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Abstract—In this paper, a neural network approach is pro-
posed for air quality forecasting based on the air quality
time series itself as well as external meteorological records. A
regularized version of the Extreme Learning Machine is used
as the main model for the forecasts and feature selection is
performed to select the most relevant model inputs. The proposed
method is evaluated under different approaches for performing
spatial data fusion. Experiments show that accuracy is increased
by considering meteorological data; that it matters greatly for
the model how the spatial aspect of the problem is taken into
account; and finally, that the model is generally able to select
relevant inputs and provide accurate air quality forecasts.

I. INTRODUCTION

Air quality is one of the most important parts defining the
environment and has a close relationship with human health.
For example, a 10− µg/m3 elevation in the concentration of
particulate matter (PM) has been associated with 8% to 18%
increase in mortality risk [11]; and short-term O3 exposure
could bring about acute coronary events [12]. Therefore, it is
important to predict the air quality so that people can arrange
their activities accordingly, both in time and location.

There are two main approaches to air quality prediction:
deterministic approaches (e.g. modeling the process by which
pollutants spread, and predict air quality given information on
pollutant sources and meteorological conditions), and statisti-
cal approaches (e.g. relying on extensive historical air quality
records) [3]. However, in the deterministic approach, real-
time forecasting can be difficult due to the complexity of the
simulations, and the accuracy depends on the available knowl-
edge on the pollutant sources, which might be incomplete.
Statistical approaches, however, rely on extensive historical
measurements at spatially distributed monitoring stations.

An example of the statistical approach is the work by
Gardner et al. [4], which investigate neural networks for air
quality prediction. The research shows the capability of neural
networks of learning complex patterns, even with a simple
multilayer perceptron (MLP) with 20 neurons and 2 layers
[4]. Further work by Kolehmainen et al. shows that a 16-
neuron MLP outperforms the regression method with periodic
components extracted from NO2 and meteorological time
series data [8]. Finally, Voukantsis et al. [16] uses principal
component analysis (PCA) to summarize the information
across 9 meteorological variables into 4 principal components
(PC), and shows that reasonable accuracy can be achieved,
while reducing the number of variables.

However, due to limited computational capability, the num-
ber of neurons in the above MLP networks is no larger than 20.
The amount of neural network input variables is also relatively

small in the above cases: Gardner et al. [4] uses meteorological
records from only one station, while Kolehmainen et al. [8]
uses the average of records from four stations. And while
Voukantsis et al. [16] reduces the number of variables using
PCA, only daily records are used as input for the MLP when
hourly records are available.

Training of a large-scale MLP network can be slow, and
tricky due to local minima and other problems such as long
plateaus in error minimization. Extreme Learning Machine
(ELM) [7] is a simpler neural network which is fast to
train and does not suffer from local minima. Yet it has a
good representative power, and it provides good results, both
in classification and regression problems. It has been used
successfully in a variety of applications [6], including air
quality prediction [15], where ELM was used to predict the
daily average level of PM10 in Macau and shown to provide
better results than a Support Vector Machine.

This paper proposes a method based on ELM to predict
the air quality using hourly records of air condition and
meteorological data from multiple stations within a relatively
small area around Helsinki. Unlike above research projects,
the training data size is much larger, namely, two years of
hourly air quality data from multiple locations. Furthermore,
there are 5 types of meteorological hourly records available
from more than 20 stations. Because of the large amount of
data and possible inputs for the model, variable selection and
dimensionality reduction are used to identify and generate
variables important for accurate predictions. The proposed
approach is tested using different methods for incorporating
the spatial aspect of the problem, and is shown to be able
to identify relevant variables for the prediction and provide
accurate air quality forecasts.

II. THEORY / METHODS

A. Extreme Learning Machine (ELM)

1) Basic version: Let N be the total number of training
samples where each sample is represented by a pair (xj , yj)
where xj is the jth sample with dimensionality d and yj is
the observed scalar output. Assume the weights for the hidden
neurons are in vector form W = (w1,w2, ...,wL) and bias
as b = (b1, b2, ..., bL), where wi is the d-dimensional weight
vector containing the weights between the components of the
input vectors and the ith neuron in the hidden layer, and
bi is the bias term of the ith hidden neuron. The network
with L hidden neurons will have β = (β1, β2, ..., βL) as
weights for output layer and f(.) is the activation function.
The mathematical expression of the network can be written as
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where ŷj is the predicted value of yj . The key idea in the
Extreme Learning Machine is that the weights W and biases
b of the hidden layer are generated randomly and remain fixed.
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where βi is the scalar weight between the single output neuron
and the ith neuron in the hidden layer. The output of the ELM,
modeling the observations can now be written as

Ŷ = Hβ.

