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Abstract:

A restricted Boltzmann machine (RBM) is often used as a building block for constructing deep
neural networks and deep generative models which have gained popularity recently as one way
to learn complex and large probabilistic models. In these deep models, it is generally known
that the layer-wise pretraining of RBMs facilitates finding a more accurate model for the data.
It is, hence, important to have an efficient learning method for RBM.

The conventional learning is mostly performed using the stochastic gradients, often, with the
approximate method such as contrastive divergence (CD) learning to overcome the computa-
tional difficulty. Unfortunately, training RBMs with this approach is known to be difficult, as
learning easily diverges after initial convergence. This difficulty has been reported recently by
many researchers.

This thesis contributes important improvements that address the difficulty of training RBMs.

Based on an advanced Markov-Chain Monte-Carlo sampling method called parallel tempering
(PT), the thesis proposes a PT learning which can replace CD learning. In terms of both the
learning performance and the computational overhead, PT learning is shown to be superior to
CD learning through various experiments. The thesis also tackles the problem of choosing the
right learning parameter by proposing a new algorithm, the adaptive learning rate, which is
able to automatically choose the right learning rate during learning.

A closer observation into the update rules suggested that learning by the traditional update rules
is easily distracted depending on the representation of data sets. Based on this observation, the
thesis proposes a new set of gradient update rules that are more robust to the representation
of training data sets and the learning parameters. Extensive experiments on various data sets
confirmed that the proposed rules indeed improve learning significantly.

Additionally, a Gaussian-Bernoulli RBM (GBRBM) which is a variant of an RBM that can
learn continuous real-valued data sets is reviewed, and the proposed improvements are tested
upon it. The experiments showed that the improvements could also be made for GBRBMs.

Keywords: Boltzmann Machine, Restricted Boltzmann Machine, Annealed Importance
Sampling, Parallel Tempering, Enhanced Gradient, Adaptive Learning Rate,
Gaussian-Bernoulli Restricted Boltzmann Machine, Deep Learning
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Chapter 1

Introduction

Deep learning has gained its popularity recently as a way of learning complex and large

probabilistic models (see, e.g., Bengio, 2009). Especially, deep neural networks such as

a deep belief network and a deep Boltzmann machine have been applied to various ma-

chine learning tasks with impressive improvements over conventional approaches (Hinton

& Salakhutdinov, 2006; Salakhutdinov & Hinton, 2009; Salakhutdinov, 2009b).

Deep neural networks are characterized by the large number of layers of neurons and by

using layer-wise unsupervised pretraining to learn a probabilistic model for the data. A

deep neural network is typically constructed by stacking multiple restricted Boltzmann ma-

chines (RBM) so that the hidden layer of one RBM becomes the visible layer of another

RBM. Layer-wise pretraining of RBMs then facilitates finding a more accurate model for

the data. Various papers (Salakhutdinov & Hinton, 2009; Hinton & Salakhutdinov, 2006;

Ranzato et al., 2010) empirically confirmed that such multi-stage learning works better than

conventional learning methods, such as the back-propagation with random initialization. It

is thus important to have an efficient method for training RBM .

Unfortunately, training RBM is known to be difficult. Recent research suggests that with-

out careful choice of learning parameters that are well suited to specific data sets and

RBM structures, learning algorithms can easily fail to model the data distribution correctly

(Schulz et al., 2010; Fischer & Igel, 2010; Desjardins et al., 2010b). This problem is often

evidenced by the decreasing likelihood during learning. These failures have discouraged

using RBMs and its extensions such as deep Boltzmann machines for more sophisticated

and variety of machine learning tasks.
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1.1 Contributions of the Thesis

This thesis aims to address this difficulty by proposing advanced learning methods.

Firstly, parallel tempering, an advanced Markov-chain Monte-Carlo sampling algorithm,

is proposed to replace a simple Gibbs sampling in obtaining the stochastic gradient. Con-

trastive divergence learning (Hinton, 2002) which is a learning algorithm for RBM based on

Gibbs sampling has been successfully used, in practice, for training RBMs, however, with

shortcomings that are discussed later in the thesis. As a way for addressing those short-

comings, parallel tempering learning is proposed and extensively tested through various

experiments.

Secondly, the thesis proposes an adaptive learning rate for choosing the appropriate learning

rate automatically. The adaptive learning rate is derived from maximizing a local approxi-

mation of the likelihood such that it removes the need for manually choosing the learning

rate and its scheduling.

Lastly, the enhanced gradient is designed so that the gradients do not contain the terms

which often distract learning. Furthermore, the enhanced gradient is invariant to the data

representation, for example, a bit-flipping transformation for RBM with both binary visible

and hidden neurons, and the sparsity of the data set does not affect learning anymore.

These improvements over the traditional learning methods are extensively studied with var-

ious experiments on a number of widely used benchmark data sets. MNIST handwritten

digits (LeCun et al., 1998), its bit-flipped version 1-MNIST, OptDigits handwritten digits

(Asuncion & Newman, 2007), and Caltech 101 Silhouettes data set (Marlin et al., 2010)

are heavily used for testing RBM which is able to model binary data sets. Additionally, a

Gaussian-Bernoulli RBMwhich is a variant of RBM that is capable of modeling continuous

values is experimented with CIFAR-10 data set (Krizhevsky, 2009) and CBCL face data set

(MIT Center For Biological and Computation Learning).

