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Abstract— In this paper, time series prediction is considered Il. TIME SERIESPREDICTION
as a problem of missing values. A method for the determination . i
of the missing time series values is presented. The method A. Data with Missing Values
is based on two projection methods: a nonlinear one (Self- In time series prediction problem, the samples are gen-
Organized Maps) and a linear one (Empirical Orthogonal erated by sliding a fixed window over the time series and
Functions). The presented global methodology combines the taking each window full of values as a sample. The size of

advantages of both methods to get accurate candidates for the . .
prediction values. The methods are applied to two time series the window and thus the length of the samplesTisAll

competition datasets. samples are collected toragressor matrix
|. INTRODUCTION X1
L . . . X2
The presence of missing values in the underlying time X = ] ,j=1,2,...,N, (1)
series is a recurrent problem when dealing with databases. :
Number of methods have been developed to solve the X;j

problem and fill the missing values. The methods can bghere v is the number of samples and eagh is a T-

classified into two distinct categories: deterministic h0els  §imensional sample vector.

and stochastic methods. _ _ When predicting the future of the time series, the missing
Self-Organizing Maps [1] (SOM) aim to ideally group yajyes are added to the end of the known values of the time

homogeneous individuals, highlighting a neighborhoodstr series. Then, logically the regressor matrix is missing esom

ture between classes in a chosen lattice. The SOM algorithpg|es in the lower right corner. The shape and the size of

is based on unsupervised learning principle where the-traihe zrea of the missing values depend on the used method
ing is entirely stochastic, data-driven. No informatioroab  anq the horizon of prediction.

the input data is required. Recent approaches proposedo tak
advantage of the homogeneity of the underlying classes fB Prediction Srategy
data completion purposes [2]. Furthermore, the SOM algo- There are three prediction strategies for the long-term
rithm allows projection of high-dimensional data to a low-prediction of time series that are mainly used. The first and
dimensional grid. Through this projection and focusing omhe least calculation intensive is thiRecursive prediction
its property of topology preservation, SOM allows nonlineastrategy, where the model selected in the learning phase for
interpolation for missing values. the first time step is used repeatedly, or recursively, as far

Empirical Orthogonal Function (EOF) [3] models areas necessary. The predicted values are used as known values
deterministic enabling linear projection to high-dimeamsl and the prediction is done always only one step at a time.
space. They have also been used to develop models forThe next alternative is to use different model to predict
finding missing data [4]. Moreover, EOF models alloweach time step. ThiBirect prediction strategy needs different
continuous interpolation of missing values, but are semsit model for each time step and is therefore many times more
to the initialization. calculation intensive. In many cases the Direct is stillegp

This paper describes a new methodology, which combindésg choice, because of the increased accuracy compared to
the advantages of both the SOM and the EOF. The nonlineahe Recursive strategy. Where the Recursive strategy suffer
ity property of the SOM is used as a denoising tool and theinom accumulation of prediction errors, the Direct does. not
continuity property of the EOF method is used to recover Third alternative is to use a mix of the two, callBir Rec
missing data efficiently. prediction strategy [7]. With this prediction strategyfditnt

The SOM is presented in the Section lll, the EOF in Seanodel is trained for each time step and all predicted values
tion IV and the global methodology SOM+EOF in Sectiorare used as known values in the process. It means that the
V. Section VI presents the experimental results using twiegressor is increased by one in every time step when the
competition datasets; The ESTSP2007 [5] and the NN3 [@Jrevious prediction is included in the learning data. This

competition benchmarks. increases the calculation time in the learning processrbut i
many cases, the accuracy is also better.
Antti Sorjamaa, Elia Liitiainen and Amaury Lendasse are withaptive In this case, when the time series prediction is considered

Informatics Research Centre - Helsinki University of Tedbgg, P.O. Box . | bl th hol t of | to b
5400, 02015 HUT, Finland (Email{Antti.Sorjamaa,Lendas$@hut.fi), as a missing value problem, the whole set or values 1o be

elia@cis.hut fi predicted is estimated at once. Strictly speaking theegyat



used here is none of the above, but instedldat-once
strategy.

