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70 Variational Bayesian learning of generative models

3.1 Bayesian modeling and variational learning

Unsupervised learning methods are often based on a generative approach where the goal
is to find a model which explains how the observations were generated. It is assumed that
there exist certain source signals (also called factors, latent or hidden variables, or hidden
causes) which have generated the observed data through an unknown mapping. The goal
of generative learning is to identify both the source signals and the unknown generative
mapping.

The success of a specific model depends on how well it captures the structure of the
phenomena underlying the observations. Various linear models have been popular, because
their mathematical treatment is fairly easy. However, in many realistic cases the observa-
tions have been generated by a nonlinear process. Unsupervised learning of a nonlinear
model is a challenging task, because it is typically computationally much more demanding
than for linear models, and flexible models require strong regularization.

In Bayesian data analysis and estimation methods, all the uncertain quantities are
modeled in terms of their joint probability distribution. The key principle is to construct
the joint posterior distribution for all the unknown quantities in a model, given the data
sample. This posterior distribution contains all the relevant information on the parameters
to be estimated in parametric models, or the predictions in non-parametric prediction or
classification tasks [1].

Denote by H the particular model under consideration, and by 6 the set of model
parameters that we wish to infer from a given data set X. The posterior probability
density p(0]X,H) of the parameters given the data X and the model H can be computed
from the Bayes’ rule
X160, H)p(6|H)

p(X[H)
Here p(X|0,H) is the likelihood of the parameters 6, p(@|H) is the prior pdf of the pa-

rameters, and p(X|H) is a normalizing constant. The term H denotes all the assumptions
made in defining the model, such as choice of a multilayer perceptron (MLP) network,

po1x, 1) = 2

(3.1)

specific noise model, etc.

The parameters 8 of a particular model H; are often estimated by seeking the peak
value of a probability distribution. The non-Bayesian maximum likelihood (ML) method
uses to this end the distribution p(X|6, H) of the data, and the Bayesian maximum a pos-
teriori (MAP) method finds the parameter values that maximize the posterior probability
density p(0|X,H). However, using point estimates provided by the ML or MAP methods
is often problematic, because the model order estimation and overfitting (choosing too
complicated a model for the given data) are severe problems [1].

Instead of searching for some point estimates, the correct Bayesian procedure is to
use all possible models to evaluate predictions and weight them by the respective pos-
terior probabilities of the models. This means that the predictions will be sensitive to
regions where the probability mass is large instead of being sensitive to high values of the
probability density [2]. This procedure solves optimally the issues related to the model
complexity and choice of a specific model H; among several candidates. In practice, how-
ever, the differences between the probabilities of candidate model structures are often very
large, and hence it is sufficient to select the most probable model and use the estimates
or predictions given by it.

A problem with fully Bayesian estimation is that the posterior distribution (3.1) has a
highly complicated form except for in the simplest problems. Therefore it is too difficult
to handle exactly, and some approximative method must be used. Variational methods
form a class of approximations where the exact posterior is approximated with a simpler
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distribution. We use a particular variational method known as ensemble learning [3, 4] that
has recently become very popular because of its good properties. In ensemble learning, the
misfit of the approximation is measured by the Kullback-Leibler (KL) divergence between
two probability distributions ¢(v) and p(v). The KL divergence is defined by

DG 9= [ ato)in %o (3.2

which measures the difference in the probability mass between the densities ¢(v) and p(v).

A key idea in ensemble learning is to minimize the misfit between the actual posterior
pdf and its parametric approximation using the KL divergence. The approximating density
is often taken a diagonal multivariate Gaussian density, because the computations become
then tractable. Even this crude approximation is adequate for finding the region where
the mass of the actual posterior density is concentrated. The mean values of the Gaussian
approximation provide reasonably good point estimates of the unknown parameters, and
the respective variances measure the reliability of these estimates.

A main motivation of using ensemble learning is that it avoids overfitting which would
be a difficult problem if ML or MAP estimates were used. Ensemble learning allows one
to select a model having appropriate complexity, making often possible to infer the correct
number of sources or latent variables. It has provided good estimation results in the very
difficult unsupervised (blind) learning problems that we have considered.

