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Abstract. This paper presents a methodology for steganalysis based on
a set of 193 features with two main goals. The first goal is to determine
a sufficient number of images for effective training of a classifier in the
obtained high-dimensional space. Second goal is to use feature selection
to select most relevant features for the desired classification. Dimension-
ality reduction is performed using a forward selection and reduces the
original 193 features set by a factor of 13, with overall same performance.
Additionally, two new tools are proposed for feature selection in order
to validate and possibly analyze further the current results.

1 Introduction

Steganalysis’ main goal is to automatically detect, with the possibly highest
accuracy, the presence of a secretly embedded content in another document.
This can be seen as a typical classification problem since an optimal separation
between stego images and genuine ones is seeked.

For this matter, various features
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Fig. 1. Dimensionality of features sets

are extracted from the considered
images. This number of features is
nowadays growing consequently (as
seen on Fig 1) and might be too
important for the classifiers typi-
cally employed, as well as for an
interpretation of the results.

The very first examples of LSB-
based steganalysis made use of less
than ten features, with an adapted
and specific methodology for each
stego algorithm. The idea of “universal steganalyzers” then became popular. In
1999, Westfeld proposes a χ2-based method, on the LSB of DCT coefficients [19].

Five years after, Fridrich in [7] uses a set of 23 features obtained by nor-
malizations of a much larger set, whilst Farid et al. already proposed in 2002 a



set of 72 features [10]. Since then, an increasing number of research works are
using supervised learning based classifiers in very high dimensional spaces. The
recent work of Y. Q. Shi et al. [17] is an example of an efficient result but us-
ing 324 features based on JPEG blocks differences modeled by Markov processes.

All these results are achieving better and better performance in terms of
good classification. Meanwhile, there are some clear side-effects to this grow-
ing feature spaces. First of, as long as performances seem to increase, people
tend to keep on adding new features to their sets, regardless of the resulting
dimensionality. It has been shown [4, 11] that the feature space dimensionality
in which the considered classifier is trained in, can have a crucial impact on its
performances. Second, the computational complexity of the classifier’s training
is another important aspect, since most of the widely used classifiers have at
least a linear relationship to the dimensionality of the space. Third, a high di-
mensional space requires an important number of samples (images in this case)
for a correct training of the classifier and accurate model parameters. The re-
lationship between dimensionality and number of samples is not trivial and a
sufficient number of samples has to be determined for the considered problem.

Another matter is about the interpretability of such results on high dimen-
sional spaces. A correct analysis of the results and of the possible weaknesses
of the stego algorithms seems to be hard and long to perform, with so many
features.

We propose a general methodology to address some high dimensionality is-
sues. The next section proposes to illustrate the main problems related to this
dimensionality. Section 3 presents the main tools and classifiers used in this
paper which are part of the methodology. Results using the stego algorithm
Outguess [13], and a set of 193 features from Fridrich [18] follow, with an over-
all analysis in section 5. Some new tools to investigate the current results and
possibly extend them are finally presented in section 6.

2 Side-effects of the growing number of features

The common term “curse of dimensionality” [3] refers to a wide range of problems
related to a high number of features. Our concern is focused on four main aspects
of this high-dimensionality, namely the lack of interpretability, the complexity
increase, the possible sensitivity to irrelevant features and the “need” for more
data points, related to the empty space phenomenon as presented in [4, 12, 11].

2.1 The need for data points

As an example, when considering as few as five points in a three dimensional
space, the underlying structure is impossible to infer, and so is the creation of a
model for it. On the contrary, with hundreds to thousands of points it becomes
possible to see clusters, relationships between dimensions and such.



More generally, in order for any tool to be able to analyze and find a structure
within the data, the number of needed points is growing exponentially with the
dimension. Indeed, consider a d-dimensional unit side hypercube, the number
of points needed to fill the Cartesian grid of step ǫ inside of it, is growing as
O((1/ǫ)d). Thus, using a common grid of step 1/10 and a dimension of 10, it
requires 1010 points to fill the grid.

In practice, most of data analysis use at least 10 to 20 dimensions, implying a
“needed” number of points impossible to achieve. As a consequence, the feature
space may be not correctly filled with data points, which can give wrong models
when building classifiers, having to extrapolate for the missing points.

The situation is globally not limited to this lack of data points because of
the dimensionality. The reason why so many points are needed when dimension
increases is the empty space phenomenon, related to the positioning of randomly
distributed points in high dimensions.

