
A Nonlinear Approach for the Determination
of Missing Values in Temporal Databases

Antti Sorjamaa1, Paul Merlin2, Bertrand Maillet2 and Amaury Lendasse1

1- Helsinki University of Technology
Laboratory of Computer and Information Science
P.O. Box 5400, 02015 HUT - Finland

2- A.A.Advisors-QCG (ABN AMRO),
Variances and Paris-1 UniversityPSE/CNRS
106 bv de l’hôpital F-75647 Paris cedex 13 - France

RÉSUMÉ.L’existence de valeurs manquantes dans les séries temporelles est un problème ré-
current lors de l’utilisation de modèles financiers. En effet, de tels modèlesrequièrent que les
bases soient cylindrées et complètes. De plus, de nombreuses basesde données financières
contiennent des valeurs manquantes. Ce papier présente une nouvelletechnique pour le re-
couvrement des valeurs manquantes. Cette méthode utilise deux techniques de projection : une
non-linéaire (Cartes de Kohonen) et une linéaire (Fonction OrthogonaleEmpirique). La métho-
dologie globale présentée combine les avantages des deux méthodes pour obtenir des candidats
aux valeurs manquantes. La méthode est appliquée à deux bases de données financières.

ABSTRACT.The presence of missing data in the underlying time series is a recurrent problem
for market models. Such models make it necessary to deal with cylindrical and complete sam-
ples. Moreover, many financial databases contain missing values. Thispaper presents a new
method for the missing values recovery. The new method is based on two projection methods:
a nonlinear one (Self-Organizing Maps) and a linear one (Empirical Orthogonal Functions).
The presented global methodology combines the advantages of both methods to get accurate
approximations for the missing values. The methods are applied to two financial datasets.

MOTS-CLÉS :Valeurs manquantes, Cartes de Kohonen, SOM, Fonctions orthogonales empiriques,
EOF.
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1. Introduction

Academics as well as practitioners often face the problem ofmissing data in finan-
cial timeseries. Non-quotation date, too recent inceptiondate, intention not to report
a bad performance or mistake of data provider are some of the reasons why missing
values occur recurrently in financial databases. Moreover,in order to achieve good per-
formance, most financial models need complete and cylindrical samples. Thus, most
of the time, imputation methods have to be applied before running the model.

A number of methods have been developed to solve the problem and fill the mis-
sing values, both commercial and academical. The methods inboth sectors can be
classified into two distinct categories : deterministic methods and stochastic methods.

Self-Organizing Maps [KOH 95] (SOM) aim to ideally group homogeneous indi-
viduals, highlighting a neighborhood structure between classes in a chosen lattice. The
SOM algorithm is based on unsupervised learning principle where the training is en-
tirely stochastic, data-driven. No information about the input data is required. Recent
approaches propose to take advantage of the homogeneity of the underlying classes for
data completion purposes [WAN 03]. Furthermore, the SOM algorithm allows projec-
tion of high-dimensional data to a low-dimensional grid. Through this projection and
focusing on its property of topology preservation, SOM allows nonlinear interpolation
for missing values.

Empirical Orthogonal Functions (EOF) [PRE 88] are deterministic models, en-
abling linear projection to high-dimensional space. They have also been used to deve-
lop models for finding missing data [BOY 94]. Moreover, EOF models allow conti-
nuous interpolation of missing values, but are sensitive tothe initialization.

This paper describes a new method, which combines the advantages of both the
SOM and the EOF. The nonlinearity property of the SOM is used as a denoising
tool and then continuity property of the EOF method is used torecover missing data
efficiently.

The SOM is presented in Section 2, the EOF in Section 3 and the global methodo-
logy SOM+EOF in Section 4. Section 5 presents the experimental results using two
financial datasets.

