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Abstract. In this paper, variable selection and variable scaling are
used in order to select the best regressor for the problem of time series
prediction. Direct prediction methodology is used instead of the classic
recursive methodology. Least Squares Support Vector Machines (LS-SVM)
are used in order to avoid local minimal in the training phase of the model.
The global methodology is applied to the time series competition dataset.

1 Introduction

Time series forecasting is a challenge in many fields. In finance, experts fore-
cast stock exchange courses or stock market indices; data processing specialists
forecast the flow of information on their networks; producers of electricity fore-
cast the load of the following day. The common point to their problems is the
following: how can one analyse and use the past to predict the future?

Many techniques exist for the approximation of the underlying process of a
time series: linear methods such as ARX, ARMA, etc. [1], and nonlinear ones
such as artificial neural networks [2]. In general, these methods try to build a
model of the process. The model is then used on the last values of the series
to predict the future values. The common difficulty to all the methods is the
determination of sufficient and necessary information for an accurate prediction.

A new challenge in the field of time series prediction is the Long-Term Predic-
tion: several steps ahead have to be predicted. Long-Term Prediction has to face
growing uncertainties arising from various sources, for instance, accumulation of
errors and the lack of information [2].

In this paper, a global methodology to perform direct prediction is presented.
It includes variable selection and variable scaling. The variable selection criterion
is based on a Nonparametric Noise Estimation (NNE) performed by Delta Test.

In this paper, Least Squares Support Vector Machines (LS-SVM) are used
as nonlinear models in order to avoid local minima problems [3].

Section 2 presents the prediction strategy for the Long-Term Prediction of
Time Series. In Section 3 Delta Test is introduced. Section 4 introduces the
variable selection and scaling selection. The prediction model LS-SVM is briefly
summarized in Section 5 and experimental results are shown in Section 6 using
the competition dataset.
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2 Time Series Prediction

The time series prediction problem is the prediction of future values based on
the previous values and the current value of the time series (see Equation 1).
The previous values and the current value of the time series are used as inputs
for the prediction model. One-step ahead prediction is needed in general and
is referred to as Short-Term Prediction. But when multi-step ahead predictions
are needed, it is called a Long-Term Prediction problem.

Unlike the Short-Term time series prediction, the Long-Term Prediction is
typically faced with growing uncertainties arising from various sources. For
instance, the accumulation of errors and the lack of information make the pre-
diction more difficult. In Long-Term Prediction, performing multiple step ahead
prediction, there are several alternatives to build models. In the following sec-
tions, two variants of prediction strategies are introduced and compared: the
Direct and the Recursive Prediction Strategies.

2.1 Recursive Prediction Strategy

To predict several steps ahead values of a time series, Recursive Strategy seems to
be the most intuitive and simple method. It uses the predicted values as known
data to predict the next ones. In more detail, the model can be constructed by
first making one-step ahead prediction:

ŷt+1 = f1(yt, yt−1, ..., yt−M+1), (1)

where M denotes the number inputs. The regressor of the model is defined
as the vector of inputs: yt, yt−1, ..., yt−M+1. It is possible to use also exogenous
variables as inputs in the regressor, but they are not considered here in order to
simplify the notation. Nevertheless, the presented global methodology can also
be used with exogenous variables.

To predict the next value, the same model is used:

ŷt+2 = f1(ŷt+1, yt, yt−1, ..., yt−M+2). (2)

In Equation 2, the predicted value of ŷt+1 is used instead of the true value,
which is unknown. Then, for the H-steps ahead prediction, ŷt+2 to ŷt+H are
predicted iteratively. So, when the regressor length M is larger than H , there
are M − H real data in the regressor to predict the Hth step. But when H
exceeds M , all the inputs are the predicted values. The use of the predicted
values as inputs deteriorates the accuracy of the prediction.

2.2 Direct Prediction Strategy

Another strategy for the Long-Term Prediction is the Direct Strategy. For the
H-steps ahead prediction, the model is

ŷt+h = fh(yt, yt−1, ..., yt−M+1) with 1 ≤ h ≤ H. (3)



This strategy estimates H direct models between the regressor (which does
not contain any predicted values) and the H outputs. The errors in the predicted
values are not accumulated in the next prediction. When all the values, from
ŷt+1 to ŷt+H , need to be predicted, H different models must be built. The direct
strategy increases the complexity of the prediction, but more accurate results
are achieved.

3 Nonparametric Noise Estimator using the Delta Test

Delta Test (DT) is a technique for estimating the variance of the noise, or the
mean square error (MSE), that can be achieved without overfitting [4]. The
evaluation of the NNE is done using the DT estimation introduced by Stefansson
in [5].

Given N input-output pairs: (xi, yi) ∈ R
M × R, the relationship between xi

and yi can be expressed as:

yi = f(xi) + ri, (4)

where f is the unknown function and r is the noise. The Delta Test estimates
the variance of the noise r.

The DT is useful for evaluating the nonlinear correlation between two random
variables, namely, input and output pairs. The DT has been introduced for
model selection but also for variable selection: the set of inputs that minimizes
the DT is the one that is selected. Indeed, according to the GT, the selected
set of variables is the one that represents the relationship between variables and
output in the most deterministic way.

DT is based on hypotheses coming from the continuity of the regression
function. If two points x and x′ are close in the input space, the continuity of
regression function implies the outputs f(x) and f(x′) will be close enough in
the output space. Alternatively, if the corresponding output values are not close
in the output space, this is due to the influence of the noise.