Because the output layer in the ELM is linear, in our case
consisting of a single linear neuron, the unknown weights β
of the output layer can be solved from linear equations as
follows:

Hβ = Y

HTHβ = HTY

(HTH)−1HTHβ = (HTH)−1HTY

β = (HTH)−1HTY

where (HTH)−1HT is known as the Moore-Penrose pseudo-
inverse of H, represented by H†. This is the least-squares
solution for the realistic case of an over-determined linear
system (i.e. in which the number of training samples N is
larger than the number of hidden neurons L). There is another
form H+ = HT (HHT )−1 for the case N < L. However,
since in this work N � L, only the former is considered. Note
that although the output layer is linear, the nonlinearities f(.)
in the hidden layer still give the ELM a strong representative
power. For more details, see [7]. The whole algorithm is
summarized in Algorithm 1.

Algorithm 1 The basic ELM algorithm
1: Design a network with suitable number of hidden neurons

and activation functions;
2: Initialize the hidden layer weights W and biases b ran-

domly;
3: Compute the output weights β given training samples,

using the pseudo-inverse.
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Fig. 1. The structure of the ELM used in this work

2) Adding regularization: Since the weights of the hidden
layer are calculated based on the training data only, there is a
risk that the model will overfit and performs worse on the test
data than on the training data. To prevent this, so-called L2 or
Tikhonov regularization can be used, where a regularization
parameter λ penalizes the weights in the output layer of the
ELM [2]. The criterion to be minimized is now:

C =

N∑
j=1

(

L∑
i=1

βif(wixj + bi)− yj)2 + λ

L∑
i=1

β2
i

For given λ, the least-squares solution is now given by β =
(HTH+λI)−1HTY. By properly adjusting λ, overfitting can
be prevented [13].

3) Adding linear components: In addition to regularization,
adding a linear component to the ELM can be helpful to model
any linear relation between X and Y [13]. The final structure
of the ELM used in this work is shown in Figure 1.

B. Efficient LOO Computation and Model Structure Selection

As already mentioned above, in the process of training a
model there is a risk of the model overfitting to the training
data, resulting in bad performance on unseen test data. A
common way to prevent overfitting is to do model structure
selection using k-fold cross-validation, where the training data
is divided into k folds and the model is tested on each of those
k folds, while being trained on the remaining k − 1 folds. A
special case of k-fold cross-validation is leave-one-out (LOO)
cross-validation, where k is equal to N , the number of samples
in the training set. Hence, in each fold, only one sample is



excluded from the training data set and is used for validation.
Let ε−i denote the validation error on fold i, then the leave-
one-out error can be computed as

εLOO =
1

n

∑
(ε−i)

2.

This criterion is then used to optimize the structure and
hyper-parameters of the model. Generally speaking, a model
would need to be trained k = N times. However, for linear
models there is a closed-form solution for εLOO, known as the
”predicted residual error sum of squares” (PRESS) statistics
[9]:
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1
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∑
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2

=
1
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2

=
1

N

∑
(

εi
1−Gii
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where β−i denotes the weights of the model trained on all
except the ith sample and Gii denotes the ith element in the
diagonal of G = H(HTH)−1HT , which is known as the hat
matrix [9]. Recall that in the training of ELM, the pseudo-
inverse H† = (HTH)−1HT is computed. Therefore, com-
puting the diagonal of the G matrix, and thus εLOO, comes
at very little computational overhead. Using this efficient
leave-one-out cross-validation, candidate models using e.g.
different inputs, numbers of hidden neurons, or regularization
parameters can quickly be evaluated and therefore, model
structure selection can be efficiently performed. For more
details, see [13], [17].

C. Feature Selection and Dimensionality Reduction

In this work, the future values of air quality are predicted
based on past hourly records. Since the number of potential
inputs can be very large and may contain irrelevant or noisy
variables, an important question is which and what kind of
variables should be used as the inputs for the model. One
possibility would be to perform feature selection, and use
a subset of the original variables. Another possibility is to
construct a set of new variables, given the original variables.

1) Feature selection: The target of feature selection is to
determine which variables should be included in the model.
In this work, a wrapper method known as ”forward selection”
is used [5]. Starting from an empty variable subset, in each
iteration it finds and adds that variable which results in the
best accuracy along with the variables selected so far. The
steps of performing forward selection for a particular ELM are
summarized in Algorithm 2. The main advantage of forward
selection is that it is fast, with a time complexity of O(n ·
D), where n is the number of features to be selected and D
the total number of candidate features. At the same time, it
is easy to understand and implement. However, it does not
guarantee the globally optimal solution, as not all the feature
combinations in the search space are evaluated.

Algorithm 2 ELM-based forward selection
1: Initialize the candidate variable set with all the available

variables and the selected variable set as empty.
2: Find the variable xj in the candidate variable set, com-

bined with all variables in the selected variable set, which
leads the smallest LOO error with ELM;

3: Add xj into selected variable set and remove it from the
candidate variable set;

4: Stop when the required number of features are included
in the selected variable set, otherwise go to step 2.

