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Abstract. In time series prediction, accuracy of predictions is often the
primary goal. At the same time, however, it would be very desirable if
we could give interpretation to the system under study. For this goal, we
have devised a fast input selection algorithm to choose a parsimonious,
or sparse set of input variables. The method is an algorithm in the spirit
of backward selection used in conjunction with the resampling proce-
dure. In this paper, our strategy is to select a sparse set of inputs using
linear models and after that the selected inputs are also used in the non-
linear prediction based on multi-layer perceptron networks. We compare
the prediction accuracy of our parsimonious non-linear models with the
linear models and the regularized non-linear perceptron networks. Fur-
thermore, we quantify the importance of the individual input variables
in the non-linear models using the partial derivatives. The experiments
in a problem of electricity load prediction demonstrate that the fast in-
put selection method yields accurate and parsimonious prediction models
giving insight to the original problem.

1 Introduction

Time series analysis is an important problem in natural and engineering sci-
ences, both from the viewpoint of prediction and understanding of the behavior
of the systems under study. There are numerous applications of time series anal-
ysis scattered in the published literature of econometrics, system identification,
chemistry, statistics, pattern recognition, and neural networks [1]. It would be
very appealing to be able to predict the behavior of the time series accurately,
and at the same time to give insight to the system itself. Our target is to esti-
mate time series prediction models that are both accurate and interpretable. By
interpretability we mean that the models contain only a relatively small subset
of input variables for the prediction. This gives emphasis to what is important
in the prediction of system behavior. These kind of parsimonious, or sparse time
series models are the focus of the paper. Inputs of the sparse models are selected
from a large set of autoregressive input variables for a given past horizon. This
approach tries to circumvent the problems of the high-dimensional input space,
i.e. curse of dimensionality.
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In the estimation of the sparse time series models, we rely on sparse regression
techniques [2] and a backward selection strategy. In addition, resampling pro-
cedures [3] are used to take into account the inherent uncertainty of the finite
data samples used in the estimation procedure. One of the main goals of the
proposed method is to offer a fast and reliable method for input selection. In
the first phase of the methodology, the linear model that is built is forced to be
sparse. That is, we do not select the most accurate model, rather we select a
compromise between sparsity and accuracy. In the second phase, the non-linear
prediction model is constructed using the selected sparse set of inputs.

In this paper, we present an analysis of our previously published input selec-
tion method used for the problem of long-term time series prediction [4]. It is
noteworthy, however, that the method is generally applicable to input selection
problems. Our interest is to apply the method to input selection within time
series prediction.

The rest of the article is organized as follows: Sect. 2 introduces relevant back-
ground in the time series prediction. Section 3 reviews our fast input selection
procedure in the context of linear prediction models. Section 4 focuses on non-
linear prediction models, i.e. multi-layer perceptron (MLP) networks, in which
the selected variables are finally used. Also, sensitivity analysis of the MLP net-
works is presented. Section 5 presents the empirical experiments on which the
findings are based on. Summary and Conclusions are presented in Sect. 6.

2 Time Series Prediction

In a time series prediction problem, future values of time series are predicted
using the previous values. The previous and future values of time series are
referred to inputs and outputs of the prediction model, respectively. One-step-
ahead prediction is needed in general and it is called short-term prediction. If
multi-step-ahead predictions are needed, it is known as long-term prediction.

Unlike short-term prediction, long-term prediction faces typically growing
amount of uncertainties arising from various sources. For instance, an accu-
mulation of errors and lack of information make the prediction more difficult. In
the case of long-term prediction, there are several strategies to build prediction
models. The direct and the recursive prediction are shortly described next.