2. Self-Organizing Map

The SOM algorithm is based on an unsupervised learning principle, where trai-
ning is entirely data-driven and no information about the input data is required [KOH
95]. Here we use a 2-dimensional network, compound inc units (or code vectors)
shaped as a squarelattice. Each unit of a network has as many weights as the length
T of the learning data samples,xn, n = 1, 2, ..., N . All units of a network can be
collected to a weight matrixm (t) = [m1 (t) ,m2 (t) , ...,mc (t)] wheremi (t) is
theT -dimensional weight vector of the uniti at timet andt represents the steps of
the learning process. Each unit is connected to its neighboring units through neighbo-
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rhood functionλ(mi,mj , t), which defines the shape and the size of the neighborhood
at timet. Neighborhood can be constant through the entire learning process or it can
change in the course of learning.

Learning starts by initializing the network node weights randomly. Then, for ran-
domly selected samplext+1, we calculate a Best Matching Unit (BMU), which is the
neuron whose weights are closest to the sample. BMU calculation is defined as

mBMU(xt+1) = arg min
mi,i∈I

{‖xt+1 − mi (t)‖} , (1)

whereI = [1, 2, ..., c] is the set of network node indices,BMU denotes the index of
the best matching node and‖.‖ is standard Euclidean norm.

If the randomly selected sample includes missing values, the BMU cannot be sol-
ved outright. Instead, an adapted SOM algorithm, proposed by Cottrell and Letrémy
[COT 05], is used. The randomly drawn samplext+1 having missing value(s) is split
into two subsetsxT

t+1 = NMxt+1
∪ Mxt+1

, whereNMxt+1
is the subset where the

values ofxt+1 are not missing andMxt+1
is the subset where the values ofxt+1 are

missing. We define a norm on the subsetNMxt+1
as

‖xt+1 − mi (t)‖NMxt+1

=
∑

k∈NMxt+1

(xt+1,k − mi,k(t))
2
, (2)

wherext+1,k for k = [1, ..., T ] denotes thekth value of the chosen vector andmi,k(t)
for k = [1, ..., T ] and fori = [1, ..., c] is thekth value of theith code vector.

Then the BMU is calculated with

mBMU(xt+1) = arg min
mi,i∈I

{

‖xt+1 − mi (t)‖NMxt+1

}

. (3)

When the BMU is found the network weights are updated as

mi (t + 1) = mi (t) − ε(t)λ
(

mBMU(xt+1),mi, t
)

[mi (t) − xt+1] ,∀i ∈ I, (4)

whereε(t) is the adaptation gain parameter, which is]0, 1[-valued, decreasing gra-
dually with time. The number of neurons taken into account during the weight update
depends on the neighborhood functionλ(mi,mj , t). The number of neurons, which
need the weight update, usually decreases with time.

After the weight update the next sample is randomly drawn from the data matrix
and the procedure started again by finding the BMU of the sample. The recursive
learning procedure is stopped when the SOM algorithm has converged.

Once the SOM algorithm has converged, we obtain some clusters containing our
data. Cottrell and Letrémy proposed to fill the missing values of the dataset by the
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coordinates of the code vectors of each BMU as natural first candidates for missing
value completion :

π(Mx) (x) = π(Mx)

(

mBMU(x)

)

, (5)

whereπ(Mx) (.) replaces the missing valuesMx of samplex with the corresponding
values of the BMU of the sample. The replacement is done for every data sample and
then the SOM has finished filling the missing values in the data.

The procedure is summarized in Table 1. There is a toolbox available for perfor-
ming the SOM algorithm in [URL 01].

Tableau 1. Summary of the SOM algorithm for finding the missing values.

1 SOM node weights are initialized randomly

2 SOM learning process begins

3 Inputx is drawn from the learning data setX

3.1 If x does not contain missing values, BMU is found according to
Equation 1

3.2 If x contains missing values, BMU is found according to Equation3

4- Once the learning process is done, for each observation containing missing
values, the weights of the BMU of the observation are substituted for
missing values

3. Empirical Orthogonal Functions

This section presents Empirical Orthogonal Functions (EOF) [PRE 88]. In this
paper, EOF are used as a denoising tool and for finding the missing values at the same
time [BOY 94].

