of the model, denoted y(k), is the throat
temperature of the furnace, while the input u(k) is the
gas flow. However, using y(k — 1), u(k —1), 1 =1,2,3,
as inputs for the network would have led to a very
large number of rules. In addition, the dynamics of
the process are slow, so that y(k — i), i = 1,2,3, or
u(k — i), i = 1,2,3, are simultaneously big or small.



Hence, we will only take y(k — 1) and u(k—1) as inputs
and for each of these we take two different membership
functions, parameterized as follows:

1

= 20
1_|_|1;_i¢il2bi ( )

pal(z)

We then have four rules (and four nodes in each of layers
three and four) and the number of premises parameters
is 12.

Evaluation of the membership functions for the in-
puts of the network (after training) indicates that
only the a; parameters of the membership functions in
Equ. (20) change significantly from their initial values,
which indicates that in this example one could have
simplified the steepest descent optimization by tuning
only four parameters, instead of 12. Figure 6 shows the
result of the fuzzy model in simulation (layer four uses
past values of the process input and past values of the
model output).

simulation using ANFIS model
T T
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1285
1280
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'
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1 L L L

80

! '
100 140

Fig. 6. Simulation using ANFIS network.

SUMMARY

Different approaches to the nonlinear identification of
models for control design have been described. While
the basic structure of the model has been in the realm of
the functional fuzzy system approach (specifically, the
TS model structure), three different approaches have
been described, revealing interesting results concerning
the size of the model and the degree to which the TS
model structure can approximate the given nonlinear
process. The baseline TS modeling (with RLS tuning)
has produced some of the best results, but required ex-
tensive (although not exhaustive) tuning (in terms of
model input selection, membership function selection,
and so on). The clustering technique eliminated some
of the uncertainty associated with the baseline TS ap-
proach in terms of specifying the number of rules in the
model; the results presented were comparable to the
baseline TS results, leading one to believe that further
investigation in that area may be warranted.

The ANFIS modeling approach has led to some pos-
sible conclusions regarding the number of membership
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functions necessary in the TS model structure. Al-
though in that work the problem was formulated as
an optimization problem, where parameters associated
with bell-shaped input membership functions were op-
timized by a neural network, the result was useful in
the TS modeling studies, and each technique generated
ideas for the other. That is, each aimed at investigat-
ing the use of fewer functions for the TS model inputs,
and in varying the shape and spread of the membership
functions.

In the baseline TS modeling (with RLS tuning) and
the ANFIS structure work, the resulting models are
“complete” in the usual sense ([4]), but there may be
very few data points contributing significantly to some
rules. This implies that the corresponding parameters
in the consequents are perhaps not identified very well.
In contrast, in the algorithm using TS modeling with
clustering, only rules corresponding to data “clusters”
are identified. Hence, there are normally many points
contributing to each rule, but the global model is not
complete so that it may not work with other data cor-
responding to another region of the input space. This,
of course, is important if one considers that the results
reported on in this work are for modeling and simu-
lation on the same data. Ordinarily one would like to
model the process with one set of data, then test it with
yet another. Because of the fact that we are operating
with a limited amount of data, this was not possible in
this study. A next step, therefore, would be to simu--
late the models obtained herein on another collection of
data from the same process. This remains as a future
direction.
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