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Abstract— In this paper, time series prediction is considered
as a problem of missing values. A method for the determination
of the missing time series values is presented. The method
is based on two projection methods: a nonlinear one (Self-
Organized Maps) and a linear one (Empirical Orthogonal
Functions). The presented global methodology combines the
advantages of both methods to get accurate candidates for the
prediction values. The methods are applied to two time series
competition datasets.

I. I NTRODUCTION

The presence of missing values in the underlying time
series is a recurrent problem when dealing with databases.
Number of methods have been developed to solve the
problem and fill the missing values. The methods can be
classified into two distinct categories: deterministic methods
and stochastic methods.

Self-Organizing Maps [1] (SOM) aim to ideally group
homogeneous individuals, highlighting a neighborhood struc-
ture between classes in a chosen lattice. The SOM algorithm
is based on unsupervised learning principle where the train-
ing is entirely stochastic, data-driven. No information about
the input data is required. Recent approaches propose to take
advantage of the homogeneity of the underlying classes for
data completion purposes [2]. Furthermore, the SOM algo-
rithm allows projection of high-dimensional data to a low-
dimensional grid. Through this projection and focusing on
its property of topology preservation, SOM allows nonlinear
interpolation for missing values.

Empirical Orthogonal Function (EOF) [3] models are
deterministic enabling linear projection to high-dimensional
space. They have also been used to develop models for
finding missing data [4]. Moreover, EOF models allow
continuous interpolation of missing values, but are sensitive
to the initialization.

This paper describes a new methodology, which combines
the advantages of both the SOM and the EOF. The nonlinear-
ity property of the SOM is used as a denoising tool and then
continuity property of the EOF method is used to recover
missing data efficiently.

The SOM is presented in the Section III, the EOF in Sec-
tion IV and the global methodology SOM+EOF in Section
V. Section VI presents the experimental results using two
competition datasets; The ESTSP2007 [5] and the NN3 [6]
competition benchmarks.
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II. T IME SERIESPREDICTION

A. Data with Missing Values

In time series prediction problem, the samples are gen-
erated by sliding a fixed window over the time series and
taking each window full of values as a sample. The size of
the window and thus the length of the samples isT . All
samples are collected to aregressor matrix
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, j = 1, 2, ..., N, (1)

where N is the number of samples and eachxj is a T -
dimensional sample vector.

When predicting the future of the time series, the missing
values are added to the end of the known values of the time
series. Then, logically the regressor matrix is missing some
values in the lower right corner. The shape and the size of
the area of the missing values depend on the used method
and the horizon of prediction.

B. Prediction Strategy

There are three prediction strategies for the long-term
prediction of time series that are mainly used. The first and
the least calculation intensive is theRecursive prediction
strategy, where the model selected in the learning phase for
the first time step is used repeatedly, or recursively, as far
as necessary. The predicted values are used as known values
and the prediction is done always only one step at a time.

The next alternative is to use different model to predict
each time step. ThisDirect prediction strategy needs different
model for each time step and is therefore many times more
calculation intensive. In many cases the Direct is still appeal-
ing choice, because of the increased accuracy compared to
the Recursive strategy. Where the Recursive strategy suffers
from accumulation of prediction errors, the Direct does not.

Third alternative is to use a mix of the two, calledDirRec
prediction strategy [7]. With this prediction strategy different
model is trained for each time step and all predicted values
are used as known values in the process. It means that the
regressor is increased by one in every time step when the
previous prediction is included in the learning data. This
increases the calculation time in the learning process but in
many cases, the accuracy is also better.

In this case, when the time series prediction is considered
as a missing value problem, the whole set of values to be
predicted is estimated at once. Strictly speaking the strategy



used here is none of the above, but insteadall-at-once
strategy.

III. SELF-ORGANIZING MAP

The SOM algorithm is based on an unsupervised learning
principle, where training is entirely data-driven and no infor-
mation about the input data is required [1]. Here we use a 2-
dimensional network, compound inc units (or code vectors)
shaped as a squarelattice. Each unit of a network has as
many weights as the lengthT of the learning data samples,
xn, n = 1, 2, ..., N . All units of a network can be collected to
a weight matrixm (t) = [m1 (t) ,m2 (t) , ...,mc (t)] where
mi (t) is the T -dimensional weight vector of the uniti at
time t and t represents the steps of the learning process.
Each unit is connected to its neighboring units through
neighborhood functionλ(mi,mj , t), which defines the shape
and the size of the neighborhood at timet. Neighborhood
can be constant through the entire learning process or it can
change in the course of learning.