2) Dimensionality reduction: In dimensionality reduction,
the goal is to replace the original variables with a smaller set
of new features, without significant loss of the relevant original
information. The new features are derived using e.g. principal
component analysis (PCA), Fourier transform (FT) or Wavelet
analysis [5]. In this work, PCA is used for feature extraction
and reducing the dimensionality of the inputs. The focus of
this study is on whether or not a set of principle components
can be used to replace the station-wise records without loss
of accuracy. Thus, the above feature selection procedure is
carried out on all principle components, and the number of
candidate components is the same as the amount of stations
for each type of meteorological records.

III. EXPERIMENTAL ARRANGEMENTS

A. Data set

1) Air quality records: Thanks to the Finnish Meteorolog-
ical Institute, there are hourly air quality records published
online [1]. The data set used in this study contains hourly
records of NO, O3, PM10 and PM2.5, from 2013/01/01 to
2014/12/31. There are altogether 25 stations available around
the Helsinki Metropolitan Area recording the related data,
which can be seen in Figure 2.

2) Meteorological records: In addition to the air quality
records, hourly meteorological records are available for the
same region from NOAA’s National Centers for Environmental
Information (NCEI) [10]. This includes basic weather records,
such as relative humidity, pressure, temperature, and wind.

3) Missing data imputation and normalization: Since both
air quality and meteorological data sets contain missing values,
missing value imputation needs to be performed. Stations
with more than 40% of data points missing are removed,
while for the remaining stations missing values are imputed as
summarized in Figure 3. Once the missing values are imputed,
the data is normalized to have zero mean and unit variance.
The final amount of stations and samples is summarized in
Table I. The last 3000 data points are set aside as a test set,
while the remainder is used for training and cross-validation.

B. Model Details

Since the performance of ELM is affected by its parameter
settings, leave-one-out cross-validation studies were performed
to determine the most suitable parameters. These are summa-
rized below.



Fig. 2. Distribution of air quality stations and meteorological stations.

Air pollutant concentration hourly records

24 hour × 2 years= 17520 samples (2013 to 2014): 

NO 14 stations

O3 7 stations

PM2.5 12 stations

PM10 8 stations

Meteorological hourly records

24 hour × 2 years= 17520 samples (2013 to 2014): 

Temperature 16 stations

Sea Level Pressure 15 stations

Humidity 20 stations

Wind Speed/Angle 16 stations

Precipitation, Cloud observation, 

Visibility 
Ignored this 

time
…

TABLE I
DISTRIBUTION OF AIR QUALITY STATIONS AND METEOROLOGICAL STATIONS.
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Fig. 3. Treatment of missing values in various conditions. When data is missing at regular intervals, linear interpolation along time is used based on the
assumption that the values change smoothly over time. However, if contiguous records are missing for a single station, linear interpolation based on its
neighboring stations is used, in the hope that fluctuations can be recovered.



1) Hidden layer weights and biases: Although in ELM the
hidden layer weights and biases are initialized randomly, their
scale greatly influences the results. Based on the parameter
studies, biases and weights were drawn from a uniform distri-
bution between [-1.5, 1.5] and [-1.0, 1.0], respectively.

2) Number of hidden neurons: With proper regulariza-
tion, more hidden neurons provide generally better results.
However, computational load may increase significantly and
there are diminishing returns. As a suitable trade-off between
accuracy and speed, the maximum number of hidden neurons
is set to be 400, while a smaller amount of 50 hidden neurons
is used in the first stage of feature selection. This should not
affect the results too much, while significantly reducing time
for the feature selection process.

3) Regularization parameter: The results of the initial
experiments indicate that when the regularization parameter λ
is set properly, ELM achieves remarkably lower error than its
non-regularized version. Since the optimal value of λ depends
on the number of input features and number of hidden neurons,
λ is optimized for each number of input features and number
of hidden neurons during the model selection and training.

C. Effect of Augmenting Air Quality with Meteorological Data
1) Candidate variable sets: Predictions for the air quality

in the next hour are based on the most recent records of the
air quality and meteorological data:
• For the air quality data, the 2000 most recent hourly

measurements are considered as candidate variables.
• For meteorological data, the 30 most recent hourly mea-

surements of each station are considered for each type.
As can be seen, the number of potential input variables can
quickly get out of hand. Therefore, feature selection needs
to be performed on both the air quality time series data
and meteorological records in order to reduce the number of
input features, and to select the features most relevant for the
prediction.

2) ELM-based forward selection: To decrease the time
required by the feature selection process, a two-stage ELM-
based forward selection is used:

1) At the first stage, the top 50 variables of each type of
data are selected using a relatively simple ELM (hidden
layer size is 50). These are represented by xair for
air quality, xh for relative humidity, xdt for dew point
temperature, xp for pressure and xt for temperature.