2.1 Recursive Prediction Strategy

In the case of multi-step-ahead prediction, the recursive strategy uses the pre-
dicted values as known data to predict next ones. First, a one-step-ahead predic-
tion is done ŷt = f1(yt−1, yt−2, ..., yt−l), where yt−i, i = 1, . . . , l are the inputs. It
is also possible to use external variables as inputs, but they are not considered
here in order to simplify the notation. After that, the same model is used to
predict two-step-ahead ŷt+1 = f1(ŷt, yt−1, yt−2, . . . , yt−l+1), where the predicted
value of ŷt is used instead of the true value, which is unknown. Then, the k-step-
ahead predictions yt+k−1, k ≥ 3 are obtained iteratively. In the prediction of kth
step, l − k observed values and k predicted values are used as the inputs in the
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case of k < l. When k ≥ l, all the inputs are the predicted values. The use of
the predicted values as inputs may deteriorate the accuracy of the prediction.

2.2 Direct Prediction Strategy

In the direct strategy, the model ŷt+k−1 = fk(yt−1, yt−2, . . . , yt−l) is used for
k-step-ahead prediction. The predicted values are not used as inputs at all in
this approach, thus the errors in the predicted values are not accumulated into
the next predictions. When all the values from yt to yt+k−1 need to be predicted,
k different models must be constructed. This increases the computational com-
plexity, but more accurate results are achieved using the direct than the recursive
strategy as shown in [4] and [5]. We only apply the direct strategy in this paper.

3 Fast Input Selection

Consider the situation that there are N measurements available from an output
variable y and input variables xi, i = i, . . . , l. In the regression problems the
usual task is to estimate the values of the output y using the inputs xi. If the
dependency is assumed to be linear it can be written mathematically

yj =
l∑

i=1

βixj,i + εj , j = 1, . . . , N . (1)

The errors εj are assumed to be independently normally distributed with zero
mean and common variance. All the variables are assumed to have zero mean and
unit variance, thus the constant term is dropped out from the model. The ordi-
nary least squares (OLS) estimates of the regression coefficients β̂i are obtained
by minimizing the mean squared error (MSE) [2].

The OLS estimates are not typically satisfactory [2]. Firstly, the generalization
ability of the model may be improved by shrinking some coefficients toward
zero or setting them exactly to zero. Secondly, if the number of inputs is large
interpretation of the model might be difficult. Understanding or interpretability
of the underlying process can be increased by selecting the subset of inputs which
have the strongest effect in the prediction. Many approaches to input selection
are presented in [2] and [6].

We propose an efficient input selection procedure in [4]. The algorithm is based
on the bootstrap resampling procedure and it requires separate training and
validation sets. However, it is straightforward to use other resampling procedures
[3], e.g. k-fold cross-validation, instead of bootstrap.

The input selection procedure starts by estimating the linear model using all
the available inputs. The sampling distributions of OLS estimates β̂i and the
standard deviation str of the training MSEs are estimated using M times k-fold
cross-validation. We have Mk different training sets and, thus, Mk estimates for
the each coefficient βi, which formulate the sampling distribution. In addition,
we have Mk estimates for both training and validation MSE.
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The median mβi is calculated from Mk estimates β̂i. The median is used as
the location parameter for the distribution, since it is a reasonable estimate for
skewed distributions and distributions with outliers. The width of the distribu-
tion of β̂i is evaluated using the difference Δβi = β̂high

i − β̂low
i , where β̂high

i is
Mk(1− q)th and β̂low

i is Mkqth value in the ordered list of the Mk estimates β̂i

[3] and q can be set, e.g., q = 0.165. With this choice of q, the difference Δβi is
twice as large as the standard deviation in the case of the normal distribution.
The difference Δβi describes well the width of both asymmetric and symmetric
distributions.

The next step is to delete the least significant input variable. The ratio
|mβi |/Δβi is used as a measure of significance of the corresponding input vari-
able. The input with the smallest ratio is pruned from the set of inputs. After
that, the cross-validation procedure using the remaining inputs and pruning is
repeated as long as there are variables left in the set of inputs.