wheree(t) is the adaptation gain parameter, whichdsl|-
valued, decreasing gradually with time. The number of
1. SELF-ORGANIZING MAP neurons tz_iken into account_durlng the weight update depends
) ) ) . on the neighborhood functioh(m;, m;,t). The number of
The SOM algorithm is based on an unsupervised leaming, ,,ns which need the weight update, usually decreases
principle, where training is entirely data-driven and nfoin with time.
mation about the input data is required [1]. Here we use a 2- s the weight update the next sample is randomly drawn
dimensional network, f:ompound ""'%”"ts (or code vectors) from the data matrix and the procedure started again by find-
shaped as a squatattice. Each unit of a network has as g yhe BMU of the sample. The recursive learning procedure
many weights as the Iengtﬁ of the learning data samples, is stopped when the SOM algorithm has converged.
an':hl,Z, ...',N. All units of a network can be collef]ted 10 Onece the SOM algorithm has converged, we obtain some
a weight T:amxg.l (t) ~ [m} (t) ’.IEQ () ""mfc (ﬁ)] WNETe " clusters containing our data. Cottrell and laetry proposed
m; (¢) is the T-dimensional weight vector of the unitat to fill the missing values of the dataset by the coordinates of

time ¢ an_d? represents the ;teps ,Of the. Iearnlng ProCeSHhe code vectors of each BMU as natural first candidates for
Each unit is connected to its neighboring units througﬂﬂssing value completion:

neighborhood function(m;, m;, ¢t), which defines the shape
and the size of the neighborhood at tirheNeighborhood ©)
can be constant through the entire learning process or it can
change in the course of learning. wherem,, ) (.) replaces the missing valued, of sample
Learning starts by initializing the network node weightsx with the corresponding values of the BMU of the sample.
randomly. Then, for randomly selected samplg 1, we The replacement is done for every data sample and then the
calculate a Best Matching Unit (BMU), which is the neuronrSOM has finished filling the missing values in the data.
whose weights are closest to the sample. BMU calculation The procedure is summarized in Table I. There is a toolbox

T (%) = Tany (MepU () -

is defined as available for performing the SOM algorithm in [9].
_ TABLE |
MBMU(xt41) — A8 mrflirell {Ixtr2a —m NI}, (@ SUMMARY OF THE SOM ALGORITHM FOR FINDING THE MISSING
VALUES.

wherel = [1,2,...,¢] is the set of network node indices,
BMU denotes the index of the best matching node farfid
is standard Euclidean norm.

If the randomly selected sample includes missing values,
the BMU cannot be solved outright. Instead, an adapted SOM
algorithm, proposed by Cottrell and Léimy [8], is used. The
randomly drawn sample; ;; having missing value(s) is split

1) SOM node weights are initialized randomly
2) SOM learning process begins
a) Inputx is drawn from the learning data st
i) If x does not contain missing values, BMU is found
according to Equation 2
i) If x contains missing values, BMU is found accord
to Equation 4

ng

into two subsetsc/, ; = NMy,,, U My, ,, where NMy, ,

is the subset where the valuesxaf,; are not missing and
M. is the subset where the valuesxaf,; are missing.

b) Neuron weights are updated according to Equation 6

3) Once the learning process is done, for each observatiataioig
missing values, the weights of the BMU of the observation

are

Xt+1

We define a norm on the subs#i\/. as

Xt4+1

k€ NMoc,

substituted for missing values

2
e+ — my (t)”Nz\/fxt+1 - (Xe1,6 —mi (1)), IV. EMPIRICAL ORTHOGONAL FUNCTIONS

This section presents Empirical Orthogonal Functions
(EOF) [3]. In this paper, EOF are used as a denoising tool
and for finding the missing values at the same time [4].

The EOF are calculated using standard and well-known
Singular Value Decomposition (SVD)

where x; 1 for k = [1,...,T] denotes thek'" value of
the chosen vector aneh, ;. (¢) for & = [1,...,7] and for
i=11,...,c is the k! value of thei’* code vector.

Then the BMU is calculated with

K
X = UDV* = Z JRITAS (7)
k=1

mpnu ) = arg min { e —m; Ol }-
4) , _ . .
When the BMU is found the network weights are updatewhere X is 2-dimensional data matri¥J and V are col-

as lections of singular vectors1 and v in each dimension
respectivelyD is a diagonal matrix with the singular values
m; (4 1) = p in its diagonal andk’ is_ the smaller dimension aX (or
¢ the number of nonzero singular valueXifis not full rank).
m; (¢) — e()A (Mparv(e,q) M t) [m; () = x¢41].(5)  The singular values and the respective vectors are sorted to

Viel, decreasing order.



