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RESUME.L'existence de valeurs manquantes dans les séries temporelles esihlénge ré-
current lors de I'utilisation de modeles financiers. En effet, de tels modétgserent que les
bases soient cylindrées et complétes. De plus, de nombreusesdeadesnées financieres
contiennent des valeurs manquantes. Ce papier présente une naecbihéque pour le re-
couvrement des valeurs manquantes. Cette méthode utilise deux teshaégprojection : une
non-linéaire (Cartes de Kohonen) et une linéaire (Fonction OrthogoBEaigirique). La métho-
dologie globale présentée combine les avantages des deux méthodebtpair des candidats
aux valeurs manquantes. La méthode est appliquée a deux basesmdesdinanciéeres.

ABSTRACTThe presence of missing data in the underlying time series is a recumeblem
for market models. Such models make it necessary to deal with cylihdridecomplete sam-
ples. Moreover, many financial databases contain missing values.p@p&r presents a new
method for the missing values recovery. The new method is based ondjectipn methods:
a nonlinear one (Self-Organizing Maps) and a linear one (Empirical Ggtimal Functions).
The presented global methodology combines the advantages of botbhdséthget accurate
approximations for the missing values. The methods are applied to twoiihdatasets.

MOTS-CLES Valeurs manguantes, Cartes de Kohonen, SOM, Fonctions orthogmralgiriques,
EOF.
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1. Introduction

Academics as well as practitioners often face the problemisging data in finan-
cial timeseries. Non-quotation date, too recent incepdiate, intention not to report
a bad performance or mistake of data provider are some oktisons why missing
values occur recurrently in financial databases. Moreaverder to achieve good per-
formance, most financial models need complete and cyliadsemples. Thus, most
of the time, imputation methods have to be applied beforainghthe model.

A number of methods have been developed to solve the probienfilethe mis-
sing values, both commercial and academical. The methobstim sectors can be
classified into two distinct categories : deterministic Inoets and stochastic methods.

Self-Organizing Maps [KOH 95] (SOM) aim to ideally group hogeneous indi-
viduals, highlighting a neighborhood structure betweassts in a chosen lattice. The
SOM algorithm is based on unsupervised learning princigiere the training is en-
tirely stochastic, data-driven. No information about thplit data is required. Recent
approaches propose to take advantage of the homogendity mhterlying classes for
data completion purposes [WAN 03]. Furthermore, the SOMrdtigm allows projec-
tion of high-dimensional data to a low-dimensional gridrdugh this projection and
focusing on its property of topology preservation, SOMwBaonlinear interpolation
for missing values.

Empirical Orthogonal Functions (EOF) [PRE 88] are deterstinn models, en-
abling linear projection to high-dimensional space. Thayehalso been used to deve-
lop models for finding missing data [BOY 94]. Moreover, EOFdals allow conti-
nuous interpolation of missing values, but are sensititaédnitialization.

This paper describes a new method, which combines the adyesbf both the
SOM and the EOF. The nonlinearity property of the SOM is use alenoising
tool and then continuity property of the EOF method is usecttmver missing data
efficiently.

The SOM is presented in Section 2, the EOF in Section 3 anddhaignethodo-
logy SOM+EOF in Section 4. Section 5 presents the experiaheasults using two
financial datasets.

2. Sdf-Organizing Map

The SOM algorithm is based on an unsupervised learning iptéyavhere trai-
ning is entirely data-driven and no information about thauindata is required [KOH
95]. Here we use a 2-dimensional network, compound imits (or code vectors)
shaped as a squalatice. Each unit of a network has as many weights as the length
T of the learning data samples,,, n = 1,2, ..., N. All units of a network can be
collected to a weight matrixn (¢) = [m; (¢),ms (¢), ..., m. (¢)] wherem,; (t) is
the T-dimensional weight vector of the unitat timet andt represents the steps of
the learning process. Each unit is connected to its neigidpanits through neighbo-
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rhood functior\(m;, mj, ¢), which defines the shape and the size of the neighborhood
at timet. Neighborhood can be constant through the entire learniogegs or it can
change in the course of learning.