Learning starts by initializing the network node weights
randomly. Then, for randomly selected samplext+1, we
calculate a Best Matching Unit (BMU), which is the neuron
whose weights are closest to the sample. BMU calculation
is defined as

mBMU(xt+1) = arg min
mi,i∈I

{‖xt+1 − mi (t)‖} , (2)

where I = [1, 2, ..., c] is the set of network node indices,
BMU denotes the index of the best matching node and‖.‖
is standard Euclidean norm.

If the randomly selected sample includes missing values,
the BMU cannot be solved outright. Instead, an adapted SOM
algorithm, proposed by Cottrell and Letrémy [8], is used. The
randomly drawn samplext+1 having missing value(s) is split
into two subsetsxT

t+1 = NMxt+1
∪ Mxt+1

, whereNMxt+1

is the subset where the values ofxt+1 are not missing and
Mxt+1

is the subset where the values ofxt+1 are missing.
We define a norm on the subsetNMxt+1

as

‖xt+1 − mi (t)‖NMxt+1

=
∑

k∈NMxt+1

(xt+1,k − mi,k(t))
2
,

(3)
where xt+1,k for k = [1, ..., T ] denotes thekth value of
the chosen vector andmi,k(t) for k = [1, ..., T ] and for
i = [1, ..., c] is thekth value of theith code vector.

Then the BMU is calculated with

mBMU(xt+1) = arg min
mi,i∈I

{

‖xt+1 − mi (t)‖NMxt+1

}

.

(4)
When the BMU is found the network weights are updated

as

mi (t + 1) = . . .

mi (t) − ε(t)λ
(

mBMU(xt+1),mi, t
)

[mi (t) − xt+1] , (5)

∀i ∈ I,

whereε(t) is the adaptation gain parameter, which is]0, 1[-
valued, decreasing gradually with time. The number of
neurons taken into account during the weight update depends
on the neighborhood functionλ(mi,mj , t). The number of
neurons, which need the weight update, usually decreases
with time.

After the weight update the next sample is randomly drawn
from the data matrix and the procedure started again by find-
ing the BMU of the sample. The recursive learning procedure
is stopped when the SOM algorithm has converged.

Once the SOM algorithm has converged, we obtain some
clusters containing our data. Cottrell and Letrémy proposed
to fill the missing values of the dataset by the coordinates of
the code vectors of each BMU as natural first candidates for
missing value completion:

π(Mx) (x) = π(Mx)

(

mBMU(x)

)

, (6)

whereπ(Mx) (.) replaces the missing valuesMx of sample
x with the corresponding values of the BMU of the sample.
The replacement is done for every data sample and then the
SOM has finished filling the missing values in the data.

The procedure is summarized in Table I. There is a toolbox
available for performing the SOM algorithm in [9].

TABLE I

SUMMARY OF THE SOM ALGORITHM FOR FINDING THE MISSING

VALUES.

1) SOM node weights are initialized randomly
2) SOM learning process begins

a) Inputx is drawn from the learning data setX

i) If x does not contain missing values, BMU is found
according to Equation 2

ii) If x contains missing values, BMU is found according
to Equation 4

b) Neuron weights are updated according to Equation 6
3) Once the learning process is done, for each observation containing

missing values, the weights of the BMU of the observation are
substituted for missing values

IV. EMPIRICAL ORTHOGONAL FUNCTIONS

This section presents Empirical Orthogonal Functions
(EOF) [3]. In this paper, EOF are used as a denoising tool
and for finding the missing values at the same time [4].

The EOF are calculated using standard and well-known
Singular Value Decomposition (SVD)

X = UDV
∗ =

K
∑

k=1

ρkukvk, (7)

whereX is 2-dimensional data matrix,U and V are col-
lections of singular vectorsu and v in each dimension
respectively,D is a diagonal matrix with the singular values
ρ in its diagonal andK is the smaller dimension ofX (or
the number of nonzero singular values ifX is not full rank).
The singular values and the respective vectors are sorted to
decreasing order.



When EOF are used to denoise the data, not all singular
values and vectors are used to reconstruct the data matrix.
Instead, it is assumed that the vectors corresponding to
larger singular values contain more data with respect to the
noise than the ones corresponding to smaller values [3].
Therefore, it is logical to selectq largest singular values and
the corresponding vectors and reconstruct the denoised data
matrix using only them.

In the case whereq < K, the reconstructed data matrix is
obviously not the same than the original one. The largerq

is selected, the more original data, which also includes more
noise, is preserved. The optimalq is selected using validation
methods, for example [10].

EOF (or SVD) cannot be directly used with databases
including missing values. The missing values must be re-
placed by some initial values in order to use the EOF. This
replacement can be for example the mean value of the whole
data matrixX or the mean in one direction, row wise or
column wise. The latter approach is more logical when the
data matrix has some temporal or spatial structure in its
columns or rows.