The experiments along with the theoretical background confirm that the proposed improve-

ments in learning methods indeed remove the discussed difficulties and improve the perfor-

mance in training RBMs.

1.2 Background and Related Work

A learning algorithm for Boltzmann machine and its variants has been introduced already

in 1985 by Ackley et al. (1985). However, training Boltzmann machines was considered

2



to be difficult due to its stochastic nature and the computational difficulty in estimating the

normalizing constant until recently.

The simplest variant of Boltzmann machines, a restricted Boltzmann machine, was intro-

duced by Smolensky (1986). RBM which has no intra-layer connection among the same

type of neurons, either visible or hidden, has a big advantage over the fully-connected Boltz-

mann machine. It became possible to perform Gibbs sampling required for computing the

stochastic gradient layer-wise and parallelized.

However, even the parallelized layer-wise Gibbs sampling requires that the sampling needed

to be performed until the Gibbs sampling chains converges to the equilibrium. It prevented

training RBM on large data sets, because it requires unacceptably long time for generating

samples.

In 2002, Hinton (2002) proposed contrastive divergence (CD) learning which can be used

for training product-of-expert (PoE) models, one of whose special forms is RBM . CD

learning approximates the true gradient by running Gibbs sampling chain for only a few

steps starting from the training data samples at each update. This approximate method,

however, turned out to work well in practice, and it became the learning method of choice

for training RBMs.

Based on the success of CD learning, many variants of it have been introduced since then.

Most of them, for instance, persistent contrastive divergence (PCD) learning, can be con-

sidered as a variant of stochastic approximation procedure (see e.g. Salakhutdinov, 2009b)

which is justified by Younes (1989). The stochastic approximation procedure makes it pos-

sible that training RBMs or other types of BMs does not necessarily need to wait for Gibbs

sampling chain to converge at every update, thus reducing the computational load.

With these newly proposed learning methods and the introduction of advanced computing

techniques, such as GPU Computing (Müller et al., 2010; Bergstra et al., 2010)1, training

RBMs has gained its popularity among researchers and many impressive results have been

published (see the rest of the thesis for references). Especially, some papers (see e.g. Hin-

ton & Salakhutdinov, 2006) suggested that a deep neural network, such as a multi-layer

perceptron (MLP) with more than three hidden layers, is better trained when each layer

is pre-trained separately as if it were a single RBM, which boosted the popularity of deep

learning.

Additionally to a simple RBM,many structural variants have been proposed. Semi-restricted

Boltzmann machine proposed by Osindero & Hinton (2008) removes a part of restriction

1Some of the experiments in the thesis have been performed on GPU Computing using CUV library

(Müller et al., 2010): http://www.ais.uni-bonn.de/deep_learning/downloads.html

3



by introducing the lateral connections among the visible neurons, and it was shown to work

well for modeling image patches. A more sophisticated form of RBM which is called

Mean-Covariance RBM was introduced by Ranzato et al. (2010) in order to model not only

the mean of the visible neurons, but also the covariance among them.

Modifications to the original RBM have been proposed in order to model wider range of

data sets. Replacing binary visible units with Gaussian visible units has been proposed

earlier and experimented extensively on modeling image patches by Krizhevsky (2009,

2010). Softmax units were successfully introduced as a way for modeling data with a small

set of discrete values (Salakhutdinov et al., 2007). Also, recently Nair & Hinton (2010)

proposed to use the rectified linear units instead of binary neurons.

Most of the related work presented in this section are separately referenced again through-

out the rest of the thesis where the relevant topics are discussed.

1.3 Structure of the Thesis

The main contents of the thesis is split into three chapters. Chapter 2 reviews the concept of

Boltzmann machines and restricted Boltzmann machines and how they can be trained using

various methods. The chapter, then, discusses several ways to evaluate the trained RBM,

such as estimating log-probability of data samples, evaluating the classification accuracy,

and visualizing the learned filters. The chapter finishes by stating well known difficulties

of training RBMs and conventional remedies that address these issues.

In Chapter 3, the thesis proposes parallel tempering (PT) learning as a substitute for widely

used contrastive divergence learning. A basic concept of introducing PT sampling to train-

ing RBMs is described, and experimental results supporting the claim that PT learning is

superior, are provided.

Chapter 4 proposes two main contributions of this thesis on how to improve learning. They

are the enhanced gradient and the adaptive learning rate. Throughout the extensive exper-

iments, the proposed learning methods are shown to address the difficulties presented in

Chapter 2.

Chapter 5 describes how RBM can be extended such that it can model continuous valued

data sets. A Gaussian-Bernoulli RBM (GB-RBM) is discussed, and several enhancements

are proposed. GB-RBMs with the enhancements are tested extensively with various data

sets.

4



Finally, in the last chapter, the overall summary of the thesis is given, and the future work

is discussed.
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Chapter 2

Restricted Boltzmann Machines

This chapter provides a detailed discussion on Boltzmann machines and its simpler vari-

ant, restricted Boltzmann machines. The chapter especially focuses on how to train and

assess Boltzmann machines using the stochastic gradient and analyze its difficulties. The

conventional remedies and their inherent problems are briefly presented at the end of the

chapter.