Let us denote the first nearest neighbor of the point xi in the set {x1, . . . , xN}
by xNN . Then the delta test, δ is defined as:

δ =
1

2N

N∑

i=1

∣∣yNN(i) − yi

∣∣2 , (5)

where yNN(i) is the output of xNN(i). For the proof of the convergence of
the Delta Test, see [4].

4 Variable and Scaling Selection

Variable scaling is a usual preprocessing step in both function approximation
and time series analysis. In scaling, weights are used to reflect the relevance
of the input variables to the output to be estimated. That is, scaling seeks



for redundant inputs and assigns them low weights to reduce the corresponding
influence on the learning process. In such a context, it is clear that variable
selection is a particular case of scaling: by weighting irrelevant variables by
zero we are, indeed, enforcing selection. For the sake of brevity, only the main
concepts referring to the regression problem are presented here. Nevertheless,
the extension to time series analysis is trivial.

4.1 Scaling the Input Space with Mahalanobis Matrices

The Mahalanobis distance dM (xi, xj) of two d-dimensional observations xi, xj

is a proximity (or ’similarity’) measure defined on the dependencies between
the embedding dimensions. Formally, dM (xi, xj) extends the traditional Euclid-
ean distance d(xi, xj) = [(xi − xj)T (xi − xj)]1/2 transforming the observations
subspace by means of a (d × d) full-rank matrix M :

d(xi, xj) = [(xi − xj)T M(xi − xj)]1/2, (6)

From the previous equation, it is evident that: i) if M = I then the original
Euclidean metric is retained, and ii) if M is a (d × d) diagonal matrix then the
original space is simply rescaled according to the diagonal elements. Matrix
M is also symmetric and semi-definite positive, by definition. Moreover, the
Mahalanobis matrix M can be factorized as:

M = ST S, (7)

with a matrix S that can linearly map the observations into the subspace
spanned by the eigenvectors of the transformation. The learned metric in the
projection subspace is still the Euclidean distance, that is:

d(xi, xj) = [(xi − xj)T M(xi − xj)]1/2 = [(Sxi − Sxj)T (Sxi − Sxj)]1/2, (8)

where, by restricting S to be a non-square (s ∗ d, with s < d) matrix, the
transformation performs both a reduction of the dimensionality and the scaling
of the original input subspace. The resulting subspace has an induced global
metric of lower rank suitable for reducing the ’curse of dimensionality’.

In this paper, we use a diagonal matrix M that is optimized in order to
minimize the delta test estimation in the scaled space define by S. Details
about the optimization method are given the the experiments section.

5 Nonlinear Models

In this paper, Least Squares Support Vector Machines (LS-SVM) are used as
nonlinear models [3], which are defined in their primal weight space by [6, 7]

ŷ = ωT ϕ(x) + b, (9)



where ϕ(x) is a function, which maps the input space into a higher-dimensional
feature space, x is the vector of inputs. ω and b are the parameters of the model.
The optimization problem can be formulated as

minω,b,e J(ω, e) = 1
2ωT ω + γ1

2

∑N
i=1 e2

i , (10)
subject to yi = ωT ϕ(xi) + b + ei, i = 1, ..., N, (11)

and the solution is

h(x) =
N∑

i=1

αiK(x,xi) + b. (12)

In the above equations, i refers to the index of a sample and K(x,xi) is
the kernel function defined as the dot product between the ϕ(x)T and ϕ(x).
Training methods for the estimation of the ω and b parameters can be found in
[6].

6 Experimental Results

In this paper, the ESTSP2007 competition dataset is used as an example. It
includes a total of 875 values. The dataset is shown in Figure 1.
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Fig. 1: Competition dataset.

In order to test the methodology, the dataset is divided into two sets, a small
learning set and the global learning set. The small learning set consists of 465
first values and the global learning set consists in the 875 values. The regressor
size is set to 10 after many trial and error experiments. The small learning set
is used in order to evaluate the performances of the methodology.

The variable scaling is selected in order to minimize the Delta Test estima-
tion. Because the DT is not continuous with respect to the scaling factors, a



forward-backward optimization is used. The variable scaling coefficients are se-
lected between a set of discrete values: [0 0.1 0.2 ... 0.9 1]. This discretization
provides satisfactory results and reduces computational time.

The variable scaling is performed for each of the 50 prediction models from
equation 3 used in direct prediction methodology. The estimation of the NNE
(using Delta Test) are shown in Figure 2.

0 10 20 30 40 50
0

1

2

3

Prediction Horizon

N
N

E
 (

D
el

ta
 T

es
t)

Fig. 2: Estimation of the NNE (using Delta Test) with respect to the horizon of
prediction.

The result of the 50 step-ahead prediction is represented in figure 3.
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Fig. 3: Comparison between the time series (solid line) and the prediction
(dashed line)

Then, the same methodology is used with the global learning set in order to
predict the competition values. The estimation of the NNE (using Delta Test)
are shown in Figure 4.

The result of the 50 step-ahead prediction is represented in figure 5.
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Fig. 4: Estimation of the NNE (using Delta Test) with respect to the horizon of
prediction.
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Fig. 5: Prediction of 50 next values of the competition dataset. The real values
are presented by the solid line and the dashed one presents the prediction.

7 Conclusion

In this paper, we have presented a methodology for the longterm prediction of
time series.

This methodology uses direct prediction methodology. This increases the
computational time but improves the quality of the results.

In order to perform the variable scaling, Delta Test estimation is used. The
scaling that minimized the NNE is selected. To reduce the computational time,
a discrete scaling is used and a forward-backward optimization is selected.

Further research will be done to improve the minimization of the NNE estima-
tion. Other experiments will be performed in the fields of time series prediction
and function approximation.
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