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Abstract. Functional Data Analysis (FDA) provides an important ad-
dition to traditional data analysis methods. In FDA a function is fitted to
the data and the fitting coefficients are examined instead of the original
data. The function fitting, however, is not a straight forward task. The
choice of the function space is often crucial and the fitting may involve
unknown parameters that need to be determined. This paper presents a
comparison of different FDA based methods for time series prediction. The
experimented function types are B-splines, Wavelets and Gaussian kernels.
In all cases k Nearest Neighbor (k-NN) model is used for the prediction.
Furthermore, some input selection methods are experimented to improve
the k-NN performance.

1 Introduction

Common time series prediction methods operate in time space and estimate
future values directly. A rather different approach is to utilize Functional Data
Analysis (FDA) [5] in this task. The idea is to fit some function to the data points
and work with the fitting coefficients instead of the original data. In this case,
however, one needs to find a suitable set of functions. Smooth functions might be
a good guess, if the data is smooth or if the data is very noisy. In the latter case
the fitting might result in some noise cancellation. However, it is very difficult
to know a priori which basis is suitable for certain data. Furthermore, the fitting
usually involves some unknown parameters that need to be determined.

In this paper, we present a comparison of three function types, B-splines,
Wavelets and Gaussian kernels in FDA time series prediction task. For all of the
functions a k-Nearest Neighbor [3] (k-NN) prediction model is trained. k-NN
is suitable for this task because of its robustness and small computational load.
However, the drawback of k-NN is that it is sensitive to scaling of the inputs.
For this purpose some input selection methods are also examined [8].

The proposed FDA time series method is described in Section 2. Section 3
briefly presents the function types and some of their properties along with a few
notions related to FDA applications. The experiments are outlined in Section 4
followed by results and discussion in Section 5. Finally, Section 6 concludes the
paper.

2 FDA for Time Series Prediction

When applying FDA to time series prediction, the basic idea is to cast the origi-
nal prediction problem from time space to some function space. In practice this



means that we work with the function coefficients instead of original data points.
The functional representation has some advantages in comparison to traditional
prediction schemes, such as dimensionality reduction and the possibility to work
with irregularly sampled data.

Consider a set of observations (xi, yi)
n
i=1 in a closed interval xi ∈ [a, b]. First,

the data is divided into input windows Ih and output windows Oh of equal length
L. Output is the strictly following window of the corresponding input. The sets
are defined as,

Ih := (xh
i , yh

i )mh

i=1 = {(xi, yi) | a + (h − 1)δ ≤ xi < a + (h − 1)δ + L}

Oh := (x̂h
i , ŷh

i )m̂h

i=1 = {(xi, yi) | a + (h − 1)δ + L ≤ xi < a + (h − 1)δ + 2L},

where h = 1, . . . , N and δ stands for the shift between two sequential windows.
The number of windows is N = ⌊(b − a − 2L)/δ⌋ + 1. The xh

i values are shifted
so that they all belong to an interval [0, L) for all h. Thus, the sample sets are
located in the same interval in the time space

If the data is regularly sampled, the sampling time is a natural choice for
δ. In this case the sets Ih and Oh intersect, given by Ih+L/δ+1 = Oh for h =
1, . . . , (b− a− 3l)/δ. Regular sampling also implies that there is exactly L data
pairs in each set, i.e. mh = m̂h = L. Furthermore, the xi coincide and we can
write xh

i = xi for all h. For simplicity, it is assumed from now on that the data
is regularly sampled.

Fig. 1: Prediction method. A function is fitted to the data points and the
prediction is done in the function space using k-NN. The output is also a set of
coefficients.

2.1 Function Fitting

The outline of the prediction method is presented in Figure 1. An interpolating
function is fitted for each window Ih and Oh. To be more specific, it is assumed
that there exits some regular function f ∈ L2 so that yi = f(xi) + si, where si

stands for observation noise. Working with L2 in practice, however, is impossible
because it is infinite dimensional. For this reason it is necessary to take some
finite dimensional subspace A ⊂ L2 instead. Knowing the truncated basis ϕi of
A we can approximate f by minimizing the mean square fitting error,

min J(w) =
m

∑

i=1

(yi − f̂(xi))
2 with f̂(x) =

q
∑

l=1

wlϕl(x) (1)



where wl stands for the fitting coefficients and q is the dimension of A. The
coefficients wl define the approximation f̂ uniquely and can thus be used as
”new” data in further analysis.