2.1 Boltzmann Machine

Boltzmann machine (BM) is a stochastic recurrent neural network consisting of binary

neurons (Haykin, 1998; Ackley et al., 1985). The network is fully connected, and each

connection between two neurons is symmetric such that the effect of one neuron on the

state of the other one is symmetric for each pair.

The probability of a particular state x = [x1, x2, · · · , xd]
T of the network is defined by the

energy of BM which is postulated as

E(x | θ) = −
∑

i

∑

j>i

wijxixj −
∑

i

bixi,

where θ denotes parameters of the network consisting of a weight matrix W = [wij] and a

bias vector b = [bi]. wij is the weight of the synaptic connections between neurons i and j.

We assume that wii = 0 and that wij = wji. The probability of a state x is, then,

P (x | θ) =
1

Z(θ)
exp [−E(x | θ)] (2.1)

6



where

Z(θ) =
∑

x

exp [−E(x | θ)]

is the normalizing constant.

It follows from (2.1) that the conditional probability of a single neuron being either 0 or 1

given the states of the other neurons can be written in the following way:

P (xi = 1 | x\i,W) =
1

1 + exp
(

−∑j 6=i wijxj − bi

) , (2.2)

where x\i denotes a vector [x1, · · · , xi−1, xi+1, · · · , xd]
T .

The neurons of BM are usually divided into visible and hidden ones x = [vT ,hT ]T , where

the states v of the visible neurons are clamped to observed data, and the states h of the

hidden neurons can change freely. In this case of having visible and hidden neurons, the

probability of a specific configuration of the visible neurons can be computed by marginal-

izing out the hidden neurons.

2.1.1 Training Boltzmann Machines

The parameters of BM can be learned from the data using standard maximum likelihood

estimation. Given a data set {v(t)}Nt=1, the log-likelihood of the parameters of BM is

L(θ) =
N
∑

t=1

log P (v(t)|θ) =
N
∑

t=1

log
∑

h

P (v(t),h | θ), (2.3)

where the samples v(t)s are assumed to be independent from each other, and the states h of

the hidden neurons have to be marginalized out.

The gradient of the log-likelihood is obtained by taking partial derivative of L(θ) with

respect to parameters wij

∂L
∂wij

=
N

2

[

〈xixj〉d − 〈xixj〉m
]

,

where a shorthand notation 〈·〉P (·) denotes the expectation computed over the probability

distribution P (·). Additionally, d and m were used for denoting two probability distri-

butions P (h | {v(t)},θ) and P (x | θ), respectively. They are the probability of hidden

neurons when the visible neurons are clamped to the samples, and the probability of all the
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neurons without any fixed neurons. According to the sign of each term, the two terms can

be referred to as the positive phase and the negative phase, respectively.

The overall update formula for a parameter wij is

wij ← wij + η
[

〈xixj〉d − 〈xixj〉m
]

, (2.4)

where η denotes the learning rate.

For the clarity, from here on we let b be a vector of biases bi of the visible neurons only,

and c be a vector of the biases of the hidden neurons. Then, for separate biases of visible

and hidden neurons, the update rules are, in analogy to the update rule for the weights,

bi ← bi + η [〈vi〉d − 〈vi〉m] , (2.5)

and

cj ← cj + η
[

〈hj〉d − 〈hj〉m
]

, (2.6)

where vi, hj , bi, and cj denote the i-th visible neuron, the j-th hidden neuron, the i-th visible

bias, and the j-th hidden bias.

More details on deriving the update rules are given in Appendix A.

Although the activation and learning rules of BM are both clearly formulated, there are

practical limitations in using BM. Especially, the gradient-based update formulas (2.4) –

(2.6) are not computationally feasible, as the distributions required in both the positive and

negative phases can only be obtained after computing the normalizing constant Z(θ).

Computing Z(θ), however, requires the summation over exponentially many possible con-

figurations of BM, and it is simply impossible for large BMs.

One obvious approach to avoid computing the normalizing constant is to use Markov-Chain

Monte-Carlo (MCMC) sampling methods to compute the stochastic gradient. Due to the

simplicity of the activation rule for a single neuron given the states of other neurons, a

simple Gibbs sampling is enough to get stochastic gradients.

Gibbs sampling can easily be implemented because the conditional distribution of the state

of a single neuron in BM given the states of all the other neurons is given by (2.2). A simple

description on how to perform Gibbs sampling with BM is described in Algorithm 1.

This approach can greatly reduce the computational burden of the gradient update rules. If

it is assumed that the number of samples required for explaining the probability distribution

of the whole state space is sufficiently smaller than the size of the state space, that is the

8



Algorithm 1 Gibbs sampling steps for general BM

Draw x0 uniformly from the state space.

repeat

for i = 1 . . . d do

Sample xi using Equation (2.2).

end for

until the sufficient number of samples are gathered, or Gibbs sampling has reached the

equilibrium.

number of all possible combinations of the states of the neurons, the learning of BM is not

anymore computational unfeasible.