Ensemble learning is closely related to information theoretic approaches which mini-
mize the description length of the data, because the description length is defined to be the
negative logarithm of the probability. Minimal description length thus means maximal
probability. In the probabilistic framework, we try to find the sources or factors and the
nonlinear mapping which most probably correspond to the observed data. In the informa-
tion theoretic framework, this corresponds to finding the sources and the mapping that
can generate the observed data and have the minimum total complexity. Ensemble learn-
ing was originally derived from information theoretic point of view in [3]. The information
theoretic view also provides insights to many aspects of learning and helps explain several
common problems [5].

In the following subsections, we first present some recent theoretical improvements to
ensemble learning methods and a practical building block framework that can be used to
easily construct new models. After this we discuss practical models for nonlinear static
and dynamic blind source separation as well as hierarchical modeling of variances. Finally
we present applications of the developed Bayesian methods to inferring missing values
from data and to detection of changes in process states.
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3.2 Theoretical improvements

Using pattern searches to speed up learning

The parameters of a latent variable model used in unsupervised learning can usually be
divided into two sets: the latent variables or sources S, and other model parameters
6. The learning algorithms used in variational Bayesian learning of these models have
traditionally been variants of the expectation maximization (EM) algorithm, which is
based on alternatively estimating S and 0 given the present estimate of the other.

The standard update algorithm can be very slow in case of low noise, because the
updates needed for S and 0 are strongly correlated. Therefore one set can be changed
very little only while the other is kept fixed in order to preserve the reconstruction of the
data. So-called pattern searches, which use the combined direction of a round of standard
updates and then perform a line search in this direction, can help to avoid this problem [1].

The effect of using pattern searches is demonstrated in Figure 3.1 which shows the
speedups attained in experiments with hierarchical nonlinear factor analysis (HNFA) (see
Sec. 3.4) in different phases of learning. As the nonlinear model is susceptible to local
minima, the different algorithms do not always converge to the same point. So the com-
parison was made by looking at the times required by the methods to reach a certain level
of the cost function value above the worst local minimum found by the two algorithms.
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Figure 3.1: The average speedup obtained by pattern searches in different phases of learn-
ing. The speedup is measured by the ratio of times required by the basic algorithm and
pattern search method to reach certain level of cost function value. The solid line shows
the mean of the speedups over 20 simulation with different initializations and the dashed
lines show 99 % confidence intervals for the mean.

Effect of posterior approximation

Most applications of ensemble learning to ICA models reported in the literature assume
a fully factorized posterior approximation ¢(v), because this usually results in a computa-
tionally efficient learning algorithm. However, the simplicity of the posterior approxima-
tion does not allow to represent all different solutions, which may greatly affect the found
solution.

Our recent paper [2] shows that neglecting the posterior correlations of the sources in
¢(S) introduces a bias in favor of principal component analysis (PCA) solution. By the
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PCA solution we mean the solution which has an orthogonal mixing matrix. Nevertheless,
if the true mixing matrix is close to orthogonal and the source model is strongly in favor
of the desirable ICA solution, the optimal solution can be expected to be close to the ICA
solution.

Figure 3.2 illustrates this general trade-off of variational Bayesian learning between
the misfit of the posterior approximation and the accuracy of the model. According to our
assumption, the sources can be accurately modeled in the ICA solution. Therefore, the
cost of inaccurate assumption would increase towards the ICA solution as shown with the
dashed line on the second plot of Fig. 3.2. On the other hand, if the true mixing matrix is
not orthogonal, the optimal posterior covariance of the sources could look like the one in
the upper plot of Fig. 3.2. Then, the misfit of the posterior approximation of the sources
is minimized in the PCA solution where the true posterior covariance would be diagonal.

In [2], we considered a linear dynamic ICA model but the analysis extends to nonlinear
mixtures and non-Gaussian source models as well.