After the initial value replacement the EOF process begins
by performing the SVD and the selectedq singular values
and vectors are used to build the reconstruction. In order not
to loseany information, only the missing values ofX are
replaced with the values from the reconstruction. After the
replacement, the new data matrix is again broken down to
singular values and vectors with the SVD and reconstructed
again. The procedure is repeated until convergence criterion
is fulfilled.

The procedure is summarized in Table II.

TABLE II

SUMMARY OF THE EOF METHOD FOR FINDING MISSING VALUES.

1) Initial values are substituted into missing values of the original
data matrixX

2) For eachq from 1 to K

a) SVD algorithm calculatesq singular values and eigenvectors
b) A number of values and vectors are used to make the

reconstruction
c) The missing values from the original data are filled with the

values from the reconstruction
d) If the convergence criterion is fulfilled, the validationerror

is calculated and saved and the nextq value is taken under
inspection. If not, then we continue from step a) with the
sameq value

3) The q with the smallest validation error is selected and used to
reconstruct the final filling of the missing values inX

V. GLOBAL METHODOLOGY

The two methodologies presented in the previous two sec-
tions are combined and the global methodology is presented.
The SOM algorithm for missing values is first ran through
performing a nonlinear projection for finding the missing
values. Then, the result of the SOM estimation is used as
initialization for the EOF method. The global methodology
is summarized in Figure 1.

Dataset with
Missing
Values

-

SOM
Nonlinear,
discrete,

low-dimensional
projection

Completed
Data Sample

�

EOF
Linear,

continuous,
high-dimensional

projection

?

Fig. 1. Global methodology summarized.

For the SOM we must select the optimal grid sizec and for
the EOF the optimal number of singular values and vectors
q to be used. This is done using validation, using the same
validation set for all combinations of the parametersc and
q. Finally, the combination of SOM and EOF that gives the
smallest validation error is used to perform the final filling
of the data.

Even the SOM as well as the EOF are able to fill the
missing values alone, the experimental results demonstrate
that together the accuracy is better. The fact that these twoal-
gorithms suit well together is not surprising. Two approaches
can be considered to understand the complementarity of the
algorithms.

Firstly, the SOM algorithm allows nonlinear projection.
In this sense, even for dataset with complex and nonlinear
structure, the SOM code vectors will succeed to capture
the nonlinear characteristics of the inputs. However, the
projection is done on a low-dimensional grid (in our case
two-dimensional) with the possibility of losing the intrinsic
information of the data.

The EOF method is based on a linear transformation using
the Singular Value Decomposition. Because of the linearity
of the EOF approach, it will fail to reflect the nonlinear
structures of the dataset, but the projection space can be
as high as the dimension of the input data and remain
continuous.

There is a toolbox for performing the SOM+EOF in [11].

VI. EXPERIMENTAL RESULTS

This paper presents the application of the SOM+EOF
method to two time series prediction benchmarks; The
ESTSP2007 competition dataset and the NN3 competition.

A. ESTSP2007 competition

This time series prediction benchmark includes a total of
875 values from an unknown origin. The dataset is shown
in Figure 2. More information and the dataset can be found
from the ESTSP2007 conference website [5].

For the model selection purposes the dataset is divided into
two sets, learning and validation set. The learning set consists
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Fig. 2. ESTSP 2007 Competition dataset.

of 465 first values and the rest belongs to the validation set.
The optimal regressor size is set to 11 after many trial and
error experiments.

The optimal SOM size is selected using a simple validation
procedure, where the SOM learning is performed using only
the learning set and the validation set is used to tune the SOM
size for one step ahead prediction. The validation errors are
shown in Figure 3.
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Fig. 3. Validation errors with respect to the SOM grid size.

From Figure 3 the optimal SOM size is selected to 13×13
with validation error of 0,297. There is only very small
difference in the validation error with larger SOM sizes.

The only parameter of the EOF method is tuned using the
same learning and validation sets than with the SOM to get
comparable results. Also the regressor size is kept the same
than with the SOM and the optimization is done for one step
ahead prediction. The validation errors are shown in Figure
4.
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Fig. 4. Validation errors with respect to the number of EOF.

From Figure 4 the optimal number of EOF is selected to 2
with validation error of 0,451. The result suggests relatively

strong noise influence in the singular values after the third
one, where the validation error is increasing rapidly.

For the SOM+EOF method the two separate methods
are combined and the validation is performed for each
combination of the SOM sizes and the number of EOF. The
validation errors are shown in Figure 5 and 6.
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Fig. 5. Minimum validation errors with respect to the SOM sizeusing the
SOM+EOF method.
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Fig. 6. Validation errors with respect to the number of EOF using SOM
size 15×15.

From Figure 5 the optimal SOM is selected to be 15×15
and from Figure 6 the optimal number of EOF to 4 with the
validation error of 0,233.