However, there also exist other kinds of limitations in using Gibbs sampling for training

BM. The biggest problem is due to the full-connectivity of BM. Since each neuron is con-

nected to and influenced by all the other neurons, it takes as many steps as the number of

neurons to get one sample of the BM state. Even when the visible neurons are clamped to

the training data, the number of required steps for a single fresh sample is still at least the

number of hidden neurons. This makes the successive samples in the chain highly corre-

lated with each other and this poor mixing affects the performance of learning. Another

limitation of this approach is that multi-modal distributions are problematic for Gibbs sam-

pling (Salakhutdinov, 2009b): Due to the nature of component-wise sampling, the samples

might miss some modes of the distribution.

2.2 Restricted Boltzmann Machine

To overcome practical limitations imposed on the general Boltzmann machine such as the

problem of inefficient sampling, a structurally restricted version of Boltzmann machine

called Restricted Boltzmann Machine (RBM) has been proposed by Smolensky (1986).

RBM is constructed by removing the lateral connections in-between the visible neurons

and the hidden neurons. Therefore, a visible neuron would only have edges connected to

the hidden neurons, and a hidden neuron would only have edges connected to the visible

neurons. Now, the structure of RBM can be divided into two layers with inter-connecting

edges. The relationship between BM and RBM is illustrated in Figure 2.1.

Although the imposed restriction could possibly suggest that the representational power

might have been reduced, Le Roux & Bengio (2008) showed that RBM is a universal ap-

proximator such that it can model any discrete-valued probability distribution (Le Roux &

Bengio, 2008).

9



Hidden neurons

Visible neurons

(a) Boltzmann Machine

Hidden layer

Visible layer

(b) Restricted Boltzmann Machine

Figure 2.1: Illustration of the relationship between Boltzmann machine and restricted

Boltzmann machine

As the restriction has been imposed on the structure, the energy and the state probability

must be modified accordingly:

E(v,h | θ) = −vTWh− bTv − cTh (2.7)

P (v,h | θ) =
1

Z(θ)
exp {−E(v,h | θ)} ,

where now parameters θ = (W,b, c) include biases b and c.

Since each hidden neuron is independent of each other given all the visible neurons, it is

possible to explicitly sum out the hidden neurons and obtain the unnormalized probability

of the visible neurons. The probability of a state of visible neurons v is, then,

P (v | θ) =
1

Z(θ)
exp(bTv)

nh
∏

j=1

(

1 + exp

(

cj +
nv
∑

i=1

wijvi

))

, (2.8)

where nv and nh are the number of the visible neurons and the hidden neurons, respectively

(Salakhutdinov, 2009a).

2.2.1 Training Restricted Boltzmann Machine

The learning rules of RBM , then, become

wij ← wij + ηw

[

〈vihj〉d − 〈vihj〉m
]

(2.9)

bi ← bi + ηb [〈vi〉d − 〈vi〉m] (2.10)

cj ← cj + ηc

[

〈hj〉d − 〈hj〉m
]

, (2.11)
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where the same shorthand notation 〈·〉P (·) was used as before.

Although there is no rigorous theoretical background on choosing learning rates, tradition-

ally, smaller learning rates are used for learning both biases (Hinton, 2010).

Since RBM is a special case of BM, it is possible to employ the same Gibbs sampling to

learn. Thanks to its restricted structure, Gibbs sampling can be used more efficiently, as

given one layer, either visible or hidden, the neurons in the other layer become mutually

independent (see Figure 2.2). This possibility of the layer-wise sampling enables the full

utilization of the modern parallelized computing environment.

Hidden layer

Visible layerx0

h0 ∼ p(h | x0) h1 ∼ p(h | x1) h2 ∼ p(h | x2)

x1 ∼ p(x | h0) x2 ∼ p(x | h1)

Figure 2.2: Visualization of the idea of how the layer-wise Gibbs sampling is done in

RBM .

However, as the number of neurons in RBM increases, a greater number of samples must

be gathered by Gibbs sampling in order to properly explain the probability distribution

represented by RBM . Moreover, due to the nature of Gibbs samplings, the samples might

still miss some modes of the distribution.

Many approaches have been proposed to overcome these difficulties.

2.2.2 Contrastive divergence learning

One popular approach is contrastive divergence (CD) learning proposed by Hinton (2002)

as an approximate method for training Product-of-Expert models. Equation (2.8) directly

implies that RBM is a special case of PoE models, and CD learning can readily be used for

training RBMs.

CD learning approximates the true gradient by replacing the expectation over P (v,h | θ)

with an expectation over a distribution Pn that is obtained by running n steps of Gibbs sam-

pling from the empirical distribution defined by the training samples. Figure 2.3 illustrates

the distributions P0 and Pn.

For the weights, the CD learning formula, then, becomes

wij ← wij + η
[

〈xihj〉P0
− 〈xihj〉Pn

]

.
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x1

x2

xN

p0 pn

Gibbs chain 1

Gibbs chain 2

Gibbs chain N

Figure 2.3: Visualization of how CD learning obtains the empirical distribution used in

the positive phase and the approximate model distribution used in the negative phase.

In the figure, each row represents the Gibbs sampling chain starting from each training

data sample, and p0 and pn denote the empirical distribution and the approximate model

distribution, respectively.