When working with the function coefficients wl, orthogonality of the basis
must be taken into consideration. One good property of functional spaces is that
the Euclidian operations (such as norm or innerproduct) can also be extended
to the functions. Therefore it is natural to require that the innerproduct of the
coefficients (i.e. 〈w,v〉 = wT v) is equal to the innerproduct of the functions
(

∫

R
f(x)g(x)dx ). A direct substitution yields,

∫

R

f(x)g(x)dx =

∫

R

q
∑

l=1

wlϕl(x)

q
∑

k=1

vkϕk(x)dx = wT Φv

where Φi,j =
∫

R
ϕi(x)ϕj(x)dx. This implies that if the basis is orthonormal, the

matrix Φ becomes an identity matrix and the requirement is automatically met.
Otherwise, a linear transformation ω = Uw must be applied. Here the matrix
U is a Cholesky decomposition of Φ = UT U and we get ω

T
ν = (Uw)T Uv =

wT UT Uv. The obtained input and output coefficient sets are denoted as Ih =
ω(Ih) and Oh = ω(Oh), respectively.

2.2 k-NN prediction

k-NN clustering is a widely used for example in pattern recognition [3] and time
series prediction [8]. Here, k-NN prediction for functional data is presented. For
working with original data directly, see [8].

Our goal is to build a prediction model P : Ih 7→ Oh. With k-NN, the
estimate for the future is obtained as a mean of the k most similar outputs. I.e.
given the training pairs (ωi,νi), ωi ∈ Ih, νi ∈ Oh and a previously unknown
input ω we get the estimate,

ν̃ = P (ω) =
1

k

∑

{νi|ωi∈Nk(ω)}

νi,

where the set Nk(ω) ⊂ Ih is the k nearest neighbors of ω. Usually the Eu-
clidian metric is used to compute the distance between samples. The number
of neighbors, k, is unknown and must be validated separately. Quality of the
prediction is measured by evaluating the predicted function at the data locations
and taking mean square of the errors.

2.2.1 Input Selection

Due to its simplicity, k-NN is computationally very cheap which makes it suitable
for handling large data sets and time consuming parameter optimization tasks.
However, it is well known that the performance of k-NN can be greatly decreased
if the data is noisy or if there exists a lot of irrelevant information.

Because k-NN is based on pair wise distances, it may be useful to normalize
the inputs to zero mean and unit variance. This ensures that each dimension
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Fig. 2: Basis functions. a) B-Splines b) Haar Wavelets for 8 dimensional data
c) Gaussian kernels

will contribute equally to the distances. Normalization is helpful in situations
were certain dimensions have large variance and thus dominate the choice of
neighbors. However, it does not resolve the problem of irrelevant information.

As another choice, input selection [8] or scaling [9] can be used. In the case of
input selection the pair wise distances |ω−ωi| are calculated using only a subset
of the data dimensions. In scaling, on the other hand, each dimension is scaled
separately before the computation of the distances. The latter can be formulated
as [ω1, ω2, . . . , ωq] ←֓ [α1ω1, α2ω2, . . . , αqωq], αi ∈ [0, 1]. Thus input selection
is actually a special case of the scaling where the scaling parameters αi are
restricted to be either 1 or 0.

Input selection increases the computational load significantly. For example,
running an exhaustive search, i.e. trying out all the possible combinations of
αi ∈ {0, 1}, increases the work load by a factor 2q − 1, which quickly leads into
unthinkable running times as q grows. For scaling, unfortunately, the situation
is not any better, because the optimization problem is very difficult.

3 Functional Spaces

3.1 B-splines

Splines are piecewise polynomials developed for data interpolation. This section
presents a short revision of splines in the B-form. B-splines provide a convenient
basis function representation to the piecewise polynomials. For more detailed
information and discussion on algorithms see [2].