The EOF are calculated using standard and well-known Singular Value Decompo-
sition (SVD)

X = UDV
∗ =

K
∑

k=1

ρkukvk, (6)

whereX is 2-dimensional data matrix,U andV are collections of singular vectorsu
andv in each dimension respectively,D is a diagonal matrix with the singular values
ρ in its diagonal andK is the smaller dimension ofX (or the number of nonzero
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singular values ifX is not full rank). The singular values and the respective vectors
are sorted to decreasing order.

When EOF are used to denoise the data, not all singular values and vectors are used
to reconstruct the data matrix. Instead, it is assumed that the vectors corresponding
to larger singular values contain more data with respect to the noise than the ones
corresponding to smaller values [PRE 88]. Therefore, it is logical to selectq largest
singular values and the corresponding vectors and reconstruct the denoised data matrix
using only them.

In the case whereq < K, the reconstructed data matrix is obviously not the same
than the original one. The largerq is selected, the more original data, which also
includes more noise, is preserved. The optimalq is selected using validation methods,
for example [LEN 03].

EOF (or SVD) cannot be directly used with databases including missing values.
The missing values must be replaced by some initial values inorder to use the EOF.
This replacement can be for example the mean value of the whole data matrixX or the
mean in one direction, row wise or column wise. The latter approach is more logical
when the data matrix has some temporal or spatial structure in its columns or rows.

After the initial value replacement the EOF process begins by performing the SVD
and the selectedq singular values and vectors are used to build the reconstruction. In
order not to loseany information, only the missing values ofX are replaced with the
values from the reconstruction. After the replacement, thenew data matrix is again
broken down to singular values and vectors with the SVD and reconstructed again.
The procedure is repeated until convergence criterion is fulfilled.

The procedure is summarized in Table 2.

Tableau 2. Summary of the EOF method for finding missing values.

1 Initial values are substituted into missing values of the original data matrixX

2 For eachq from 1 toK
2.1 SVD algorithm calculatesq singular values and eigenvectors
2.2 A number of values and vectors are used to make the reconstruction
2.3 The missing values from the original data are filled with the values from

the reconstruction
2.4 If the convergence criterion is fulfilled, the validation error is calculated

and saved and the nextq value is taken under inspection. If not,
then we continue from step 2.1 with the sameq value

3 Theq with the smallest validation error is selected and used to reconstruct
the final filling of the missing values inX
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4. Global Methodology

The two methodologies presented in the previous two sections are combined and
the global methodology is presented. The SOM algorithm for missing values is first
ran through performing a nonlinear projection for finding the missing values. Then,
the result of the SOM estimation is used as initialization for the EOF method. The
global methodology is summarized in Table 1.

Dataset with
Missing
Values

-

SOM
Nonlinear,
discrete,

low-dimensional
projection

-

EOF
Linear,

continuous,
high-dimensional

projection

-

Completed
Data

Sample

Figure 1. Global methodology, the SOM+EOF, summarized.

For the SOM we must select the optimal grid sizec and for the EOF the optimal
number of singular values and vectorsq to be used. This is done using validation,
using the same validation set for all combinations of the parametersc andq. Finally,
the combination of SOM and EOF that gives the smallest validation error is used to
perform the final filling of the data.

Even the SOM as well as the EOF are able to fill the missing values alone, the ex-
perimental results demonstrate that together the accuracyis better. The fact that these
two algorithms suit well together is not surprising. Two approaches can be considered
to understand the complementarity of the algorithms.

Firstly, the SOM algorithm allows nonlinear projection. Inthis sense, even for
dataset with complex and nonlinear structure, the SOM code vectors will succeed to
capture the nonlinear characteristics of the inputs. However, the projection is done on
a low-dimensional grid (in our case two-dimensional) with the possibility of losing
the intrinsic information of the data.

The EOF method is based on a linear transformation using the Singular Value
Decomposition. Because of the linearity of the EOF approach, it will fail to reflect
the nonlinear structures of the dataset, but the projectionspace can be as high as the
dimension of the input data and remain continuous.

There is a toolbox for performing the SOM+EOF in [URL 02].