2.2 The empty space phenomenon and distance concentration

On a theoretical point of view: draw points from a normal distribution and
consider the probability to have a point at distance r from the center of the
distribution. It is given by the probability density function:

f(r, d) =
rd−1

2d/2−1
.
e−r2/2

Γ (d/2)
(1)

having its maximum at r =
√
d− 1. Thus, when dimension increases, points

are getting further from the center of the distribution. The phenomenon is the
same for the uniform distribution as Fig 2 illustrates.
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Fig. 2. Overview of pairwise distances for uniformally distributed points in 2 and 100
dimensions: in dimension 2, distances are varying among the full possible amplitude
(0 to

√
2); in dimension 100, all distances get very far from zero and tend to be much

more concentrated close to the highest possible values.



In practical cases it is also observed [4, 12, 11] that high-dimensionality has
this effect on the data distribution: average distances distribution between two
points increases with dimension while the distances variance distribution tends
to decrease, as in the theoretical cases above.

This distance concentration tends to decrease the relevance of distance-based
classification since the common notions on which these classifiers are based are
no longer fully reliable.

This fact and the possible disturbance of the classifier by unuseful dimensions
especially motivates the use of feature selection techniques for dimensionality
reduction: the forward technique presented in section 3 realizes such reduction
and makes possible analysis and work in resulting lower dimensionality spaces.

2.3 Problems regarding irrelevant features

Here is presented the problem of the irrelevant and “parasite” dimensions: these
dimensions bringing no useful information to the considered classification prob-
lem. An overall view of the effects of such sort of data on a SVM can be seen
in [6].

The two points sets called Whirls and Chessboard are depicted in Fig 3.
These two examples were made to be not trivial to classify.

 

 
Class 1
Class −1

(a) The double-whirl example (b) The Chessboard example

Fig. 3. Two classes on two different examples: the double-whirl and the chessboard
one, not trivial to classify. Red points stand for one class and blue ones for another.

Table 1 then presents results of three widely used classifiers on these two
special examples to which have been added Gaussian distributed dimensions,
with no information relevant for the classification process.

As can be seen from Table 1, the classification rate drops significantly when
adding these unuseful dimensions. The sensitivity of the classifier to these seems
to be more noticeable for the SVM classifier than for the KNN. This robustness
of the KNN to high dimensionality as well as to noisy or irrelevant data is well
known.



Whirls Chessboard

Noise Without 1 dim. 2 dim. 3 dim. Without 1 dim. 2 dim. 3 dim.

SVM 90% 61% 53% 52% 89% 63% 53% 51%
KNN 89% 74% 61% 60% 89% 75% 64% 62%
LVQ 62% 55% 51% 51% 64% 65% 52% 51%

Table 1. Effects of adding irrelevant Gaussian distributed dimensions to the classifi-
cation problem.

2.4 Lack of interpretability

Eventhough the nearest neighbours classifiers keep good performances in high
dimensions [4, 12, 11], other obvious problems of high dimensionality motivate
the idea of feature selection. The interpretability is an important one: high per-
formances can indeed be reached using the whole 193 features set proposed by
Fridrich [18] for classification. Meanwhile, if looking for the weaknesses and rea-
sons why these features react vividly to a specific algorithm, it seems rather
impossible on this important set.

Reducing the required number of features to a small amount through feature
selection enables to understand better why a steganographic model is weak on
these particular details, highlighted by the selected features.

2.5 Increase of complexity

Computational time is another main reason. Nearest neighbours methods are
usually implemented with a O(d) dimension relationship, as for SVMs. Clearly,
reducing the dimensionality by a significant order of magnitude gives much more
achievable computational times. As a consequence, one can use more data points
and lower this “missing points” effect.

The next section presents the proposed methodology for dimensionality re-
duction by feature selection. The classifiers used as well as the chosen selection
techniques are detailed.

3 Methodology and techniques used

3.1 Classifiers and appropriate number of images

The “appropriate” number of images (or at least the minimum required for
the dimensionality of our data) should be determined. For this matter, a KNN
classifier is used with a Monte-Carlo technique [16]. This enables to estimate the
noise and give a confidence interval for our results. We randomly draw (without
repetitions) a subset of the whole data set, and use the obtained classifier on it.

For our experiments, two different types of classifiers have mainly been used:
the first one, KNN, for its overall good performance even in high dimensional
spaces, but most of all, because it is computationally very fast. SVM was also



chosen because it is among the classifiers giving the best results. Major drawback
is of course the computational time. The main principles of these two major
classifiers are briefly explained in the following.