It should be noted that the case n = 0 produces the empirical distribution P (h | {v(t)},θ)

used in the positive phase, whereas the case n = ∞ produces the true distribution of the

negative phase P (x | θ) (Carreira-Perpiñán & Hinton, 2005; Bengio & Delalleau, 2009).

As it can be anticipated from the fact that the direction of the gradient is not identical to

the exact gradient, CD learning is known to be biased (Carreira-Perpiñán & Hinton, 2005;

Bengio & Delalleau, 2009). Nevertheless, CD learning has been shown to work well in

practice. A good property of CD is that in case the data distribution is multi-modal, running

the chains starting from each data sample guarantees, that the samples approximating the

negative phase have representatives from different modes.

This advantage of CD learning, however, is its disadvantage at the same time. The samples

from Pn do not necessarily explain the whole state space. Hence, some of the modes in

the model distribution are not explored, and even after learning has converged the model

distribution possesses the modes that are not in the data distribution defined by the training

data set. This problem is illustrated in Figure 2.4.

In order to overcome this problem, different approaches based on CD learning have been

proposed. Among them persistent contrastive divergence (PCD) learning is the simplest

extension of CD learning (Tieleman, 2008).
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model

data

(a) Model distribution and training samples (b) CD fantasy samples and training samples

Figure 2.4: The left figure shows the model distribution (blue) and and the training

samples (black dots). The blue dots in the right figure indicates the fantasy particles

obtained by CD learning. It is apparent that the fantasy particles failed to explain the

whole space by missing the mode at the top.

At every gradient update step, CD learning performs the Gibbs sampling starting from the

training data samples, whereas PCD learning begins the sampling from the model samples

obtained at the last gradient update. In this way, it is expected for the model samples to

explore the modes in the model distribution that are not close to the training samples.

However, PCD learning still suffers from missing the modes in the model distribution as

learning progresses. It is due to the poor mixing of the Gibbs sampling which produces

the highly-correlated samples for successive gradient updates. This behavior makes the

approaches based on CD learning to suffer from the divergence of the likelihood (Schulz

et al., 2010; Fischer & Igel, 2010; Desjardins et al., 2010b,a) if learning is performed with-

out carefully and manually chosen learning heuristics such as learning rate schedule, weight

decay, and momentum.

Numerous approaches based on CD learning, other than PCD learning, have been proposed

recently. For instance, Fast PCD learning proposed by Tieleman & Hinton (2009) extends

PCD learning by maintaining fast weights that help obtaining better model samples.

2.2.3 Learning based on advanced MCMC sampling methods

Instead of approximating the gradient direction, it is possible to apply more sophisticated

MCMC sampling methods other than simple Gibbs sampling.

One alternative to the Gibbs sampling is parallel tempering (PT) sampling (Earl & Deem,

2005) which was recently proposed as a replacement for Gibbs sampling in training RBMs
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by Desjardins et al. (2010b) and Cho et al. (2010). The detailed description of PT and

how PT is used for training RBMs is given in Chapter 3 with the experiments showing the

superiority of PT learning compared to CD learning.

In addition to PT learning, other approaches based on advanced MCMC sampling methods

have also been proposed. For instance, stochastic approximation procedure based on tem-

pered transition (Neal, 1994) is one that was proposed recently by Salakhutdinov (2009b)

that utilizes multiple chains of Gibbs sampling with different temperatures. A hybrid Monte

Carlo algorithm (HMC) also has been successful in training more sophisticated RBMs such

as a factored 3-way RBM (Ranzato et al., 2010) and an energy-based model (Teh, 2003),

recently.

2.2.4 Other approaches

The approaches presented so far are based on the stochastic approximation using MCMC

sampling. However, there exist other approaches for training RBMs.

One approach is to approximate the likelihood function with the pseudo-likelihood (Be-

sag, 1975), and thus, training RBMs becomes maximizing the pseudo-likelihood. The log-

pseudo-likelihood function given a data set {v(t)}Nt=1 is defined as

fPL(θ) =
1

N

N
∑

t=1

d
∑

i=1

log P (v
(t)
i | v(t)

\i ),

where x\i denotes a vector [x1, · · · , xi−1, xi+1, · · · , xd]
T as before. The hidden neurons can

be explicitly summed out by Equation (2.8)

The maximum pseudo-likelihood (MPL) learning approximate the joint probability distri-

bution of RBM with the product of one-dimensional probability distributions. Although

it removes the necessity of computing the intractable normalizing constant, MPL learning

tends not to work well neither with RBMs nor BMs (Marlin et al., 2010; Salakhutdinov,

2009b), as it does not approximate the maximum likelihood estimator (MLE) well except

for some extreme cases (Geyer, 1991).

Another approach, ratio matching (RM) was recently proposed by Hyvärinen (2007). In-

stead of the likelihood, RM considers ratios of probabilities. The data ratio which is defined

by the ratio between the probability of a given observation and the probability of the obser-

vation vector with one variable i flipped as in Equation (2.12), and the model ratio is the

same ratio under the model distribution. RM learning tries to force the data and model ratio
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as close as possible.