When EOF are used to denoise the data, not all singular SOM

values and vectors are used to reconstruct the data matrix. . :
it i . Dataset with Nonlinear,

Instead, it is assumed that the vectors corresponding to Missing —» discrete
larger singular values contain more data with respect to the : N

; : Values low-dimensional
noise than the ones corresponding to smaller values [3]. projection
Therefore, it is logical to selegt largest singular values and
the corresponding vectors and reconstruct the denoised dat
matrix using only them.

In the case where < K, the reconstructed data matrix is EOF
obviously not the same than the original one. The lakger Linear
is selected, the more original data, which also includesemor Completed | . wicious
noise, is preserved. The optimais selected using validation Data Sample high—dimensio’nal
methods, for example [10]. projection

EOF (or SVD) cannot be directly used with databases
including missing values. The missing values must be re- Fig. 1. Global methodology summarized.

placed by some initial values in order to use the EOF. This
replacement can be for example the mean value of the whole
data matrixX or the mean in one direction, row wise or Forthe SOM we must select the optimal grid sizand for
column wise. The latter approach is more logical when thithe EOF the optimal number of singular values and vectors
data matrix has some temporal or spatial structure in itgto be used. This is done using validation, using the same
columns or rows. validation set for all combinations of the parameterand
After the initial value replacement the EOF process beging Finally, the combination of SOM and EOF that gives the
by performing the SVD and the selectedsingular values smallest validation error is used to perform the final filling
and vectors are used to build the reconstruction. In order nof the data.
to lose any information, only the missing values af are Even the SOM as well as the EOF are able to fill the
replaced with the values from the reconstruction. After thenissing values alone, the experimental results demoastrat
replacement, the new data matrix is again broken down that together the accuracy is better. The fact that thesakwo
singular values and vectors with the SVD and reconstructegbrithms suit well together is not surprising. Two appreech
again. The procedure is repeated until convergence ariterican be considered to understand the complementarity of the

is fulfilled. algorithms.
The procedure is summarized in Table II. Firstly, the SOM algorithm allows nonlinear projection.
In this sense, even for dataset with complex and nonlinear
TABLE Il structure, the SOM code vectors will succeed to capture
SUMMARY OF THE EOFMETHOD FOR FINDING MISSING VALUES the nonlinear characteristics of the inputs. However, the

— - - — — projection is done on a low-dimensional grid (in our case
1) :jm:lal vatlgf)s( are substituted into missing values of thigioal two-dimensional) with the possibility of losing the intsic
2) Firae'§§£ from 1 to K information of the data.

a) SVD algorithm calculateg singular values and eigenvectors The EOF method is based on a linear transformation using

b) A number of values and vectors are used to make| thethe Singular Value Decomposition. Because of the linearity

reconstruction . . . .
c) The missing values from the original data are filled with|the of the EOF approach, it will fail to re.ﬂe(?t the nonlinear
values from the reconstruction structures of the dataset, but the projection space can be

d) If the convergence criterion is fulfilled, the validatienror as high as the dimension of the input data and remain
is calculated and saved and the nextalue is taken under

! . i . continuous.
inspection. If not, then we continue from step a) with the ) . .
sameq value There is a toolbox for performing the SOM+EOF in [11].
3) The g with the smallest validation error is selected and used to
VI. EXPERIMENTAL RESULTS

reconstruct the final filling of the missing values 3

This paper presents the application of the SOM+EOF
method to two time series prediction benchmarks; The

V. GLOBAL METHODOLOGY ESTSP2007 competition dataset and the NN3 competition.

The two methodologies presented in the previous two sef. ESTSP2007 competition
tions are combined and the global methodology is presented.This time series prediction benchmark includes a total of
The SOM algorithm for missing values is first ran througt875 values from an unknown origin. The dataset is shown
performing a nonlinear projection for finding the missingn Figure 2. More information and the dataset can be found
values. Then, the result of the SOM estimation is used d&om the ESTSP2007 conference website [5].
initialization for the EOF method. The global methodology For the model selection purposes the dataset is divided into
is summarized in Figure 1. two sets, learning and validation set. The learning setistins



strong noise influence in the singular values after the third
one, where the validation error is increasing rapidly.