2) At the second stage, feature selection is done using
a more complex ELM (hidden layer size is 400) on
the combined candidate feature sets formed by [xair],
[xair,xh], [xair,xdt], [xair,xp], [xair,xt].

In this paper, all 50 or 100 variables are eventually selected
in the second stage and therefore more of a ranking than a
selection is achieved. This experiment should reveal if certain
types of meteorological data can improve the air quality pre-
diction. In practice, of course, the practitioner can prematurely
stop selecting additional variables, once a desired leave-one-
out accuracy is achieved on the available training data. The
entire procedure is summarized in Figure 4.

global model or local model
raw meteo global + raw local + raw
pca meteo global + pca local + pca

TABLE II
FOUR DIFFERENT APPROACHES FOR SPATIAL DATA FUSION.

D. Effect of Different Approaches to Spatial Data Fusion

Aside from augmenting the data with meteorological mea-
surements and selecting the most relevant variables in time, the
spatial aspect of the problem can be incorporated in various
ways. Therefore, the proposed model is evaluated using several
approaches to spatial data fusion:

• Either a single model is trained for all stations (global
model), or each station has its own model (local model).
Global models might be able to exploit having larger
amount of data, while local models might be able to better
model local dependencies.

• Either meteorological data is used as-is, that is, station-
wise normalized data, or meteorological data from mul-
tiple stations is ”summarized” by considering principal
components of multiple meteorological stations instead.

The resulting four different approaches are summarized in
Table II. Other settings such as hyper-parameters for the ELM
remain the same.

IV. RESULTS

Global Model: raw meteo vs. pca meteo

Figure 5 summarizes the results of the global model ap-
proach, where one model is trained to predict the air quality
at all stations. The rows show the training and test accuracy
respectively, while the columns show the effect of augmenting
the air quality data with various meteorological information.
From the results, it can be seen that especially relative hu-
midity and temperature can improve the prediction accuracy,
while dewpoint temperature and air pressure do not help much.
With respect to using station-wise data or PCA-wise data, it
can be seen that there is no significant difference between
these approaches in terms of accuracy. Therefore, a limited
number of principal components could be used as candidate
input variables, speeding up the whole approach.

Local Model: raw meteo vs. pca meteo

Figure 6 summarizes the results of the local model ap-
proach, where the air quality for a station is predicted with a
station-specific ELM, using historical air quality records from
only that station and the meteorological data from the whole
region. Similar to the results from the global model, prediction
accuracy is improved by considering relative humidity and
temperature records. An important difference is that for the
local model, using PCA-wise data hurts accuracy and it
is better to use station-wise data instead. Presumably, by
summarizing the meteorological stations using PCA, spatial
information useful for local prediction gets lost.
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V. CONCLUSIONS

In this work, a neural network based approach was proposed
for air quality prediction. Special attention was given to the
feature selection, and it was investigated whether accuracy
can be improved by considering additional sources of in-
formation, like meteorological data. The proposed approach
was consequently evaluated with different approaches for
performing spatial data fusion. Based on the results, a number
of conclusions can be drawn:

1) Feature selection is effective: Feature selection is able
to identify relevant variables for the prediction and greatly
reduces the number of variables used as input in the model,
while attaining high accuracy.

2) ELM enables the possibility of real-time processing:
With the help of simple structure and fast training algorithm
of ELM, combined with feature selection, it is possible to have
real-time processing of large meteorological data sets, where
they are hundreds or thousands of stations with hourly (or even
higher-frequency) measurements.

3) Summarizing station data helps in global models, but
not in local models: Depending on whether a global or local
model is used, summarizing the meteorological data using
PCA can help reduce the search space for feature selection:
when training a global model, the station-wise data can be
replaced by its top principal components. Therefore, in future
studies, a limited amount of principal components can be con-
sidered to reduce model complexity. However, when training a
local model, this approach discards useful spatial information
and using station-wise data results in better accuracy.

In future work, multiple ELMs might be ensembled to
further improve accuracy. Furthermore, since the dispersion
of the pollutant is a spatial-temporal process, the accuracy of
prediction might be improved if also the air quality records
of multiple stations are incorporated. However, the increased
complexity of the model and number of variables could bring
more challenges. Including more stations would increase the
size of the input layer of the ELM and would significantly in-
crease the amount of calculations in the feature selection stage.
Therefore, to reduce the processing time, the parallelization
of those algorithms, such as the ELM-based feature selection
would be interesting to explore [14].

In summary, the proposed approach provides a flexible and
reliable method for air quality prediction. It provides accurate
predictions while being much faster than to train than other
types of models, making it suitable for such meteorological
problems where massive amount of data is generated every
day.
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