The previous procedure removes inputs sequentially from the set of possi-
ble inputs. In the end, we have l different models. The purpose is to select a
model which is as sparse as possible, but it still has comparable prediction accu-
racy. The initial model is selected based on the minimum validation error Emin

v .
The final model is the least complex model whose validation error is under the
threshold Emin

v + smin
tr , where smin

tr is the standard deviation of training MSE
of the model having the minimum validation error. This means that we also
include our uncertainty in the training phase into the selection of final model.
The algorithmic details of the proposed method are presented in [4].

Advantage of the described algorithm is the ranking of the inputs according
to their explanatory power. The pruning starts from the least significant inputs
and the resulting model includes only a few most significant ones. This might
be useful information for interpretation of the underlying process. Also, the
computational complexity of the proposed algorithm is linear O(l) with respect
to the number of available inputs l. Therefore, it is applicable in the case of large
number of inputs.

4 Non-linear Modeling Using MLP Networks

Although the linear models are easy to interpret and fast to calculate they are
not accurate enough in some problems. The dependencies between the variables
are described better using a non-liner model. However, many non-linear models
are black-box models and interpretation is almost impossible. Our proposal is to
use the selected inputs also in the non-linear model. Goals of this approach are
to avoid the curse of dimensionality, over-parameterization, and overfitting in
the non-linear modeling phase. In addition, the interpretability of the non-linear
model increases, since only a subset of inputs is included to the model.

MLP networks are used in the non-linear modeling phase

ŷ = μ +
p∑

j=1

αj tanh(
l∑

i=1

wijxi + bj) , (2)
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where p is the number of neurons in the hidden layer, ŷ is the estimate of the
output y and μ, αj , and wij are the weights of the network. It is known that
only one hidden layer is required to approximate any continuous function if the
number of connection weights is sufficient [7].

The number of connection weights is controlled by the number of neurons in
the hidden layer. The selection of number of neurons is based on k-fold cross-
validation. The optimal connection weights minimize MSE in the validation sets.
Another option is to set the number of neurons to be large enough and to use
weight decay (WD) to reduce the effective number of connection weights [8].
When WD is applied the cost function is

E =
1
N

⎛

⎝
N∑

j=1

(yj − ŷj)2 + λθT θ

⎞

⎠ , (3)

where θ is the vector containing all the parameters of the network and λ is the
weight decay parameter. A proper value for λ can be selected by cross-validation.
In WD, the values of weights are shrunk toward zero, but they are not set exactly
to zero. So, it is very likely that WD does not perform input selection.

4.1 Sensitivity Analysis

It may not be enough that the most relevant inputs are found. In many appli-
cations, it is important to evaluate the way inputs contribute to explanation or
prediction of the output.

The contribution of each input to the output can be evaluated using partial
derivatives of the MLP network [9]. Partial derivatives (PAD) method gives two
results. First, a profile of the output variations for a small changes of each input.
Second, classification of the inputs in increasing order of relative importance. It
is found that the PAD method gives stable results [9].

The partial derivative of MLP network (2) with respect to the input xi is

di =
∂ŷ

∂xi
=

p∑

j=1

αj(1− I2
j )wij , (4)

where Ij = tanh(
∑l

i=1 wijxi + bj). A set of graphs of the partial derivatives
versus each corresponding input can be plotted. The graphs show the influence
of the inputs on the output.

The sensitivity of the MLP output for the data set with respect to an input
is calculated

SSDi =
N∑

j=1

d2
i,j , SSDi ← SSDi∑l

i=1 SSDi

. (5)

Sum of squared derivatives (SSD) value is achieved for each input. SSDi is the
sum over all the observations. In the end, the SSDi values are scaled such that∑l

i=1 SSDi = 1. The input having the highest SSDi value influences most on
the output. The ranking based on SSD values can be compared to the ranking
obtained using the input selection method presented in Sect. 3.
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Fig. 1. Illustration of input selection, training error (gray line) and validation error
(black line) as a function of the number of inputs in the linear model. The vertical line
marks the minimum validation error and the horizontal dash-dotted line represents the
threshold, which is used in the selection of the final model.