Learning starts by initializing the network node weightsdamly. Then, for ran-
domly selected sampte, 1, we calculate a Best Matching Unit (BMU), which is the
neuron whose weights are closest to the sample. BMU caionlit defined as

M) = a8 i { s —mg (0]}, &

wherel = [1,2,..., (] is the set of network node indiceBM U denotes the index of
the best matching node atjd| is standard Euclidean norm.

If the randomly selected sample includes missing valuesBtU cannot be sol-
ved outright. Instead, an adapted SOM algorithm, proposedditrell and Letrémy
[COT 05], is used. The randomly drawn samgla ; having missing value(s) is split
into two subsets?, ; = NMy,,, U My, ,,, whereNMy, ., is the subset where the

values ofx; 1 are not missing and/,, ,, is the subset where the valuesxqf, ; are
missing. We define a norm on the subsg&t/,, ., as

> (epe —min(t)?, 2

k€ NMie,

‘|Xt+1 —m; (t)||N]Wxt+1 =

wherex; 1 , for k = [1, ..., T] denotes thé'" value of the chosen vector and; ;. (t)
for k = [1,...,T] and fori = [1, ..., ] is thek'" value of thei*" code vector.

Then the BMU is calculated with

mpwe) = ag min {Ixees =m0l - 3)

m;,?

When the BMU is found the network weights are updated as

m; (14 1) = m; (1) — e()A (Mparv ey, Wiy t) [my (1) = xea], Vi € 1, (4)

wheree(t) is the adaptation gain parameter, whichjdsl[-valued, decreasing gra-
dually with time. The number of neurons taken into accoumigduthe weight update
depends on the neighborhood functidfm;, m;, ). The number of neurons, which
need the weight update, usually decreases with time.

After the weight update the next sample is randomly drawmftbe data matrix
and the procedure started again by finding the BMU of the sanigte recursive
learning procedure is stopped when the SOM algorithm hagsrgad.

Once the SOM algorithm has converged, we obtain some ctustertaining our
data. Cottrell and Letrémy proposed to fill the missing valoéthe dataset by the
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coordinates of the code vectors of each BMU as natural firstidates for missing
value completion :

TU M) (x) = TU( M) (mBMU(x)> ) )

wherer (., (.) replaces the missing valudg, of samplex with the corresponding
values of the BMU of the sample. The replacement is done feryedata sample and
then the SOM has finished filling the missing values in the.data

The procedure is summarized in Table 1. There is a toolbokada for perfor-
ming the SOM algorithm in [URL 01].

Tableau 1. Summary of the SOM algorithm for finding the missing values.
1 SOM node weights are initialized randomly

2  SOM learning process begins

3 Inputx is drawn from the learning data skt
3.1 Ifx does not contain missing values, BMU is found according to
Equation 1
3.2 Ifx contains missing values, BMU is found according to EquaBion

4-  Once the learning process is done, for each observatimaioing missing
values, the weights of the BMU of the observation are sulistitfor
missing values

3. Empirical Orthogonal Functions

This section presents Empirical Orthogonal Functions (EfPRE 88]. In this
paper, EOF are used as a denoising tool and for finding thengigalues at the same
time [BOY 94].

The EOF are calculated using standard and well-known Sandfalue Decompo-
sition (SVD)

K
X =UDV* =3 pyuvy, (6)
k=1

whereX is 2-dimensional data matriXJ andV are collections of singular vectors
andv in each dimension respectivel, is a diagonal matrix with the singular values
p in its diagonal and¥ is the smaller dimension aX (or the number of nonzero
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singular values ifX is not full rank). The singular values and the respectivaorsc
are sorted to decreasing order.

When EOF are used to denoise the data, not all singular vahadegeators are used
to reconstruct the data matrix. Instead, it is assumed keaveéctors corresponding
to larger singular values contain more data with respeché¢onbise than the ones
corresponding to smaller values [PRE 88]. Therefore, ibggdal to select largest
singular values and the corresponding vectors and recmgiie denoised data matrix
using only them.