K-Nearest Neighbours (KNN) KNN classifier is a supervised distance-based
classifier, proposed by Devijver and Kittler in [1], usually using the Euclidean
metric. It uses a majority vote among the k nearest neighbours classes to assign
the class of the new considered point. The basic algorithm follows these steps:

Algorithm 1 KNN

for a fixed K value
for each point do

Compute pairwise distances with all others
for k = 1 : 2 : K do

Take majority class of k nearest neighbours
end for

end for

Compare obtained classes with ground truth for each k

Keep k value giving the best good classification rate

In practice, this algorithm is quite efficient, fast and only needs one parameter
to be determined, which makes model structure selection easier. KNN algorithms
usually run with a O(N2d) dependency (with N the number of data points and
d the dimension).

Cross-validation of the KNN model is achieved in this paper through Leave-
One-Out [2].

Support Vector Machine (SVM) SVM have been created by Vapnik [14]
in 1963 and then improved more recently (1992, 1995) by Boser, Guyon and
Vapnik [5]. The original idea was to separate data using a hyperplane: this was
a linear classifier. The extension of this method adds a non-linear part by the
use of kernel functions.

Taking a set of d-dimensional data {xi} ∈ R
d, i ∈ J1, NK labeled with classes

yi ∈ {−1, 1} (restricted to two classes), the problem is to solve the optimization
problem

min
w,b,ξ

||w||2 + C

N
∑

i=1

ξi, (2)

under the constraint

(wTψ(xi) + b)yi ≥ 1 − ξi, (3)

where w is the separating hyperplane normal vector and ξi are slack variables
enabling clean separation even if data is not linearly separable in the mapped



feature space. The training data xi is indeed mapped into a higher dimensional
space by the function ψ, space into which it is hoped to be more linearly sepa-
rable.

This ψ function is related to the kernel function K(xi,xj) by

K(xi,xj) = ψ(xi)
Tψ(xj). (4)

In the study, Radial Basis Function kernels have been used, defined as

K(xi,xj) = exp
(

−γ||xi − xj ||2
)

, (5)

since they are the most commonly used kernels because of their good effi-
ciency [15, 8].

As said before, the main issue with SVM is computational time, since equa-
tion 2 is a NP hard optimization problem. Most SVM algorithms (such as
SMO [9]) are running with a dependency of orderO(N2d) up to O(N3d), depend-
ing ifK(xi,xj) (eq. 5) can be stored in memory. With the choice of this particular
kernel, we have two hyper-parameters – C and γ – to determine, expanding the
previous line search for the k of KNN, to a grid search. Note that the determi-
nation of a good model for classification is then even more time-consuming. The
validation for SVM is finally performed with a 10-fold cross-validation [2].

This again motivates the proposed feature selection step; the following is
about the technique used to perform it, called forward selection.

3.2 Feature selection technique: Forward selection

The forward selection algorithm is a greedy algorithm proposed in [20]; the
algorithm selects one by one the dimensions, trying to find the one that combines
best with the already selected ones, as shown in the following algorithm 2 (with
xi denoting the i-th dimension of the data set):

Algorithm 2 Forward

R = {xi, i ∈ J1, dK}
S = ø
while R 6= ø do

for xj ∈ R do

Evaluate performance with S ∪ xj

end for

Set S = S ∪ {xk},R = R − xk with xk the dimension giving the best result in
the loop

end while

Even if its capacity to isolate efficient features is obvious, the forward tech-
nique has some drawbacks: in the case where two or more features would have
a high dependency and be “inefficient” when alone but very good when put to-
gether, forward might not take these into account soon enough in the selection



process. Nevertheless, the feature selection using forward has been showing very
good results and seems to perform well on our feature set; this is presented in
the next section.

4 Results in steganalysis

4.1 Our methodology

The three main points of the proposed methodology are detailed in the following.
Fig. 4 illustrates the process. First is seeked a possibly good candidate for the
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Fig. 4. Schematic view of the proposed methodology: (1) An appropriate number of
data points to work with is determined using a Monte-Carlo method for statistical
stability; (2) The forward selection is performed using a KNN classifier; (3) A good
feature set is selected and performance is improved using SVM.

number of images to use for training with the prepared database. Using a Monte-
Carlo method on low numbers of images with both SVM and KNN, averaged
plots are obtained. From it, a correct idea of a sufficient number of images for
the later study can be obtained, as shown in the following experiments.

Since KNN is the fastest classifier between the two presented, it is used for
the next step with forward technique. This produces a ranking of the features
showing how much each new feature contributes to the correct classification
rate. The best features combination is selected. A SVM is finally used on this
combination, to improve the performance and obtain the final best classification
rate achieved.