The form of the true posterior p(s(t) | A, x(t))

ICA PCA
The cost of the posterior and source model misfit

- - - Cost of posterior misfit
—— Cost of source model misfit

ICA PCA

Figure 3.2: Schematic illustration of the trade-offs between the ICA and PCA solutions.
In the PCA solution, the posterior covariance of the sources is diagonal. This minimizes
the misfit between the optimal posterior and its approximation. However, the sources are
explained better in the ICA solution.
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3.3 Building blocks for variational Bayesian learning

In graphical models, there are lots of possibilities to build the model structure that defines
the dependencies between the parameters and the data. To be able to manage the vari-
ety, we have designed a modular software package using C++/Python called the Bayes
Blocks [1]. The theoretical background on which it is based on, was published in [2].

The design principles for Bayes Blocks have been the following. Firstly, we use stan-
dardized building blocks that can be connected rather freely and can be learned with local
learning rules, i.e. each block only needs to communicate with its neighbors. Secondly,
the system should work with very large scale models. We have made the computational
complexity linear with respect to the number of data samples and connections in the
model.

The building blocks include Gaussian variables, summation, multiplication, and non-
linearity. Each of them can be a scalar or a vector. Variational Bayesian learning provides
a cost function which can be used for updating the variables as well as optimizing the model
structure. The derivation of the cost function and learning rules is automatic which means
that the user only needs to define the connections between the blocks.

Figure 3.3 shows an example of a structure which can be built using the Bayes Blocks
library. More structures can be found in [2, 3], and their application to hierarchical
modeling of variances is described in Sec. 3.5.

()
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Figure 3.3: An example of a structure that can be built using Bayes Blocks. It includes
latent variables s(t), u(t) (and some parameters), observed variables x(t), a nonlinearity
f(+), and affine transformations A and B. The variables u(¢) model the variances of z(t).
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3.4 Nonlinear static and dynamic blind source separation

The linear principal and independent component analysis (PCA and ICA, respectively)
[1] model the data so that it has been generated by sources through a linear mapping.
PCA looks for uncorrelated sources, restricting the directions of the sources to be mutually
orthogonal. On the other hand, ICA requires that the sources are statistically indepen-
dent which is a stronger assumption than uncorrelatedness, but there is no orthogonality
restriction. In general, PCA is sufficient for Gaussian sources only, because it does not
exploit higher than second-order statistics in any way [1].

We have applied variational Bayesian learning to nonlinear counterparts of PCA and
ICA where the generative mapping from sources to data is not restricted to be linear. The
general form of the model is

x(t) = £(s(t),0;) + n(t) . (3.3)

This can be viewed as a model about how the observations were generated from the sources.
The vectors x(t) are observations at time ¢, s(t) are the sources, and n(¢) the noise. The
function f(-) is a mapping from source space to observation space parametrized by 6.

Nonlinear ICA by multi-layer perceptrons

In an earlier work [2, 3] we have used multi-layer perceptron (MLP) network with tanh-
nonlinearities to model the mapping f:

f(s;A,B,a,b) = Btanh(As +a) + b. (3.4)

The mapping f is thus parametrized by the matrices A and B and bias vectors a and
b. MLP networks are well suited for nonlinear PCA and ICA. First, they are universal
function approximators which means that any type of nonlinearity can be modeled by them
in principle. Second, it is easy to model smooth, close to linear mappings with them. This
makes it possible to learn high dimensional nonlinear representations in practice.

Traditionally MLP networks have been used for supervised learning where both the
inputs and the desired outputs are known. Here sources correspond to inputs and obser-
vations correspond to desired outputs. The sources are unknown and therefore learning is
unsupervised.

Usually the linear PCA and ICA models do not have an explicit noise term n(t) and
the model is thus simply x(¢) = f(s(t)) = As(t) + a, where A is a mixing matrix and a is
a bias vector. The corresponding PCA and ICA models which include the noise term are
often called factor analysis and independent factor analysis (FA and IFA) models. The
nonlinear models discussed here can therefore also be called nonlinear factor analysis and
nonlinear independent factor analysis models.