For the SOM+EOF method the two separate methods
are combined and the validation is performed for each
combination of the SOM sizes and the number of EOF. The
validation errors are shown in Figure 5 and 6.
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Fig. 2. ESTSP 2007 Competition dataset. !
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of 465 first values and the rest belongs to the validation s€ 024

The optimal regressor size is set to 11 after many trial ar

error experiments. 023 4 6 8 10 12 14 16 18 2
The optimal SOM size is selected using a simple validation SOM size

procedure, where the SOM learning is performed using onfg. 5. Minimum validation errors with respect to the SOM siing the

the learning set and the validation set is used to tune the SO3M+EOF method.

size for one step ahead prediction. The validation errags ar

shown in Figure 3.
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Fig. 3. Validation errors with respect to the SOM grid size.

From Figure 5 the optimal SOM is selected to bex15

From Figure 3 the optimal SOM size is selected to«13  and from Figure 6 the optimal number of EOF to 4 with the
with validation error of 0,297. There is only very smallvalidation error of 0,233.
difference in the validation error with larger SOM sizes. For one step ahead prediction the regressor size is selected

The only parameter of the EOF method is tuned using the 11, but for the 50 steps ahead the regressor size is
same learning and validation sets than with the SOM to géicreased to 60 in order to fit the missing values to the
comparable results. Also the regressor size is kept the samegressor.
than with the SOM and the optimization is done for one step Our experiments with several other datasets have shown
ahead prediction. The validation errors are shown in Figut@at the EOF method uses larger number of EOF when the
4, regressor size is increased. Therefore, the final predidsio
done using the number of EOF fixed to 8. The prediction of
the 50 timesteps is shown in Figure 7.

From the Figure 7 it seems that that the prediction has
removed the noise and is predicting the next peak of the
time series quite well.

B. NN3 Competition

The NN3 competition consists of 11 different time series
with variable lengths ranging from 126 values to 115 values.
1 2 3 4 S umbe of EOF 8 9 10 1 |n this paper, the results with two time series are presented
namely with the3"® and the 4" time series, shown in
Fig. 4. Validation errors with respect to the number of EOF. Figures 8 and 9 respectively. For more information about
the competition visit [6].
From Figure 4 the optimal number of EOF is selected to 2 Because the EOF method was not as good as the SOM
with validation error of 0,451. The result suggests reldtiv and SOM+EOF, we use only the two latter ones with the
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Fig. 7. Prediction of 50 next values of the competition data®ke real Fig. 10. Validation errors of the"d time series. Solid line represents the
values are presented by the solid line and the dashed onenpsethe SOM and the dashed one the SOM+EOF.
prediction.
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Fig. 8. NN3 Competition dataset;¢ time series.

From Figure 11 we can clearly see, that the second last
singular value contains more noise than any other values Thi
must be taken into account when selecting the parameters for
the final prediction.

Because the regressor size must be increased to 33 from
the initial 15 in order to fit the 18 missing values in
the regressor, the number of EOF must also be increased.

Therefore, taking into account the previous findings, the
10 20 30 40 50 80 70 80 90 100 110 number of EOF to be used in the final prediction is fixed
Time to 17.
Fig. 9. NN3 Competition dataset!” time series. The final prediction using the SOM+EOF method is shown
in Figure 12.
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NN3 competition time series. Also, due to the scale of th~
series, the normalized MSE is used in the validation errc
graphs. Finally, we use 10-fold Cross-Validation inste&d ¢
simple validation in order to stabilize the parameter galac
results. Otherwise, the procedure follows the one desgribi
in previous section.

1) Time Series 3: The results for theg™ time series are

presented in the following. In Figure 10 the 10-fold Cross -2, = o 150

x 10

©
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Validation NMSE for the SOM and the SOM+EOF methoc Time
are presented. The used regressor size is 15, which isestlect
empirically using trial and error. Fig. 12. Prediction of th&"? time series. Solid line represents the known

From Figure 10 the smallest normalized validation errotime series and the dashed one the prediction using the SOR-+&&hod.
is 0.27 and it is achieved with SOM siz&x 8 with both
methods. In this case, the selected number of EOF is the2) Time Series 4: The results for thel*” time series are
maximum 15. The validation NMSE is also the same thapresented in the following. In Figure 13 the 10-fold Cross-
with the SOM. Validation errors with the SOM and the SOM+EOF are
Figure 11 shows the EOF validation errors using SOMresented. The regressor size is set to 13 after trial and err
grid size8 x 8. experiments.