The B-spline basis Bi,d is uniquely defined by a order d and a non-decreasing
knots sequence ti with possible multiplicities. The basis can be computed recur-
sively [2],

Bi,1(x) =

{

1 if ti ≤ x < ti+1

0 otherwise

Bi,d(x) =
x − ti

ti+d−1 − ti
Bi,d−1(x) +

ti+d − x

ti+d − ti+1
Bi,d−1(x).



The basis has small support, since bi,d(x) = 0 for all x /∈ [ti, ti+d]. The order
d is related to the smoothness constraints of the spline. The larger the d, the
smoother the fitting. In fact, if a knot has multiplicity r, i.e. tj = tj+1 = . . . =
tj+r−1, then the number of continuous constraints at tj equals to d − r. So, if
r = d, the spline becomes discontinuous.

It is convenient to set the spline to be discontinuous at the first and last data
location and as smooth as possible in between. Thus the first and the last knot
has multiplicity d and the rest are simple. In this case, we have a handy relation,

number of knots = q + d

where q is the number of basis functions. The location of the remaining knots
are set so that the fitting becomes as accurate as possible. There are several
methods available, the one used in this paper is presented in [7]. An example of
3rd order B-spline basis is presented in Figure 2.

In FDA the B-splines have some clear advantages; The fitting is guaranteed
to be smooth by definition and it is well suited for reducing data dimensionality.
However, the two unknown parameters q and d need to be to optimized. Fur-
thermore, the basis is not orthonormal, so the Cholesky decomposition described
in Section 2.1 must be applied.

3.2 Wavelets

Wavelet transformation resembles Fourier transform in that both provide a time-
frequency description of the data [1]. Wavelets, however, are able to encode
spatial information as well, which make them appealing for multiresolutional
signal processing. Given some mother wavelet function ψ, the basis can be
written as,

ψi,j(x) = 2−i/2ψ(2−ix − j),

where i and j are integers that represent variation in frequency and spatial lo-
cation, respectively. The wavelet basis functions form an orthonormal basis for
L2. An example of the simplest wavelet, Haar (or Daubechies 1) is presented
in Figure 2. There are many wavelet families available with different proper-
ties, such as Daubechies (in [1] these are called compactly supported wavelets),
Biorthogonal and Mayer wavelets.

Usually there is no need to compute the transformations using the basis func-
tions. Instead the transformation can be obtained efficiently using digital sub
band filtering [1]. In this case, however, we have to assume that the data has a
constant sampling rate. Furthermore, due to the nature of the basis, data length
should be a power of 2. Otherwise some data points must be generated during
the filtering process, and the transformation actually becomes longer than the
original data. Thus discrete wavelet decomposition cannot reduce dimensional-
ity.

Although dimensionality cannot be reduced, the wavelets have some good
properties for FDA. First of all, orthonormality of the basis is always desirable,
and on the other hand there are no additional parameters involved. Thus only
the window length and wavelet type must be tested.



3.3 Gaussian kernels

The Gaussian fitting is the simplest function type presented here. The basis
functions are Gaussian kernels,

ϕi(x) = e
‖x−ti‖

2

2σ2

i , (2)

centered at ti and with width parameter σi, i = 1, . . . , q. Thus there are
two unknown parameters for each kernel. In total we end up with 2 + 2q free
parameters, (window length, number of kernels, centers and widths) which is
considerably more than with Wavelets or B-splines.

One way to ease the parameter optimization is to fix the locations ti so that
they are equally distributed on the interval of the data. This is justified in the
case of regularly sampled data, although it may be far away from the optimal.
Furthermore, all the kernels can be share the same width parameter σ. This
reduces the number of unknown parameters down to 3 which is feasible for a
grid search, for example. The grid search optimization was presented in [10].
An example of such Gaussian functions is presented in Figure 2.

When the locations and widths are known, the fitting weights are obtained
by solving the problem (1). The solution is the well-known pseudo inverse w =
(GT G)−1GT y [6], where y = [y1, y2, . . . , ym]T are the values to be fitted and
Gi,j = ϕj(xi). In practice the matrix GT G tends to become singular on some
occasions. In that case it can be replaced with GT G + ǫI using a small ǫ to
ensure the existence of the inverse.