5 Experiments

The two-phase modeling strategy described in the previous sections is applied
to time series prediction. The data set used is the Poland electricity load time
series1 [5]. It contains daily measurements from the electricity load in Poland
in the 1990’s. The data set has 1400 observations in the training set and 201
observations in the test set. The training and test sets are not consecutive. The
objective is to predict the electricity load one- (yt), two- (yt+1), and seven-day-
ahead (yt+6). We use direct prediction approach, i.e. we have to construct own
model for each case. The data is normalized to zero mean and unit variance
before the analysis.

5.1 Phase I: Input Selection

The maximum number of inputs is set to be l = 15, i.e. the available inputs are
yt−l, l = 1, . . . , 15 in each of the three prediction cases. In the input selection,
10-fold cross-validation repeated M = 100 times is used. This choice produces
1000 estimates for the coefficients βi, which is considered to be large enough for
reliably estimating the distribution of the parameters in the linear model.

Figure 1 illustrates the input selection procedure. In all the three cases, it is
notable that the validation error starts to increase only in the end. Almost all
the inputs are pruned from the model then. If the final model had been selected
according to the minimum validation error the number of inputs would have been
11, 7, and 5 in the case of one-, two, and seven-day-ahead prediction, respectively.
However, even more parsimonious models are achieved when the thresholding is
used. The final numbers of inputs are 5, 5, and 2 and the validation errors do
not increase significantly.

In Fig. 2, the selected inputs for all the three models are visualized. The
smaller the white number is in the selected inputs (in the black rectangles) the
more important the corresponding input is in the prediction. In other words, the
1 http://www.cis.hut.fi/projects/tsp/?page=Timeseries
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Fig. 2. The final models. The outputs yt+k, k = 0, +1, +6 are in the vertical axis and
the possible inputs yt−l, l = 1, . . . , 15 are in the horizontal axis. The selected inputs are
denoted by black rectangles on each row and the white numbers indicate the ranking
of the inputs according to the importance in the prediction.

number 1 indicates that the input was the last to prune from the model. For
instance, the upper row shows that the one-day-ahead model has 5 inputs, which
are yt−7, yt−1, yt−8, yt−14, and yt−15 in the decreasing order of importance. The
model has nice interpretation, since the inputs correspond to values of 7, 1, 8,
14, and 15 days before the predicted value. It is plausible that the two most
important inputs are the values of one week and one day before.

5.2 Phase II: Non-linear Modeling

Based on the results of the input selection, non-linear models are trained. Three
MLP networks are constructed for each output: i) MLP using the selected inputs
without weight decay, number of neurons (the maximum were 15) in the hidden
layer selected by 10-fold cross-validation repeated five times, ii) MLP using the
selected inputs with weight decay, number of neurons in the hidden layer was 20,
and iii) MLP with all the inputs with weight decay, number of neurons in the
hidden layer was 20. In the cases ii) and iii) MLPs are evaluated using 30 values
of the regularization parameter λ, which are logarithmically equally spaced in
the range λ ∈ [10−4, 103]. The optimal value of λ is selected using 10-fold cross-
validation repeated five times to increase the reliability of the results.

All the networks are trained using the Levenberg-Marquardt optimization
method by back-propagating the error gradients [8]. Ten different initializations
are used in the training of the networks in order to avoid local minima. The
training errors were monotonically decreasing as a function of increasing com-
plexity. In Fig. 3, the validation errors are shown as a function of λ for the cases
ii) (left) and iii) (right). It is notable that the minimum errors are roughly on
the same level, but the curve is flater in the left figure. Thus, a sparser grid for
λ could be used, which would reduce the computational burden. In the case i),
the minimum validation error is obtained using p = 6, p = 6, and p = 7 neurons
in the hidden layer for the outputs yt, yt+1, and yt+6, respectively.

The prediction accuracy of the final models were evaluated using the test set,
which is not used at all in the training and selection of the final models. Thousand
bootstrap replications were drawn from the test set and MSE was calculated for
each replication. The means and the standard deviations of MSE for each model
are reported in Table 1. The sparse linear models are equally accurate as the full
linear models, which indicates that the selected inputs are the most informative.
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Fig. 3. Validation errors as a function of λ for one-day-ahead (black line), two-day-
ahead (dark gray line), and seven-day-ahead (light gray line) prediction in the case of
selected inputs (left) and all the inputs (right). Circles mark the minimums.