RM is beneficial as the ratio does not require the computation of the normalizing constant,

as

P (v)

P (v¬i)
=

P ∗(v)

P ∗(v¬i)
, (2.12)

where v¬i is equivalent to v with the i-th component flipped.

Additionally, recently proposed generalized score matching (Lyu, 2009) can be used to train

RBMs.

These approaches have been compared to each other and to the stochastic approximation

by Marlin et al. (2010). However, these learning methods suffer from the computational

complexity when the dimensionality of the observations is large, and they do not show sig-

nificant improvement over the stochastic approximation based onMCMC sampling. Hence,

this thesis only considers stochastic gradient-based method using MCMC sampling.

2.3 Evaluating Restricted Boltzmann Machines

2.3.1 Likelihood and Annealed Importance Sampling

A natural way to assess the performance of a trained RBM is to compute the likelihood

of the model and the probabilities of test data samples under the trained RBM. Also, as

will be discussed in Chapter 3 and was shown in the author’s paper (Cho et al., 2010), the

probability of the random data samples also can be used as a measure of the goodness of

RBMs.

Due to the structural restriction, explicitly summing out the hidden neurons is fairly straight-

forward (see Equation (2.8),) however, unfortunately computing the probability of an ob-

servation is still intractable due to the normalizing constant. The normalizing constant can

only be computed exactly by summing exponentially many terms, and unless the dimen-

sionality of the data set is very small, it is simply impossible. Thus, instead of exactly

computing it, an approximate method must be employed.

For estimating the normalizing constant, this thesis uses annealed importance sampling

(AIS) (Neal, 1998) which has been successfully employed for computing the normalizing

constant of RBM (Salakhutdinov, 2009b).

AIS is based on simple importance sampling (SIS) method that could estimate the ratio
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of two normalizing constants. For two probability densities PA(x) =
P ∗

A(x)

ZA
and PB(x) =

P ∗

B(x)

ZB
, the ratio of two normalizing constants ZA and ZB can be estimated by a Monte Carlo

sampling method without any bias if it is possible to sample from PA(·):

ZB

ZA

= EPA

[

P ∗
B(x)

P ∗
A(x)

]

≈ 1

M

M
∑

i=1

P ∗
B(xi)

P ∗
A(xi)

, (2.13)

where xi are samples from PA(x). The quality of the approximation in terms of the variance

depends highly on how close PA(·) and PB(·) are. If PA(·) is not near-perfect approxima-

tion to PB , then the variance of the estimate can be as large as infinity.

Based on SIS, AIS estimates the normalizing constant of the model distribution by comput-

ing the ratio of the normalizing constants of consecutive intermediate distributions ranging

from so-called base distribution and the target distribution. The base distribution is chosen

such that its normalizing constant Z0 can be computed exactly and it is possible to collect

independent samples from it. A natural choice of the base distribution for RBM is RBM

with zero weights W. This yields the normalizing constant

Z0 =
∏

i

(1 + exp {bi})
∏

j

(1 + exp {cj}),

where indices i and j go through all the visible and hidden neurons, respectively.

By computing the product of the estimated ratios of the intermediate normalizing constants

and Z0, the normalizing constant of the target RBM can be estimated. The algorithm im-

plementing AIS is outlined in Algorithm 2.

The presented algorithm describes constructing intermediate RBMs following what Salakhut-

dinov (2009a) proposed. The base distribution is represented by RBM with zero weights,

but biases that are identical to those of the target RBM. However, it should be noticed that

there are other possibilities for constructing intermediate distributions and choosing a base

distribution. For instance, in the following chapters, the base distribution is an RBM with

both zero weights and zero biases such that there is no need for each intermediate RBM to

maintain twice as many hidden neurons as the target RBM has.

2.3.2 Classification accuracy and other measures

It is evident from the previously mentioned research papers utilizing deep neural networks

built from the stack of RBMs (Salakhutdinov, 2009b; Hinton & Salakhutdinov, 2006) that

the hidden activation probabilities of RBM trained on the data set could improve the classi-
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Algorithm 2 Estimating the normalizing constant by annealed importance sampling

Create a sequence of temperatures Tk such that 0 = T0 < T1 < · · · < TK = 1.
Create a base RBM R0 with parameters θ0 = (W0,b, c), where W0 = 0.
Create a sequence of intermediate RBMs Rk such that

• It has twice as many hidden nodes as the target RBM has.

• Parameters are θk = ([(1− Tk)W0 TkW] , [(1− Tk)b0 Tkb] ,
[

(1− Tk)c
T
0 Tkc

T
]T

).
for m = 1 · · ·M do

Sample x1 from R0.

for k = 1 · · ·K − 1 do

Sample xk+1 from Rk by one-step Gibbs sampling starting from xk.

end for

Set um =
∏K

k=1
P ∗

k
(xk)

P ∗

k−1(xk)
, where P ∗

k (·) is an unnormalized marginal distribution func-

tion of Rk.

end for

The estimate of ZK

Z0
is 1

M

∑M

m=1 um.

fication accuracy compared to classifying the data set based on its raw features. However,

these approaches often require the discriminative fine-tuning which destroys the generative

structure of RBM .