5. Experimental Results

To illustrate the accuracy of the presented methodology, werun several experi-
ments on two financial return databases. The first one recovers the missing values
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when they are missing at random and the second experiment hasmissing values only
at the beginnings of several timeseries.

5.1. North American Fund Returns

For the first experiment, we use a dataset of North American fund returns1 com-
posed with 679 funds on a 4-year period of 219 weekly values, which give a total of
148 701 values. Then, in the definition of the datasetX, the size of the dimensions is
T × N which is equal to 219×679.

The fund return correspond to the yield of asset values between two consecutive
dates as

rt =
vt+1

vt

− 1, (7)

wherevt is the value of the considered asset at timet.

There are no missing values contained in the original database. Figure 2 shows 10

rescaled fund values
(

v
′

t = 100
∏t

i=1 (1 + rt)
)

. The fund values are correlated time

series including first order trends.
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Figure 2. Rescaled asset values of 10 funds present in the database.Source : Lipper ; North
American Fund Weekly Return from 28/12/2001 to 03/03/2006. Computation from the Authors.

Before running any experiments, we randomly remove for testing purposes 7.5
percent of the data, which corresponds to 11 152 missing values. For each validation
set, the same amount of data is removed from the dataset. Therefore, for the model
selection and learning we have a database with a total of 15 percent of missing values.

1. Data provided by Lipper, A Reuters Company.
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We use Monte Carlo Cross-Validation method with 10 folds to select the optimal
parameters for the SOM, the EOF and the SOM+EOF. The 10 selected validation sets
are the same for each method and the validation results are presented in the following.

5.1.1. SOM

Focusing on the topology preservation property of the SOM algorithm, we project
our data on a large sized map. For each grid size, we compute the Root Mean Square
Errors (RMSE) of the reconstruction on all validation sets.Then the grid size giving
the smallest validation error is selected and the corresponding grid size is used to make
the final filling. The validation errors are shown in Figure 3.

5 10 15 20 25 30 35 40 45 50
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11
x 10

−3

SOM Grid Size

R
M

S
E

Figure 3. Validation errors with respect to square number of grid sizeusing the SOM
method.Source : Lipper ; North American Fund Weekly Return from 28/12/2001 to03/03/2006. Computation from the
Authors.

The optimal size of the SOM grid is found to be 26×26, which is a total of 676
units, see Figure 3. Therefore, we have more code vectors in the SOM than observa-
tions (629). It means that we have a nonlinear interpolationbetween the observations
and better approximation of the missing values.

Once the optimal grid size is found, we apply the SOM algorithm and fill in all the
missing values. Now we have only 7.5 percent of the data missing due to the removed
test set. The test and validation errors are summarized in the end of the section, in
Table 3.

5.1.2. EOF

The validation errors with respect toq for the EOF method are shown in Figures 4
and 5. In this case, when the EOF is used alone, the missing values are initialized using
the column mean of the dataset calculated with only known values of each column.

From the Figure 5 the smallest error is achieved withq equal to 6. This number
of EOF is relatively small compared to the maximum of 219 EOF.It suggests quite
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Figure 4. Validation errors with respect to the number of EOF with the plain column
mean initialization.Source : Lipper ; North American Fund Weekly Return from 28/12/2001 to03/03/2006. Com-
putation from the Authors.
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Figure 5. EOF validation errors zoomed.Source : Lipper ; North American Fund Weekly Return from
28/12/2001 to 03/03/2006. Computation from the Authors.

strong noise influence in the data and that there is only a small number of efficient
EOF needed to represent the denoised data.

5.1.3. SOM+EOF

In our experiments, we have seen that it is not enough to select the SOM grid
size and the number of EOF separately. Instead, both parameters must be optimized
together, simultaneously. Even though this increases the computational load, it gives
more accurate results.
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In Figures 6 and 7 the validation RMSEs are presented. The first figure shows the
minimum EOF errors with respect to the SOM grid size and the latter figure the EOF
errors with the selected SOM grid size.
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Figure 6. Validation errors with respect to the SOM grid size using theSOM+EOF.
Source : Lipper ; North American Fund Weekly Return from 28/12/2001 to03/03/2006. Computation from the Authors.
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Figure 7. Validation errors with respect to the number of EOF with the SOM grid size
18×18. Source : Lipper ; North American Fund Weekly Return from 28/12/2001 to03/03/2006. Computation from the
Authors.