For the EOF, the advantages include high-dimensional
linear projection of high-dimensional data and the speetl an
the simplicity of the method.

The SOM+EOF includes the advantages of both indi-
vidual methods, leading to a new accurate approximation
methodology for the missing future values of a time series.
The performance obtained show the accuracy of the new
methodology.

It is also evident that the EOF is greatly dependent from
good initialization in order to produce accurate resulise T
Fig. 13. Validation errors of that” time series. Solid line represents the SOM gives good initialization even the method alone is not
SOM and the dashed one the SOM+EOF. so0 accurate. The two methods complete each other and work
well together.

From Figure 13 the SOM size with lowest validation error For further work, the modifications and perforr_nance up-
is 8 x 8 for the SOM method andl x 11 for the SOM+EOF grades for the global methodology are investigated and
. " ~applied to other types of datasets from other fields of seienc
The NMSE for the SOM is 0.21 and for the SQMfEOF 0.20for example climatology and finance.
The number of EOF for the selected SOM size is 5.
For the prediction, the regressor size is increased to 31 ACKNOWLEDGMENT
I[]om the initial 13 in order to fit the 18 missing values in  part the work of A. Sorjamaa, E. Liitiainen and A.
e regressor.

8 10
SOM Grid Size

Lendasse is supported by the project of New Information

~ Similarly than before, the number of EOF must also bgyqcessing Principles, 44886, of the Academy of Finland.
increased. The final number of EOF is fixed to 8

prediction of 18 timesteps is shown in Figure 14.

- Therhe work of A. Lendasse is supported in part by the IST
Programme of the European Community, under the PASCAL
Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

. REFERENCES
h [1] T. Kohonen,Sdlf-Organizing Maps.  Springer-Verlag, Berlin, 1995.
| [2] S. Wang, “Application of self-organising maps for data g with
k incomplete data setsNeural Computing and Applications, vol. 12,
no. 1, pp. 42-48, 2003.
1 [3] R. PreisendorferPrincipal Component Analysis in Meteorology and
Oceanography. Elsevier, 1988.
[4] J. Boyd, E. Kennelly, and P. Pistek, “Estimation of eof ampion
coefficients from incomplete datalDeep Sea Research.
[5] ESTSP2007 Conference: http://www.estsp2007.0rg.

Fig. 14. Prediction of the*” time series. Solid line represents the known (6]
time series and the dashed one the prediction. 7]

VII. CONCLUSION [8]

In this paper, we have presented a new methodology for
finding missing values in temporal database. The methodg
ology combines Self-Organizing Maps (SOM) and Empiri{10]
cal Orthogonal Functions (EOF) efficiently and the global
methodology (SOM+EOF) is used to find the future values
of a time series. [11]

The advantages of the SOM include the ability to per-
form nonlinear projection of high-dimensional data to lowe
dimension with interpolation between discrete data points

NN3 Competition:
http://www.neural-forecasting-competition.com/indemh

A. Sorjamaa and A. Lendasse, “Time series prediction usiingec
strategy.” European Symposium on Artificial Neural Networks
ESANN 2006, Bruges (Belgium), 26-28 April, 2006, pp. 143-148
M. Cottrell and P. Letemy, “Missing values: Processing with the
kohonen algorithm.” Applied Stochastic Models and Data Asial
Brest, France, 17-20 May, 2005, pp. 489-496.

SOM Toolbox: http://www.cis.hut.fi/projects/somtoobk’.

A. Lendasse, V. Wertz, and M. Verleysen, “Model selectwith cross-
validations and bootstraps - application to time seriesiptied with
rbfn models,” inLNCS, no. 2714, ICANN/ICONIP (2003). Berlin:
Springer-Verlag, 2003, pp. 573-580.

SOM+EOF Toolbox: http://www.cis.hut.fi/projectgii®page=Downloads.