Hierarchical nonlinear factor analysis

The computational complexity of the variational Bayesian learning algorithm for the MLP
network model is quadratic with respect to the number of sources in the model. To avoid
this problem, an alternative hierarchical structure based on the build block approach
presented in Section 3.3 was studied in [4]. One of the building blocks is a Gaussian
variable ¢ followed by a nonlinearity ¢:

$(€) = exp(—€%). (3.5)
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Figure 3.4: Each scatter plot shows the values of one original source signal plotted against
the best corresponding estimated source signal after a rotation with FastICA.

The motivation for choosing this particular nonlinearity is that for Gaussian posterior
approximation g¢(§), the posterior mean and variance and consequently the cost function
can be evaluated analytically.

Using this construction—Gaussian variables followed by nonlinearity—it is possible to
build nonlinear mappings for which the learning time is linear with respect to the size
of the model. The key idea is to introduce latent variables h(t) before the nonlinearities
and thus split the mapping Eq. (3.4) into two parts in the hierarchical nonlinear factor
analysis (HNFA) model:

h(t) = Bs(t)+b +ny(t) (3.6)
x(t) = A¢h(t)] + Cs(t) +a+n,(t),

where ny(t) and n,(¢) are Gaussian noise terms. Note that we have included a short-cut
mapping C from sources to observations. This means that hidden nodes only need to
model the deviations from linearity.

The source model in HNFA is Gaussian so the model cannot be used for ICA. It can,
however, be used as a nonlinear preprocessing method that extracts the correct subspace
within which the correct rotation is then recovered using a standard linear ICA algorithm.
Figure 3.4 illustrates the results of using HNFA together with the FastICA algorithm [1] for
standard linear ICA to extract the sources from an artificial noisy nonlinear mixture. The
data set used consisted of 1000 20-dimensional vectors which were created by nonlinearly
mixing eight non-Gaussian independent random sources. A nonlinear model is clearly
required in order to capture to underlying nonlinear manifold.
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Nonlinear state-space models

In many cases, measurements originate from a dynamic system and form time series.
In such cases, it is often useful to model the dynamics in addition to the instantaneous
observations. We have extended the nonlinear factor analysis model by adding a nonlinear
model for the dynamics of the sources s(¢) [5]. This results in a state-space model where
the sources can be interpreted as the internal state of the underlying generative process.
The nonlinear static model of Eq. (3.3) can easily be extended to a dynamic one by
adding another nonlinear mapping to model the dynamics. This leads to source model

(1) = gls(t — 1).05) + m(1), (3.8)

where s(t) are the sources (states), m is the Gaussian process noise, and g(-) is a vector
containing as its elements the nonlinear functions modeling the dynamics.

As in nonlinear factor analysis, the nonlinear functions are modeled by MLP networks.
The mapping f has the same functional form (3.4). Since the states in dynamical systems
are often slowly changing, the MLP network for mapping g models the change in the value
of the source:

g(s(t—1)) =s(t—1)+Dtanh[Cs(t — 1) +c| +d. (3.9)

An important advantage of the proposed new method is its ability to learn a high-
dimensional latent source space. We have also reasonably solved computational and over-
fitting problems which have been major obstacles in developing this kind of unsupervised
methods thus far. Potential applications for our method include prediction and process
monitoring, control and identification. A process monitoring application is discussed in
Section 3.6 in more detail.

Postnonlinear factor analysis

Our recent work restricts the general nonlinear mapping in (3.3) to the important case of
post-nonlinear (PNL) mixtures. The PNL model consists of a linear mixture followed by
componentwise nonlinearities acting on each output independently from the others:

xz(t) = f; [Ai,;s(t)] + nz(t) 1=1,...,n (310)

The notation A; . in this equation means the i:th row of the mixing matrix A. Preliminary
results from the model (3.10) are encouraging. The results will be published in forthcoming
papers.
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3.5 Hierarchical modeling of variances

In many models, variances are assumed to be constant although this assumption is of-
ten unrealistic in practice. Joint modeling of means and variances is difficult in many
learning approaches, because it can give rise to infinite probability densities. In Bayesian
methods using sampling the difficulties with infinite probability densities are avoided, but
these methods are not efficient enough for very large datasets. Our variational Bayesian
method [1, 2], which is based on our building blocks framework (see Sec. 3.3), is able to
jointly model both variances and means efficiently.