Fortunately, recent papers suggest that the hidden activation probabilities of RBM which

was trained in a unsupervised manner also help the classification task. Krizhevsky (2009)

successfully used a Gaussian-Bernoulli RBM to extract features from images that help ob-

taining high classification accuracy. Also, more sophisticated forms of RBM introduced

recently (Ranzato & Hinton, 2010; Ranzato et al., 2010; Osindero & Hinton, 2008) were

shown to be able to extract features that are more useful for the classification task.

Furthermore, Coates et al. (2010) showed that features extracted by the probabilistic mod-

els learned in an unsupervised way outperforms the supervised counter-parts such as con-

volutional neural networks (LeCun et al., 1998) and convolutional deep belief network

(Krizhevsky, 2010).

Thus, it is sensible to use the classification accuracy of the trained RBM as a performance

measure.

Additionally, thanks to its bipartite structure and the layer-wise Gibbs sampling, the recon-

struction error could also be used as a measure for the performance assessment (Hinton,

2010). A reconstruction error is defined as

E(x) = ‖x− x1‖2,

where x1 is a sample from p(x | h0,θ), and h0 is a sample from p(h | x,θ). A simple
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(a) Test samples

(b) Before training (E = 203.7805)

(c) After 1 epoch (E = 26.5676)

(d) After 5 epochs (E = 20.9808)

Figure 2.5: Examples of reconstruction errors for RBMwith 100 hidden neurons applied

to MNIST handwritten digits. The figure shows randomly selected sample digits (a) and

their reconstructions (b-d). The reconstruction errors E on the whole test data set are

shown inside the brackets. Reconstructions are shown using the activation probabilities

rather than the actual activations which are the samples collected based on the activation

probabilities.

example of how reconstruction error decreases during training is given in Figure 2.5.

However, these measures are not directly reflecting the true quality of RBM , since training

neither maximizes nor minimizes any of these measures. Therefore, for the rest of this

thesis, the experiments mostly assess the trained RBM by the likelihood of the model and

the probabilities of the test samples given the model.

2.3.3 Directly visualizing and inspecting parameters

Lastly, one way to analyze the quality of a trained model is to look at the features (the

weights wij) and the bias terms cj corresponding to different hidden neurons of the trained

RBM. It especially helps when training data samples consist of images that can be readily

visualized.

For instance, features of RBM trained on handwritten digits can be visualized as shown in

Figure 2.6. Each feature, or filter, resembles a part of digits, or a combination of parts of

digits. When learning fails, it is easy to observe degenerate features that are noisy global

features.

In case of hidden biases, the values itself suggest whether each hidden neuron contributes
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to the modeling capacity of RBM . Neurons that have a large bias cj are most of the time

active, and they are not very useful, as the weights associated to them can be incorporated

into the bias term b. On the other hand, hidden neurons that are mostly inactive (e.g., with

large negative biases cj) or whose activations are independent of data are also useless, as

the learning capacity of the RBM does not change even if they are removed.

Like other indirect measures presented previously, the visualization and inspection of pa-

rameter values must be performed carefully. There is no objective measure for the quality

of the visualized features, and the visualized features and the values of biases may evolve

slowly over training.

2.4 Difficulties and conventional remedies

2.4.1 High variance in resulting RBMs and divergence

The fact that the target function cannot be computed exactly during learning makes training

RBMs difficult. It is computational infeasible to tell when the learning has converged, or

even it is not easy to tell whether the learning is actually happening. Furthermore, it is not

possible to use any advanced gradient method such as non-linear conjugate gradient.

Since learning is performed using stochastic gradient updates, it converges to a local solu-

tion. The problem is that it is not feasible to compare the different solutions analytically,

and choose the best one among them. Schulz et al. (2010) and Fischer & Igel (2010) re-

cently showed that depending on the initialization and the learning parameters the resulting

RBMs vary highly even on the small toy data sets.

More problematically, most approximate approaches presented in the previous sections

have been shown to diverge, if the learning parameters were not chosen appropriately (Des-

jardins et al., 2010b; Schulz et al., 2010; Fischer & Igel, 2010). The use of a better MCMC

sampling method, e.g. parallel tempering, has been shown to better avoid the diverging

behavior, but in a long run without using the appropriate learning rate scheduling, the log-

likelihood fluctuates highly (Desjardins et al., 2010b, 2009) which is not desirable.

2.4.2 Existence of possibly meaningless hidden neurons

It has been shown that RBM is a universal approximator so that with enough number of hid-

den neurons it can model any discrete-valued probability distribution (Le Roux & Bengio,
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2008).

However, in practice, the number of hidden neurons is always limited, and depending on

learning procedures, not all hidden neurons contribute to the representational power of

RBM .

For instance, those hidden neurons that are always active are meaningless, since the weights

associated to them can be incorporated into bias terms. Also, any hidden neuron that is inac-

tive always is meaningless, since then, the removal of the hidden neuron does not affect the

modeling capacity of RBM at all (see Section 2.3.3 for details on determining meaningless

hidden neurons.)

Ideally, each hidden neuron should represent a distinct “meaningful” feature, for example,

a typical part of the image. We have noticed, however, that very often the hidden neurons

tend to learn features that resemble the visible bias term b. This effect is more prominent

at the initial stage of learning and for data set in which visible bits are mostly active, such

as 1-MNIST where each bit of MNIST handwritten data set was flipped.