In the case whereg < K, the reconstructed data matrix is obviously not the same
than the original one. The largeris selected, the more original data, which also
includes more noise, is preserved. The optigialselected using validation methods,
for example [LEN 03].

EOF (or SVD) cannot be directly used with databases inclydimssing values.
The missing values must be replaced by some initial valuesdar to use the EOF.
This replacement can be for example the mean value of thevalath matrixXX or the
mean in one direction, row wise or column wise. The latterapph is more logical
when the data matrix has some temporal or spatial struatlite ¢olumns or rows.

After the initial value replacement the EOF process begyrdsforming the SVD
and the selecteg singular values and vectors are used to build the recortigtnudn
order not to losany information, only the missing values &f are replaced with the
values from the reconstruction. After the replacement,ni data matrix is again
broken down to singular values and vectors with the SVD acdnstructed again.
The procedure is repeated until convergence criteriorlfiiéd.

The procedure is summarized in Table 2.

Tableau 2. Summary of the EOF method for finding missing values.
1 Initial values are substituted into missing values of thiginal data matrixX

2 Foreachyfrom1ltoK

2.1 SVD algorithm calculategsingular values and eigenvectors

2.2 A number of values and vectors are used to make the reaotish

2.3 The missing values from the original data are filled wlith values from
the reconstruction

2.4 If the convergence criterion is fulfilled, the validatierror is calculated
and saved and the nextalue is taken under inspection. If not,
then we continue from step 2.1 with the sagnaalue

3 Thegq with the smallest validation error is selected and useddonstruct
the final filling of the missing values iX
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4. Global Methodology

The two methodologies presented in the previous two sectioa combined and
the global methodology is presented. The SOM algorithm fimsing values is first
ran through performing a nonlinear projection for finding thissing values. Then,
the result of the SOM estimation is used as initializationtie EOF method. The
global methodology is summarized in Table 1.

SOM EOF
Dataset with Nonlinear, Linear, Completed
Missing — discrete, continuous, |— Data
Values low-dimensional high-dimensional Sample
projection projection

Figure 1. Global methodology, the SOM+EOF, summarized.

For the SOM we must select the optimal grid sizend for the EOF the optimal
number of singular values and vecterdo be used. This is done using validation,
using the same validation set for all combinations of thepesters: andg. Finally,
the combination of SOM and EOF that gives the smallest vadidaerror is used to
perform the final filling of the data.

Even the SOM as well as the EOF are able to fill the missing gadlmne, the ex-
perimental results demonstrate that together the accisdmtter. The fact that these
two algorithms suit well together is not surprising. Two eggrhes can be considered
to understand the complementarity of the algorithms.

Firstly, the SOM algorithm allows nonlinear projection. tis sense, even for
dataset with complex and nonlinear structure, the SOM ced#ovs will succeed to
capture the nonlinear characteristics of the inputs. Hewetie projection is done on
a low-dimensional grid (in our case two-dimensional) witle possibility of losing
the intrinsic information of the data.

The EOF method is based on a linear transformation using itgufar Value
Decomposition. Because of the linearity of the EOF apprp#ahill fail to reflect
the nonlinear structures of the dataset, but the projesii@te can be as high as the
dimension of the input data and remain continuous.

There is a toolbox for performing the SOM+EOF in [URL 02].

5. Experimental Results

To illustrate the accuracy of the presented methodologyrumeseveral experi-
ments on two financial return databases. The first one regdtier missing values
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when they are missing at random and the second experimentiksmg values only
at the beginnings of several timeseries.

5.1. North American Fund Returns

For the first experiment, we use a dataset of North Americad feturng com-
posed with 679 funds on a 4-year period of 219 weekly valuds;ingive a total of
148 701 values. Then, in the definition of the dataSethe size of the dimensions is
T x N which is equal to 219679.