For one step ahead prediction the regressor size is selected
to 11, but for the 50 steps ahead the regressor size is
increased to 60 in order to fit the missing values to the
regressor.

Our experiments with several other datasets have shown
that the EOF method uses larger number of EOF when the
regressor size is increased. Therefore, the final prediction is
done using the number of EOF fixed to 8. The prediction of
the 50 timesteps is shown in Figure 7.

From the Figure 7 it seems that that the prediction has
removed the noise and is predicting the next peak of the
time series quite well.

B. NN3 Competition

The NN3 competition consists of 11 different time series
with variable lengths ranging from 126 values to 115 values.
In this paper, the results with two time series are presented,
namely with the3rd and the 4th time series, shown in
Figures 8 and 9 respectively. For more information about
the competition visit [6].

Because the EOF method was not as good as the SOM
and SOM+EOF, we use only the two latter ones with the
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Fig. 7. Prediction of 50 next values of the competition dataset. The real
values are presented by the solid line and the dashed one presents the
prediction.
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Fig. 8. NN3 Competition dataset,3rd time series.
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Fig. 9. NN3 Competition dataset,4th time series.

NN3 competition time series. Also, due to the scale of the
series, the normalized MSE is used in the validation error
graphs. Finally, we use 10-fold Cross-Validation instead of
simple validation in order to stabilize the parameter selection
results. Otherwise, the procedure follows the one described
in previous section.

1) Time Series 3: The results for the3rd time series are
presented in the following. In Figure 10 the 10-fold Cross-
Validation NMSE for the SOM and the SOM+EOF method
are presented. The used regressor size is 15, which is selected
empirically using trial and error.

From Figure 10 the smallest normalized validation error
is 0.27 and it is achieved with SOM size8 × 8 with both
methods. In this case, the selected number of EOF is the
maximum 15. The validation NMSE is also the same than
with the SOM.

Figure 11 shows the EOF validation errors using SOM
grid size8 × 8.
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Fig. 10. Validation errors of the3rd time series. Solid line represents the
SOM and the dashed one the SOM+EOF.
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Fig. 11. EOF validation errors of the3rd time series using SOM grid size
8 × 8.

From Figure 11 we can clearly see, that the second last
singular value contains more noise than any other value. This
must be taken into account when selecting the parameters for
the final prediction.

Because the regressor size must be increased to 33 from
the initial 15 in order to fit the 18 missing values in
the regressor, the number of EOF must also be increased.
Therefore, taking into account the previous findings, the
number of EOF to be used in the final prediction is fixed
to 17.

The final prediction using the SOM+EOF method is shown
in Figure 12.
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Fig. 12. Prediction of the3rd time series. Solid line represents the known
time series and the dashed one the prediction using the SOM+EOF method.

2) Time Series 4: The results for the4th time series are
presented in the following. In Figure 13 the 10-fold Cross-
Validation errors with the SOM and the SOM+EOF are
presented. The regressor size is set to 13 after trial and error
experiments.
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Fig. 13. Validation errors of the4th time series. Solid line represents the
SOM and the dashed one the SOM+EOF.

From Figure 13 the SOM size with lowest validation error
is 8×8 for the SOM method and11×11 for the SOM+EOF.
The NMSE for the SOM is 0.21 and for the SOM+EOF 0.20.
The number of EOF for the selected SOM size is 5.

For the prediction, the regressor size is increased to 31
from the initial 13 in order to fit the 18 missing values in
the regressor.

Similarly than before, the number of EOF must also be
increased. The final number of EOF is fixed to 8. The
prediction of 18 timesteps is shown in Figure 14.
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Fig. 14. Prediction of the4th time series. Solid line represents the known
time series and the dashed one the prediction.

VII. C ONCLUSION

In this paper, we have presented a new methodology for
finding missing values in temporal database. The method-
ology combines Self-Organizing Maps (SOM) and Empiri-
cal Orthogonal Functions (EOF) efficiently and the global
methodology (SOM+EOF) is used to find the future values
of a time series.

The advantages of the SOM include the ability to per-
form nonlinear projection of high-dimensional data to lower
dimension with interpolation between discrete data points.

For the EOF, the advantages include high-dimensional
linear projection of high-dimensional data and the speed and
the simplicity of the method.

The SOM+EOF includes the advantages of both indi-
vidual methods, leading to a new accurate approximation
methodology for the missing future values of a time series.
The performance obtained show the accuracy of the new
methodology.

It is also evident that the EOF is greatly dependent from
good initialization in order to produce accurate results. The
SOM gives good initialization even the method alone is not
so accurate. The two methods complete each other and work
well together.

For further work, the modifications and performance up-
grades for the global methodology are investigated and
applied to other types of datasets from other fields of science,
for example climatology and finance.
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