The basic building block in our models is the variance neuron, which is a time-
dependent Gaussian variable u(t) controlling the variance of another time-dependent Gaus-
sian variable £(t)

E(t) ~ N (g (t), exp[—u(t))
Here N (p,0?) is the Gaussian distribution with mean p and variance o2, and pe(t) is the
mean of £(t) given by other parts of the model.

Figure 3.5 shows three examples of usage of variance neurons. The first model does
not have any upper layer model for the variances. There the variance neurons are useful
as such for generating super-Gaussian distributions for s, enabling in effect us to find
independent components. In the second model the sources can model concurrent changes
in both the observations x and the modeling error of the observations through variance
neurons u,. The third model is a hierarchical extension of the linear ICA model. The
correlations and concurrent changes in the variances ug(t) of conventional sources s(t) are
modeled by higher-order variance sources r(t).

r(t) ur(t)
s(t) B
Ug (t) Us (t)
A s(t)
x(t) A
(a)
x(t)

Figure 3.5: Various model structures utilizing variance neurons. Observations are denoted
by x, linear mappings by A and B, sources by s and r, and variance neurons by u.

We have used the model of Fig. 3.5(c) for finding variance sources from biomedical
data containing MEG measurements from a human brain. Part of that dataset is shown
in Figure 3.6(a). The signals are contaminated by external artefacts such as digital watch,
heart beat as well as eye movements and blinks. The most prominent feature in the area
we used from the dataset is the biting artefact. There the muscle activity contaminates
many of the channels starting after 1600 samples.

Some of the estimated ordinary sources s(t) and their variance neurons u,(t) are shown
in Figures 3.6(b) and 3.6(c). The variance sources r(t) that were discovered are shown in
Figure 3.6(d). The first variance source clearly models the biting artefact. This variance
source integrates information from several conventional sources and its activity varies very
little over time. The second variance appears to represent increased activity during the
onset of the biting, and the third variance source seems to be related to the amount of
rhythmic activity on the sources.



Variational Bayesian learning of generative models 81

Q 500 1000 1500 2000 2500

a 500 1000 1500 2000 2500

(c)

Figure 3.6: (a) MEG recordings (12 out of 122 time series). (b) Sources s(t) (nine out
of 50) estimated from the data. (c¢) Variance neurons u(t) corresponding to the sources.
(d) Variance sources r(¢) which model the regularities found from the variance neurons.
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3.6 Applications

In this section, applications of hierarchical nonlinear factor analysis and nonlinear state-
space models discussed earlier in Section 3.4 are presented.

Missing values

Generative models can usually easily deal with missing observations. For instance in self-
organizing maps (SOM) the winning neuron can be found based on those observations that
are available. The generative model can also be used to fill in the missing values. This
way unsupervised learning can be used for a similar task as supervised learning. Both the
inputs and desired outputs of the learning data are treated equally. When a generative
model for the combined data is learned, it can be used to reconstruct the missing outputs
for the test data. The scheme used in unsupervised learning is more flexible because any
part of the data can act as the cue which is used to complete the rest of the data. In
supervised learning, the inputs always act as the cue.

Data with missing values
aal I ™

Feedforward

Factors s(t)

Factors h(t)

o S |

HNFA reconstruction

I

NFA reconstruction

i 1 I L i
i |
Factors s(t) |

FA reconstruction

T

SOM reconstruction

~ .
<o
value || 1 |

Figure 3.7: Left: The reconstructions of missing values using HNFA are produced in the
feedforward direction. In the gradient direction, the components with missing values do
not affect the factors, which are thus inferred using only the observed data. Right: Speech
data reconstruction example with best parameters of each algorithm.