The fund return correspond to the yield of asset values htvi@o consecutive
dates as

rp = L, (7)
(%7

whereu; is the value of the considered asset at time

There are no missing values contained in the original dawbggure 2 shows 10
rescaled fund valueév; = 100", (1 + rt)). The fund values are correlated time
series including first order trends.
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Figure 2. Rescaled asset values of 10 funds present in the datab@age: Lipper; North
American Fund Weekly Return from 28/12/2001 to 03/03/2006. Cartiqufrom the Authors.

Before running any experiments, we randomly remove folintggpurposes 7.5
percent of the data, which corresponds to 11 152 missingsakor each validation
set, the same amount of data is removed from the dataseteféherfor the model
selection and learning we have a database with a total of ifepeof missing values.

1. Data provided by Lipper, A Reuters Company.
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We use Monte Carlo Cross-Validation method with 10 foldselest the optimal
parameters for the SOM, the EOF and the SOM+EOF. The 10 sdlgatidation sets
are the same for each method and the validation results esened in the following.

5.1.1. SOM

Focusing on the topology preservation property of the SQddrthm, we project
our data on a large sized map. For each grid size, we compaifedbt Mean Square
Errors (RMSE) of the reconstruction on all validation s@tsen the grid size giving
the smallest validation error is selected and the corredipgrgrid size is used to make
the final filling. The validation errors are shown in Figure 3.

RMSE

| | | | | |
5 10 15 20 25 30 35 40 45 50
SOM Grid Size

Figure 3. Validation errors with respect to square number of grid siseng the SOM
method source : Lipper ; North American Fund Weekly Return from 28/12/200@B4@3/2006. Computation from the
Authors.

The optimal size of the SOM grid is found to be>2%6, which is a total of 676
units, see Figure 3. Therefore, we have more code vectoreiSOM than observa-
tions (629). It means that we have a nonlinear interpolatismveen the observations
and better approximation of the missing values.

Once the optimal grid size is found, we apply the SOM algarnitind fill in all the
missing values. Now we have only 7.5 percent of the data ngs#ile to the removed
test set. The test and validation errors are summarizedeiretial of the section, in
Table 3.

5.1.2. EOF

The validation errors with respect ¢gdor the EOF method are shown in Figures 4
and 5. In this case, when the EOF is used alone, the missingssate initialized using
the column mean of the dataset calculated with only knownegbf each column.

From the Figure 5 the smallest error is achieved witqual to 6. This number
of EOF is relatively small compared to the maximum of 219 EDBuggests quite
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Figure 4. Validation errors with respect to the number of EOF with thaimp column

mean initialization source : Lipper ; North American Fund Weekly Return from 28/12/200B403/2006. Com-
putation from the Authors.

0.01

RMSE

0.009

OOO L L I L L L
2 4 6 8 10 12 14 16 18 20

Number of EOF

Figure 5. EOF validation errors zoomedource : Lipper; North American Fund Weekly Return from
28/12/2001 to 03/03/2006. Computation from the Authors.

strong noise influence in the data and that there is only alsmaiber of efficient
EOF needed to represent the denoised data.

5.1.3. SOM+EOF

In our experiments, we have seen that it is not enough to tstlecSOM grid
size and the number of EOF separately. Instead, both pagesmetist be optimized
together, simultaneously. Even though this increasesdhepatational load, it gives
more accurate results.
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In Figures 6 and 7 the validation RMSEs are presented. Thdifjtse shows the
minimum EOF errors with respect to the SOM grid size and ttteddigure the EOF
errors with the selected SOM grid size.

x10°

RMSE

68 L L L L L L
5 10 15 20 25 30 35 40 45 50

SOM Grid Size

Figure 6. Validation errors with respect to the SOM grid size using 8@M+EOF.
Source : Lipper ; North American Fund Weekly Return from 28/12/20@B23/2006. Computation from the Authors.

RMSE

| | | | | | | | | |
20 40 60 80 100 120 140 160 180 200
Number of EOF

Figure 7. Validation errors with respect to the number of EOF with ti@\&grid size
18x18. source : Lipper ; North American Fund Weekly Return from 28/12/20@B(83/2006. Computation from the
Authors.