3.3.1 Optimizing widths and locations

The locations and widths has a major role in the quality of the fitting, so it would
be desirable to relax the rather artificial constraints given above. Optimizing
the average fitting error, is a non-supervised and relatively fast way to find good
parameter values. The optimization methods, however, require gradient that
exists in closed form since all the functions in (1) are analytical.

To derive the gradient, we first define the error functional. Squared fitting
error of all the functions h = 1, . . . , N can be written as,

E =
1

2

N
∑

h=1

(

Gwh − yh

)T (

Gwh − yh

)

=
1

2

N
∑

h=1

(

wT
h GT Gwh − 2yT

h Gwh + yT
h yh

)

The columns of G are denoted as Gk = [ϕk(x1), ϕk(x2), . . . , ϕk(xm)]T and
it’s derivative with respect to tk and σk,

G
(t)
k =

[x1 − tk
σ2

k

ϕk(x1), . . . ,
xm − tk

σ2
k

ϕk(xm)
]T

G
(σ)
k =

[ (x1 − tk)2

σ3
k

ϕk(x1), . . . ,
(xm − tk)2

σ3
k

ϕk(xm)
]T

,



respectively. With this notation we obtain,

∂

∂tk

(

yT
h Gwh

)

= yT
h G

(t)
k wh,k

∂

∂tk

(

wT
h GT Gwh

)

= 2wT
h GT G

(t)
k wh,k,

which finally yields,

∂E

∂tk
=

n
∑

h=1

(

Gwh − yh

)T
G

(t)
k

wh,k.

Following similar steps for ∂/∂σk we get,

∂E

∂σk
=

n
∑

h=1

(

Gwh − yh

)T
G

(σ)
k

wh,k.

When the gradient is known, the locations and the widths are optimized using
unconstrained non-linear optimization. Actually, the problem is constrained
because σ cannot be negative. But the kernel (2) is an even function with respect
to σ so negative values can be accepted as well. In this paper a Broyden-Fletcher-
Goldfarb-Shanno (BFGS) Quasi-Newton method with line search is used [4].
BFGS method resembles quadratic algorithms, such as Newton method, in the
sense that it assumes that the problem is quadratic, but with BFGS there is no
need to actually compute the Hessian matrix at any stage.

It should be noted, however, that the optimization of the fitting is not equiv-
alent to running a grid search as described above. With the grid search, the
prediction performance is optimized directly, while the goal in here is only a
good data fitting. Still, a good fitting is a key for a good prediction, since the
prediction error cannot be smaller than the fitting error.

4 Experiments

The different function fittings were experimented with the regularly sampled
ESTSP’07 benchmark data. First 465 values were used as a learning set and all
the parameters were optimized using Leave-One-Out error (LOO). The remain-
ing 410 data points were used as test set to evaluate the quality of the obtained
models. In all the tests only the first 15 predicted values were taken into account.

The tests were run for Wavelet, B-spline and Gaussian fitting. The wavelet
families Daubechies {1,2,3,4}, Biorthogonal {1.3,2.2} and discrete Meyer were
tested. For B-splines orders 2, 3 and 4 were experimented. The Gaussian ker-
nels were tested with fixed kernel locations and grid-search optimized width (as
explained in Section 3.3) but also with the Quasi-Newton optimization. The
maximum amount of Quasi-Newton iterations was 100. For a reference, a plain
k-NN prediction test was carried out. The neighborhood parameter k ranged
from 1 to 15 in all the cases.



The experimented window lengths L varied from 15 to 35. Number of coef-
ficients q ranged from 5 to 29. In the case of fixed Gaussian kernels, the width
parameter σ got values from 0.3 to 0.93 with 0.07 step size1.

For comparison, the effect of input normalization was experimented for all the
tests. And finally, input selection was tested by running an exhaustive search.
For this purpose the models that gave the best LOO error for each number of
coefficients (q) were selected. However, due to a rapid increase in computational
load only values q ≤ 11 were experimented.