4.2 Experimental setup

Our image base was constituted of 13 000 images of natural scenes, coming from
5 different digital cameras. Images are then all reduced to a size of 800 × 600
(multiples of 8) to avoid some possible block effects and artifacts due to JPEG
re-compression on another grid. At the same time, they are changed from their
original colorspace to grayscale colorspace (256 gray levels).



A cropping operation to 512 × 512 follows, since our implementation of the
extractor of Fridrich’s 193 features works on 512× 512 image blocks (powers of
2). In the end, the whole set of images is separated into two equal parts: one is
kept genuine while the other one is steganographied with the Outguess algorithm
at an embedding rate of 25%.

This choice of half steganographied and half genuine can be discussed as
it does not reflects a real world situation. Meanwhile, the whole steganalysis
process presented is designed to be used on one image at a time, determining
whether it is genuine or not. Furthermore, this choice has been done to be able
to compare performances with the steganalysis community current research.

For classification and test purposes, the training set has been made with at
most 8000 images. Test set is composed of the remaining, that is 5000 images.
The 193 features proposed by Fridrich are used as in [18].

4.3 Determination of sufficient number of images

Presented first is the result of the evaluation of a sufficient number of images,
as explained in the methodology. The Monte-Carlo is used on randomly taken
subsets of 200 up to 2000 images with 10 iterations. Each model built – using
KNN and SVM – is also evaluated on the test set of 5000 images.

A single point is evaluated with a randomly chosen set of 4000 images, since
computational time becomes very important with such number of images. In
practice, on Fig. 5 presenting the results of this study, the two cross-validation
results (SVM and KNN) should not be strictly compared since they do not use
the same number of images to validate the model: SVM uses a 10-fold cross-
validation, while a Leave-One-Out (LOO) method is used for KNN. Test results
are, on the other hand, comparable.
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Fig. 5. Correct classification rate for SVM (circles, top curve) and KNN (squares,
bottom curve) with associated variance.



One can really see on these plots that an apparently sufficient number of
images is over 2000 for both classifiers, since the classification rate seems to
increase very slowly over this value. For the experiments, a bigger set of 4000
images has been chosen.

4.4 Forward selection and optimization by SVM

Here, the results of the forward selection are presented shortly. As can be seen
from Fig. 6, the whole process of forward selection is not fully shown since we do
not go over 21 features. Meanwhile, as will be more detailed in the analysis part
of these results, good performance is already performed before this value. Since
the goal is to have the smallest possible feature set, while keeping average same
performances, the forward selection could be stopped at this point. The rest of
the features selected by the forward algorithm only make the classification rate
oscillate slightly around 95%.

Test and 10-fold cross-validation remain in a much thinner interval than for
our only-KNN tryouts. Moreover, the performance gain with SVM is significative
as expected and reaches up to 2% in the frame of these plots.
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Fig. 6. Plot of the correct classification rate for SVM: 10-fold cross-validation (circles,
top curve) and test (squares, bottom curve). Crosses are for performance for random
sets of 14 features with a KNN classifier.

Table 2 presents the main values obtained using 193 features set. Our feature
selection gives interesting results on this set. Indeed, using as few as 14 features,
we are less than 1.9% behind the value obtained with all features for 10-fold
cross-validation. Test values are following the exact same pattern.



LOO / 10-fold Test Comp. time

KNN 193 86.65% 85.89% 4.5min
KNN 193→14 93.20% 89.02% 60s
SVM 193 96.92% 96.76% 49h
SVM 193→14 95.08% 94.86% 4.5h

Table 2. Results of the different classifiers for cross-validation and test.

5 Analysis

Some details from the previous results can be interpreted in both fields as follows.

From machine learning point of view: through the previous results, a major
achievement was obtained: reducing the dimensionality by more than 13 and
keeping roughly the same performance, in the variance interval.

This result is interesting for different reasons:

– Computational time is drastically reduced, since the classifiers complexity
relationships to dimensionality are linear (see Tab. 2).

– By this result, the number of features is reduced by 13 and it allows future
new analysis and experiments previously not possible.

– This specific 14 features set has proven to be relevant for the classification
problem, leading to the next point.

– The comprehension and interpretability is kept through our method and even
improves it in an important way, by highlighting Outguess’ weaknesses.

From steganalysis point of view: for the steganalysis field, the obtained re-
sults are behind the actual best values, obtained for the Outguess algorithm by
Fridrich. Nevertheless, the two advantages coming out of these results – namely
the decrease of computational time and the gain in interpretability – can coun-
terbalance this opinion.