From the Figures 6 and 7 the smallest error is achieved wérs®@M grid size
equal to 1&18 and the number of EOfequal to 40.

The number of selected EOF is larger with SOM initializattban with the co-
lumn mean initialization. It suggests there are more efiicEEOF to use in the ap-
proximation of the missing values than with the plain columean initialization and
that the SOM has already denoised the data.
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The SOM size is decreased when compared to the SOM methoel #lenggests
that the nonlinear interpolation is not as crucial than gisire SOM alone, but instead
the denoising property is enhanced by limiting the numbe&©M nodes.

It is also evident that the individual optimization of the@aeters is not guaran-
teeing appropriate performance, which can be seen froritdifferent selections of
parameters when using the SOM+EOF than the methods indiydu

Table 3 summarizes the errors of the SOM, the EOF and the th&+&OF me-
thods.

Tableau 3. Validation and Test RMS Errors for SOM, EOF and their combora
Source : Lipper ; North American Fund Weekly Return from 28/12/20@B£@3/2006. Computation from the Authors.

1073 Validation Error | Test Error
EOF 8.13 7.83
SOM 7.67 7.33
SOM+EOF 6.82 6.59

From the Table 3, we can see that the SOM+EOF outperforms@terEducing
the validation and test errors by 16 percent and the SOMsmare than 10 percent.

5.1.4. More Missing Values

In order to test the robustness of the SOM+EOF method, weriexeet the effect
of increasing the percentage of missing values in the databa

Before selecting the test or the validation sets, we rangagethove 33 percent
of the data. Then the same procedure as before is performéidsbyemoving 7.5
percent of the remaining data for the test set and then fdr ealtdation set another
7.5 percent.

Finally, the total amount of missing data in the learninggehia around 42 percent,
which makes the missing value problem considerably hatder in the previous ex-
periments.

The validation RMS errors for the SOM method are shown in Fedgu

From Figure 8 the SOM grid size with the smallest RMS erroi8ig 18, which is
smaller than previously using the SOM method. It means ti@nthe percentage of
missing values increase, the need for the SOM nodes deasdblere is less data to
use in the interpolation of the missing values.

The validation errors for the SOM+EOF method are presemt&itjures 9 and 10.

From Figure 9 the optimal SOM size is selected t18, which is the same size
than using the SOM alone. It means, that the SOM method akmefinitely not
accurate enough to perform the filling of missing values @ldrherefore, it is not
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RMSE

| | | | | |
5 10 15 20 25 30 35 40 45 50
SOM Grid Size

Figure 8. Validation errors with respect to square number of grid siseng the SOM
method source : Lipper ; North American Fund Weekly Return from 28/12/20@B403/2006. Computation from the
Authors.

-3
8219

72 L L 1 L L L
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SOM Grid Size

Figure 9. Validation errors with respect to the SOM grid size using 8@M+EOF.
Source : Lipper ; North American Fund Weekly Return from 28/12/200B403/2006. Computation from the Authors.

possible to enhance the noise removal power over inteipolaerformance in this
case.

From Figure 10 the optimal number of EOF is found to be 15, tviédess than in
the case with less missing values. The smaller number of E@¥lained by the fact
that the increased number of missing values creates moeztaimty and, therefore,
the smaller singular values and the related vectors becaone amd more unusable in
the reconstruction process.

The validation and test errors are summarized in Table 4.

From Table 4 it can be seen that the SOM+EOF method has dedrdasvalida-
tion and test errors both by 9 percent compared to the SOMaudeTthe improvement
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Figure 10. Validation errors with respect to the number of EOF with tH@Ns grid

size 18<18. source : Lipper; North American Fund Weekly Return from 28/12/20013t63/2006. Computation
from the Authors.

Tableau 4. Validation and Test RMS Errors for SOM, EOF and their combora
Source : Lipper ; North American Fund Weekly Return from 28/12/20@B03/2006. Computation from the Authors.