Data x(t)

The quality of the reconstructions provides insight to the properties of different unsu-
pervised models. The ability of self-organizing maps, linear principal component analysis,
nonlinear factor analysis, and hierarchical nonlinear factor analysis to reconstruct the
missing values of various data sets have been studied in [1]. Experiments were conducted
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Missing value pattern | FA HNFA NFA SOM
patches 1.87 | 1.80£0.03 | 1.74 +£0.02 | 1.69 4+ 0.02
patches, permutated | 1.85 | 1.78 £ 0.03 | 1.71 £ 0.01 | 1.55 £+ 0.01
randomly 0.57 | 0.55+.005 | 0.56 +.002 | 0.86 + 0.01
randomly, permutated | 0.58 | 0.55 £+ .008 | 0.58 £.004 | 0.87 + 0.01

Table 3.1: Mean-square reconstruction errors and their standard deviations for speech
spectra containing various types of missing values.

using four different patterns for the missing values. This way, different aspects of the
algorithms could be studied.

Table 3.1 shows the mean-square reconstruction errors (and their standard deviations
over different runs) of missing values in speech spectra. In Figure 3.7, the reconstructed
spectra are shown for a case where data were missing in patches and the data is not
permutated. In the permutated case, the learning data contained samples which were
similar to the test data with missing values. This task does not require generalization but
rather memorization of the learned data. SOM performs the best in this task because it
has the largest amount of parameters in the model.

The task where the data was missing randomly and not in patches of several neigh-
boring frequencies does not require a very nonlinear model but rather an accurate repre-
sentation of a high-dimensional latent space. Linear and nonlinear factor analysis perform
better than SOM whose parametrization is not well suited for very high-dimensional la-
tent spaces. The conclusion of these experiments was that in many respects the properties
of (hierarchical) nonlinear factor analysis are closer to linear factor analysis than highly
nonlinear mappings such as SOM. The nonlinear extensions of linear factor analysis are
nevertheless able to capture nonlinear structure in the data and perform as well or better
than linear factor analysis in all the reconstruction tasks. The new hierarchical nonlinear
factor analysis did not outperform the older nonlinear factor analysis in reconstruction
accuracy, but it was more reliable and computationally lighter.

Detection of process state changes

One potential application for the nonlinear dynamic state-space model discussed in Sec-
tion 3.4 is process monitoring. In [2, 3], ensemble learning was shown to be able to learn
a model which is capable of detecting an abrupt change in the underlying dynamics of a
fairly complex nonlinear process.

The process was artificially generated by nonlinearly mixing some of the states of three
independent dynamical systems: two independent Lorenz processes and one harmonic
oscillator.

The nonlinear dynamic model was first estimated off-line using 1000 samples of the
observed process. The model was then fixed and applied on-line to new observations with
artificially generated changes of the dynamics.

Figures 3.8 and 3.9 show an experiment with a change generated in the middle of the
new data set, at time 1500, when the underlying dynamics of one of the Lorenz processes
abruptly changes. Even though it is very difficult to detect this from the observed nonlinear
mixtures shown in Fig. 3.8, the change detection method based on the estimated model
readily detects the change raising alarms after the time of change. The method is also
able to find out in which states the change occurred: Analyzing the structure of the cost
function helps in localizing the detected changes, as demonstrated in Fig. 3.9.



84 Variational Bayesian learning of generative models

FAANAI AP AAANA N AN AN AAAAIN AN ]
A A AN A AAAA A M s g AP A i A AN

WU T 1LY,

1000 1250 1500 1750 2000

Figure 3.8: The monitored process (10 time series above) with the change simulated at
t = 500. Even though the change is hardly visible to the eye, it has been detected with
the estimated model: The test statistic of the proposed method is shown below.
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Figure 3.9: The estimated process states (left) and their contribution to the cost function
(right). The cause of the change can be verified by detecting the states which increase
their cost contribution.
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Figure 3.10: Two change detection performance measures calculated for the proposed
NDFA method as well as for some alternative techniques. The probability of false alarms
Py is plotted against the average time to detection D for different values of the detection
threshold. The closer a curve is to the origin, the faster the algorithm can detect the
change with low false alarm rate.

The experimental results in Fig. 3.10 show that the method outperforms several other
change detection techniques. Two alternative approaches compared with our method are
based on other types of nonlinear dynamic models, namely nonlinear autoregressive (NAR)
model and recurrent neural network (RNN) model. Other compared methods monitored
simple indicators of the process such as its mean and covariance matrix (CUSUM algorithm
and Shewhart control charts).
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