From the Figures 6 and 7 the smallest error is achieved with the SOM grid size
equal to 18×18 and the number of EOFq equal to 40.

The number of selected EOF is larger with SOM initializationthan with the co-
lumn mean initialization. It suggests there are more efficient EOF to use in the ap-
proximation of the missing values than with the plain columnmean initialization and
that the SOM has already denoised the data.
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The SOM size is decreased when compared to the SOM method alone. It suggests
that the nonlinear interpolation is not as crucial than using the SOM alone, but instead
the denoising property is enhanced by limiting the number ofSOM nodes.

It is also evident that the individual optimization of the parameters is not guaran-
teeing appropriate performance, which can be seen from totally different selections of
parameters when using the SOM+EOF than the methods individually.

Table 3 summarizes the errors of the SOM, the EOF and the the SOM+EOF me-
thods.

Tableau 3. Validation and Test RMS Errors for SOM, EOF and their combination.
Source : Lipper ; North American Fund Weekly Return from 28/12/2001 to03/03/2006. Computation from the Authors.

10−3 Validation Error Test Error
EOF 8.13 7.83
SOM 7.67 7.33
SOM+EOF 6.82 6.59

From the Table 3, we can see that the SOM+EOF outperforms the EOF reducing
the validation and test errors by 16 percent and the SOM errors more than 10 percent.

5.1.4. More Missing Values

In order to test the robustness of the SOM+EOF method, we experiment the effect
of increasing the percentage of missing values in the database.

Before selecting the test or the validation sets, we randomly remove 33 percent
of the data. Then the same procedure as before is performed byfirst removing 7.5
percent of the remaining data for the test set and then for each validation set another
7.5 percent.

Finally, the total amount of missing data in the learning phase is around 42 percent,
which makes the missing value problem considerably harder than in the previous ex-
periments.

The validation RMS errors for the SOM method are shown in Figure 8.

From Figure 8 the SOM grid size with the smallest RMS error is 18×18, which is
smaller than previously using the SOM method. It means that when the percentage of
missing values increase, the need for the SOM nodes decreaseas there is less data to
use in the interpolation of the missing values.

The validation errors for the SOM+EOF method are presented in Figures 9 and 10.

From Figure 9 the optimal SOM size is selected to 18×18, which is the same size
than using the SOM alone. It means, that the SOM method alone is definitely not
accurate enough to perform the filling of missing values alone. Therefore, it is not
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Figure 8. Validation errors with respect to square number of grid sizeusing the SOM
method.Source : Lipper ; North American Fund Weekly Return from 28/12/2001 to03/03/2006. Computation from the
Authors.
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Figure 9. Validation errors with respect to the SOM grid size using theSOM+EOF.
Source : Lipper ; North American Fund Weekly Return from 28/12/2001 to03/03/2006. Computation from the Authors.

possible to enhance the noise removal power over interpolation performance in this
case.

From Figure 10 the optimal number of EOF is found to be 15, which is less than in
the case with less missing values. The smaller number of EOF is explained by the fact
that the increased number of missing values creates more uncertainty and, therefore,
the smaller singular values and the related vectors become more and more unusable in
the reconstruction process.

The validation and test errors are summarized in Table 4.

From Table 4 it can be seen that the SOM+EOF method has decreased the valida-
tion and test errors both by 9 percent compared to the SOM method. The improvement
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Figure 10. Validation errors with respect to the number of EOF with the SOM grid
size 18×18. Source : Lipper ; North American Fund Weekly Return from 28/12/2001 to03/03/2006. Computation
from the Authors.