10~3 Validation Error | Test Error
SOM 7.94 7.73
SOM+EOF 7.22 7.01

is slightly worse than in the case of less missing valuedl, 8tére is notable perfor-
mance upgrade when using the SOM+EOF method.

Comparing the error values above with the values in Tablee3¢can see that all
errors are increased roughly the same amount, 0.0004. foheyré can be concluded
that the filling methods are robust and can handle even langeat of missing values
contained in the database.

5.2. European Fund Returns

For the second experiment, we focus on a more practical eearRgbuilding
a past performance of funds is a recurrent problem for firgdrpriofessionals (too
short funds history). Thus, we choose to rebuild the begombf several time series.
We use a dataset of European Fund Weekly Refurosn 07/11/2003 to 27/10/2006
composed of 300 funds with 175 weekly values, which give al wit52 500 values.

We randomly remove for testing purposes 10 percent of the atathe beginning
of several time series. We constraint the random deletiongss to get at least one

2. Data provided by Standard and Poors
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fourth of the time series without any missing values. Fordadlon, 10 percent more
is removed at the beginning of the remaining time series.

We apply the same validation procedures as in the previopsrerents to select
the optimal SOM grid size and the number of EOF.

The optimal size of the SOM grid is found to be in meanx16) that is 256.
Once the optimal grid size is found, we apply the SOM algamitind fill in all the
missing values. When the EOF is performed, initial missingesare substituted as
the column means of the original matrix. At last, SOM estiora are then used as
initialization for the EOF algorithm.

The validation errors with respect dfor the EOF alone and the EOF performed
with the SOM initialization are shown in Figure 4.

RMSE

-L\_,//_

0 50

100 150 200
Number of EOFs

Figure11. Validation Errors with Respect to Number of EOFs with theiP@aolumn
Mean Initialization. The fine grey line and the bold blackelirepresent the error of

the EOF and the SOM+EQF, respectivedyurce : SnP ; European Fund Weekly Return (07/11/2003 to
27/10/2006). Computation from the Authors.

From the Figure 11, we noted that the smallest error is aeHiavith ¢ equal
to 5 using the EOF with plain column mean initialization ar@lvthen the EOF is
initialized using the SOM. Table 5 summarizes the mean gwbthe three methods.

Tableau 5. Validation and Test Mean Errors for SOM, EOF and their conaliion.
Source : SnP ; European Fund Weekly Return from 07/11/2003 to 20a®/ Computation from the Authors.

10~° Validation Error | Test Error
SOM 3.25 3.51
EOF 3.29 3.98
SOM + EOF 3.08 3.20
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From the Table 5 we can see that the SOM+EOF outperforms the d&@ the
SOM reducing the test error by 9 percent compared to the SQM &percent com-
pared to the EOF.

6. Conclusion

In this paper, we have compared 3 methods for finding missahges in tempo-
ral databases. The methods are Self-Organizing Maps (SBidpjrical Orthogonal
Function (EOF) and the combination of the two, the SOM+EOkhoe:

The advantages of the SOM include the ability to perform imear projection
of high-dimensional data to lower dimension with interpiola between discrete data
points.

For the EOF, the advantages include high-dimensionaldipsegjection of high-
dimensional data and the speed and the simplicity of theadeth

The combination of the two methods include the advantagketbfindividual me-
thods, leading to a new accurate approximation methoddimgfinding the missing
values. The performance obtained in test show the accufabg mew methodology.

It has also been shown experimentally that the optimal nurobeode vectors
used in the SOM has to be larger than the number of obsergatibis necessary
in order to take the advantage of the self-organizing ptypefr the SOM and the
interpolation ability for finding the missing data.

Furthermore, the amount of missing values is neither @&stg the usage of the
method nor seriously decreasing the performance.

For further work, the modifications and performance upgsddethe global me-
thodology are fine-tuned for different types of dataset® iethodology will then be
applied to datasets from other field of science, for examiieatology and process
data.
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