5 Results

The results are presented in Table 1. The best setup is 2nd order B-spline with
input normalization. Functional approach improves results compared to plain
k-NN prediction. B-splines give the best overall results and LOO errors are less
than one third compared to plain k-NN. The Gaussian fitting is slightly worse.

Wavelet results, on the other hand, are quite similar to plain k-NN. This may
be due to the fact that dimensionality is not reduced. k-NN prediction tends to
become more difficult as dimensionality grows.

Normalization is beneficial only for the B-splines. With plain k-NN there is
not much difference, while in the case of wavelets it is clearly disadvantageous
since LOO error becomes roughly 6 fold.

In the case of Gaussian fitting, the fixed kernels with one width parameter
perform better. However, the Quasi-Newton method seem to be more robust
since test errors are smaller.

5.1 Input Selection

The exhaustive search results are presented in Table 2. Performance is slightly
worse compared to the last results, because number of coefficients were restricted
to be less than 12. Due to high dimensionality wavelets were left outside of this
test. Based on the previous results, inputs were normalized only for B-splines.

Surprisingly the B-spline results were exactly the same because all the inputs
were chosen. This may explain the good performance in the previous test; all
the coefficients carry relevant information. There was a slight improvement with
the Gaussian fitting. But even in this case almost all inputs were selected; Only
9th input out of 11 was omitted for the fixed kernels and 1st, 9th and 10th for
Quasi-Newton.

Based on these results, exhaustive search is not recommended because the
benefits are minor compared to the increase in computational load.

1The width was normalized so that value 1 stands for the distance between the centers



6 Conclusions

Three function spaces were experimented for 15-step ahead prediction of the
ESTSP’07 benchmark data. The best setup was 2nd order B-splines with nor-
malized inputs. Gaussian fitting was quite as good while wavelets performed
clearly worse.

The results support the notion that the choice of function space is not trivial
in FDA. The fact that normalization was beneficial in some occasions stress the
problems related to k-NN; input scaling can have a remarkable effect on the
performance.

Functional approach improved performance compared to direct prediction
method. Moreover, all the methods presented here can be modified to work
with irregularly sampled data, which is out of the scope of the traditional time
series prediction methods.
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B-splines Normalized
Degree LOO Test LOO Test

2 0.0082 0.2004 * 0.0079 0.2004

3 0.0086 0.2088 0.0080 0.2017

4 0.0105 * 0.1921 0.0103 * 0.1921

Wavelets Normalized
Type LOO Test LOO Test

Daubechies 1 0.0331 0.2189 0.1815 0.4451
Daubechies 2 0.0414 0.1897 0.2933 0.2537
Daubechies 3 0.0393 0.1948 0.2978 0.1675

Daubechies 4 0.0342 0.1948 0.2446 * 0.1609

Biorthogonal 1.3 0.0325 0.1834 0.1712 0.2323
Biorthogonal 2.2 0.0335 0.1852 0.2680 0.1851

Discrete Meyer 0.0328 0.2082 * 0.0313 0.2665

Gaussian Normalized
Type LOO Test LOO Test

Grid search 0.0110 0.1999 * 0.0093 0.2029
Quasi-Newton 0.0155 * 0.1820 0.0163 0.1958

Plain k-NN Normalized
LOO Test LOO Test
0.0328 * 0.2082 * 0.0313 * 0.2082

Table 1: Results for 15 step ahead prediction. The values are normed mean
square errors. The best values for each function type are marked with an asterisk.
The cases were normalization improved the results are in bold face.

B-splines
Input Selection Degree LOO Test L q

Yes 2 0.0102 0.1893 30 11
No 2 0.0102 0.1893 30 11
Yes 3 0.0087 0.1901 34 10
No 3 0.0087 0.1901 34 10

Gaussian
Input Selection Type LOO Test L q

Yes Quasi-Newton 0.0145 0.2142 35 11
No Quasi-Newton 0.0173 0.2088 35 11
Yes Grid-Search 0.0138 0.2304 30 11
No Grid-Search 0.0140 0.1936 30 11

Table 2: Input selection results. An exhaustive search was run to best models
with q = 5, . . . , 11. Improvements are in bold face. For B-splines all the inputs
were selected.