Tableau 4. Validation and Test RMS Errors for SOM, EOF and their combination.
Source : Lipper ; North American Fund Weekly Return from 28/12/2001 to03/03/2006. Computation from the Authors.

10−3 Validation Error Test Error
SOM 7.94 7.73
SOM+EOF 7.22 7.01

is slightly worse than in the case of less missing values. Still, there is notable perfor-
mance upgrade when using the SOM+EOF method.

Comparing the error values above with the values in Table 3, we can see that all
errors are increased roughly the same amount, 0.0004. Therefore, it can be concluded
that the filling methods are robust and can handle even large amount of missing values
contained in the database.

5.2. European Fund Returns

For the second experiment, we focus on a more practical example. Rebuilding
a past performance of funds is a recurrent problem for financial professionals (too
short funds history). Thus, we choose to rebuild the beginnings of several time series.
We use a dataset of European Fund Weekly Returns2 from 07/11/2003 to 27/10/2006
composed of 300 funds with 175 weekly values, which give a total of 52 500 values.

We randomly remove for testing purposes 10 percent of the data at the beginning
of several time series. We constraint the random deletion process to get at least one

2. Data provided by Standard and Poors



14
e soumission àMASHS 2007.

fourth of the time series without any missing values. For validation, 10 percent more
is removed at the beginning of the remaining time series.

We apply the same validation procedures as in the previous experiments to select
the optimal SOM grid size and the number of EOF.

The optimal size of the SOM grid is found to be in mean (16×16) that is 256.
Once the optimal grid size is found, we apply the SOM algorithm and fill in all the
missing values. When the EOF is performed, initial missing values are substituted as
the column means of the original matrix. At last, SOM estimations are then used as
initialization for the EOF algorithm.

The validation errors with respect toq for the EOF alone and the EOF performed
with the SOM initialization are shown in Figure 4.
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Number of EOFs
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Figure 11. Validation Errors with Respect to Number of EOFs with the Plain Column
Mean Initialization. The fine grey line and the bold black line represent the error of
the EOF and the SOM+EOF, respectively.Source : SnP ; European Fund Weekly Return (07/11/2003 to
27/10/2006). Computation from the Authors.

From the Figure 11, we noted that the smallest error is achieved with q equal
to 5 using the EOF with plain column mean initialization and 16 when the EOF is
initialized using the SOM. Table 5 summarizes the mean errors of the three methods.

Tableau 5. Validation and Test Mean Errors for SOM, EOF and their combination.
Source : SnP ; European Fund Weekly Return from 07/11/2003 to 27/10/2006. Computation from the Authors.

10−5 Validation Error Test Error
SOM 3.25 3.51
EOF 3.29 3.98
SOM + EOF 3.08 3.20
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From the Table 5 we can see that the SOM+EOF outperforms the EOF and the
SOM reducing the test error by 9 percent compared to the SOM and 19 percent com-
pared to the EOF.

6. Conclusion

In this paper, we have compared 3 methods for finding missing values in tempo-
ral databases. The methods are Self-Organizing Maps (SOM),Empirical Orthogonal
Function (EOF) and the combination of the two, the SOM+EOF method.

The advantages of the SOM include the ability to perform nonlinear projection
of high-dimensional data to lower dimension with interpolation between discrete data
points.

For the EOF, the advantages include high-dimensional linear projection of high-
dimensional data and the speed and the simplicity of the method.

The combination of the two methods include the advantages ofboth individual me-
thods, leading to a new accurate approximation methodologyfor finding the missing
values. The performance obtained in test show the accuracy of the new methodology.

It has also been shown experimentally that the optimal number of code vectors
used in the SOM has to be larger than the number of observations. It is necessary
in order to take the advantage of the self-organizing property of the SOM and the
interpolation ability for finding the missing data.

Furthermore, the amount of missing values is neither restricting the usage of the
method nor seriously decreasing the performance.

For further work, the modifications and performance upgrades for the global me-
thodology are fine-tuned for different types of datasets. The methodology will then be
applied to datasets from other field of science, for example climatology and process
data.
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