Table 1. MSEs and standard deviations of MSEs for the test set calculated using the
bootstrap resampling procedure. n is the number of inputs, p is the number of neurons
in the hidden layer, and λ is the regularization parameter.

full linear sparse MLP n-p-1 MLP n-20-1 MLP 15-20-1

linear n = 15 linear model no WD with WD with WD

1-day- 0.054 (0.012) 0.055 (0.012) 0.038 (0.010) 0.040 (0.010) 0.038 (0.010)

ahead n = 5 n = 5, p = 6 n = 5, λ = 0.24 λ = 0.73

2-day- 0.085 (0.019) 0.086 (0.018) 0.074 (0.018) 0.077 (0.017) 0.079 (0.016)

ahead n = 5 n = 5, p = 6 n = 5, λ = 1.27 λ = 1.27

7-day- 0.118 (0.023) 0.116 (0.023) 0.116 (0.022) 0.117 (0.023) 0.114 (0.023)

ahead n = 2 n = 2, p = 7 n = 2, λ = 0.73 λ = 3.86

In the cases of one- and two-day-ahead prediction, MLP with selected inputs
without WD is the most accurate. It decreases MSE 30% and 13% compared to
the full linear model in one- and two-day-ahead predictions, respectively. Also, it
is slightly better than MLP with all the inputs. For seven-day-ahead prediction,
MLP with all the inputs and WD has the lowest prediction error, although the
errors of the other methods are nearly the same.

In Fig. 4, the relative importances of the inputs calculated by (5) are shown.
The importances are averages over thousand bootstrap replications of the test
set. In the case of one-day-ahead prediction and 5-6-1 MLP, the inputs are
ranked in the order of decreasing importance as follows: yt−1, yt−7, yt−15, yt−8,
and yt−14. The ranking is nearly the same as with the linear models, see Fig
2. In 15-20-1 MLP, the five most important inputs in the order of decreasing
importance are yt−1, yt−7, yt−2, yt−8, yt−15. Four of them are same as obtained
with the linear models. Also, in the cases of two- and seven-day-ahead prediction
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Fig. 4. Relative importances of the input variables yt−l, l = 1, . . . , 15 in 5-6-1 MLP
network without WD (above), in 15-20-1 MLP with WD (below)
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Fig. 5. The profiles of the inputs yt−1 (left) and yt−8 (right) in 5-6-1 MLP in one-day-
ahead prediction

the relative importances of inputs in the MLP networks are nearly the same as
with the linear model.

The contribution of the inputs yt−1 and yt−8 in the prediction of yt with 5-
6-1 MLP are shown in Fig. 5. The shown result is for the test set. The values
of ∂yt/∂yt−1 are positive, which means that yt tends to increase while yt−1

increases. Although the relative importance of yt−8 is notably smaller than yt−1,
still the partial derivatives ∂yt/∂yt−8 are clearly non-zero and negative. Thus,
yt−8 has also contribution in the prediction. While yt−8 increases the output yt

tends to decrease.
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6 Summary and Conclusions

A backward selection type algorithm with resampling for input selection in the
context of time series prediction was presented. Experiments in an electricity
load prediction demonstrated that the two phase strategy using input selection
in a linear prediction model and subsequent non-linear modeling using MLP
yields accurate prediction. In addition, this strategy was competitive to MLP
network with all the inputs and a large number of neurons in the hidden layer
trained with weight decay. The importance of inputs obtained using the linear
models reflected also very well the importance of inputs in the non-linear models.
The advantage of presented approach is sparsity in terms of the number of inputs
and parameters in the final network. Sparsity of inputs makes the models more
interpretable. A low number of parameters allows fast training of the networks
and makes the models less prone to overfitting.
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