The 11 features selected by forward technique from the previous 23 features
set were already showing some details about Outguess’ weaknesses [21]. The
major advance using the extended 193 features set is that it gives an even more
detailed view on them. Since all vectors are no longer normed using the L1 norm,
informations about the precise weaknesses can be inferred.

The Table 3 lists the set of obtained 14 features out of the full 193 set.

g−2 C
−1,−1 C

−2,−1 h21[4] h12[5] C
−1,−2 h21[5]

g0[6] C
−2,−2 g−1[9] C0,1 g−2[4] C2,−2 C0,−2

Table 3. Names of all 14 selected features from the 193 features set.



From its algorithm, it is known that Outguess does not embed the informa-
tion into coefficients with values 0 and 1. For this reason, and from the 7 first
selected features, it is likely that it changes the coefficients with values −2 and
−1, having several sensitive features to such changes react: dual histograms of
coefficients −1 and −2, co-occurrence matrix coefficients related to −1 and −2
values changes. . .

In the end, this set of features describes in a more precise way the functioning
and problems of the Outguess algorithm. Taking these into account might help
improve the scheme and become less detectable.

6 New algorithms and ideas for further investigations

Two algorithms thought to investigate the current selection results achieved are
presented here. These algorithms are derivations of the forward algorithm. They
have been thought to try to address the drawbacks of the forward algorithm,
that is, the one-by-one selection process by incremental adding of features.

6.1 “Anti-forward”

The “anti-forward” algorithm is an inverse forward in this sense that it selects
the worst features first, instead of the best ones. The result on the very same
feature set as before can be seen on Fig 7.
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Fig. 7. Anti-forward

A line has been drawn at 65% of correct classification to illustrate how many
variables are below this limit. Among the last selected features – that is, the
most relevant ones, in a sense –, many belong to the set of 14 features that has
been retained for the previous results and analysis. As can be seen, the “linear”
relation for the beginning of the graph is broken around 174 features, to increase
a lot more.



Eventhough there is a clear correlation between the forward selected set of
features and the 193 − 174 = 19 remaining features, some new features are
present and their importance and influence can be investigated.

6.2 “Grouped forward”

The idea behind the “grouped” forward was to try to solve the forward prob-
lem when considering groups of relevant features when the standalone features
are not as relevant. For this matter, a size S for the groups is set. The classi-
cal forward algorithm is then used on the whole data set R, until the number
of selected features reaches S. These S features are removed and a forward is
launched again on the Card(R) − S remaining features of the data set. Until
none remains in the data set.

A plot of the correct classification rate is obtained for each group: 1 to 10 in
our case since we used a group size of 10 on the 193 features set. This plot is
shown on Fig 8.
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Fig. 8. Grouped Froward

This plot clearly separates the whole set of features into two: the first four
groups, achieving each at least 73% of correct classification with only one feature,
and the other six ones which seem to be not relevant enough for classification.

A research on the appropriate size S of the groups depending on the goals,
has to be done.

7 Conclusion

This paper has presented a new methodology for dimensionality reduction by
feature selection in the framework of steganalysis.



The issues of dimensionality have been addressed and the first step of our
methodology proves that the theoretically required number of images for correct
training is far from being needed. By the use of a Monte-Carlo technique on up
to 4000 images, it has been shown that such numbers of images are sufficient
for stable results. A set of 193 features extracted from all images serves the
classification process, preceded by the dimensionality reduction step. This part
of our methodology is achieved using a forward selection with a KNN classifier. It
enables to reduce the number of required features to 14, while keeping roughly
the same classification results. Computational time is thus greatly improved,
divided by about 11. Further analysis becomes again possible with this low
number of features: conclusions and precisions about the steganographic scheme
can be inferred from the obtained feature set. The last step using SVM for
improvement over the previous KNN results achieves high classification results
for so small a feature set, proving that many features among the full 193 set
might not be relevant enough to be kept for classification purposes.

A comparison between the obtained reduced sets of features for various
steganographic algorithms might reveal some common sensitive features. An
analysis of these common points could help design a more generic steganalysis
method using a “low” number of features.

Meanwhile, the new tools proposed might be of great help when analyzing the
retained features and trying to improve the results. Crossing these results will
likely lead to validation of the current set, with possible improvements when
combining with the new discovered features. The “group forward” might also
lead to developments on the selection of groups of features instead of one-by-
one processing, thus taking into account possible relationships and dependencies
between features.
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