Figure 2.6(b) presents an example how RBM can be ill-trained when the learning param-

eters were not carefully chosen and the training samples were dense in a sense that the

number of ones in each training sample is much more than that of zeros. The RBM with 36

hidden neurons were learned on 1-MNIST which is a very dense data set compared to the

original MNIST.

18 hidden neurons were not able to learn any useful features, and they are mostly inactive.

The other 18 neurons are mostly active, and as anticipated, learned global features that

somewhat resemble the visible bias.

Even when the training data samples are not dense, with the small number of hidden neu-

rons, inappropriate choice of learning parameters, and inappropriate choice of initialization

of the parameters, many hidden neurons will be useless. The visualization of the filters

learned by RBM with 36 hidden neurons trained on MNIST with the constant learning

rate 0.1 and the initial weights sampled from the uniform distribution between −1 and 1 is

shown in Figure 2.6(a). In the figure, about 20 neurons out of 36 neurons look as if they

learned some useful features. However, there still exist those neurons that are either mostly

active or mostly inactive.

2.4.3 Conventional remedies

There is a number of well-known heuristics that are known to yield better training results:
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(a) MNIST (b) 1-MNIST

Figure 2.6: Visualization of filters learned by RBMs with 36 hidden neurons on MNIST

and 1-MNIST after 5 epochs using traditional learning algorithms.

1) Learning rate scheduling: Due to its stochastic nature (when only part of data, i.e. mini-

batch, is used to compute the gradient), the gradient does not tend to approach zero. There-

fore, the learning rate is typically forced towards zero at the end of training. However, if the

learning rate is annealed too quickly, then the RBM will not learn anything, but only stay

in the plateau of the learning space where most of the weights stay close to zero.

2)Weight decay prior regularizes the indefinite growth of the norm of the parameters, which

sometimes happens in practice. This yields the following update rules:

wij ← wij + η
[

〈xihj〉P0
− 〈xihj〉Pn

− αwij

]

,

3)Momentum is used to smoothen the gradients yielding a modified update rule:

wij ← wij + η
[

(1− β)∇wij ,t + β∇wij ,t−1

]

,

where ∇wij ,t and ∇wij ,t−1 are the gradients computed at the current and previous iterations

and 0 ≤ β < 1 is a momentum parameter.

4) In order to avoid having meaningless hidden neurons, there have been attempts to spar-

sify the activations of the hidden neurons (Hinton, 2010; Lee et al., 2008). The sparsity

can be achieved by adding a regularization term that penalizes a deviation of the expected
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activation from a fixed level p:

ρ
∑

j

|p− 〈hj〉P0
|2,

where ρ denotes a degree of regularization.

The proposed heuristics are known to help in many practical applications. However, they

all introduce extra parameters which should be selected very carefully. Good values of

these parameters are typically found by trial and error and it seems that one requires a lot of

experience to set the learning settings right (Hinton, 2010). The stochastic gradient learning

of RBM can easily diverge even when the proposed heuristics are used, if the associated

parameters are not chosen carefully (Schulz et al., 2010; Fischer & Igel, 2010).
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Chapter 3

Parallel Tempering Learning

While contrastive divergence learning has been considered an efficient way to learn RBM

, it has a drawback due to a biased approximation in the learning gradient. This chapter

proposes to use an advanced Monte Carlo method called parallel tempering instead, and

shows experimentally that it works efficiently. A part of the work described in this chapter

was reported in the author’s paper (Cho et al., 2010).

3.1 Parallel Tempering and Restricted BoltzmannMachines

Training RBMs using the stochastic gradient updates requires that it must be possible

to efficiently sample from the data distribution P (h | v,θ) and the model distribution

P (v,h | θ). Thanks to the simple structure and formulation of BM and RBM , a Gibbs

sampling is enough to obtain the samples. However, its inefficiency led to the contrastive

divergence (CD) learning and its variants which do not follow the exact gradient, but rather,

approximate the exact gradient. Its nature of simplicity and computational efficiency made

the CD learning huge success in training RBMs, but still the CD learning has disadvantages.

For more detailed discussion on the topic, Chapter 2 should be referred.

A problem that has not been addressed neither by Gibbs sampling nor by CD learning is

that the samples generated during the negative phase do not tend to explain the whole state

space. This section, therefore, proposes to use another improved variant of Markov-Chain

Monte Carlo sampling method called parallel tempering (PT).
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3.1.1 Parallel Tempering

The introduction of PT sampling goes back to 1980s when Swendsen &Wang (1986) intro-

duced a replica Monte Carlo simulation and applied it to the Ising model which is equiva-

lent to a Boltzmann machine with only visible neurons. The replica Monte Carlo simulation

proposed to simulate multiple copies of particles (replica) with different temperature con-

currently rather than simulating them sequentially. Similarly, Geyer (1991) later presented

applying parallel chaining of MCMC sampling based on the speed of mixing of samples

across parallel chains to the maximum likelihood estimator.

Afterward, there have been many approaches of applying parallel tempering to other fields.

Those fields include the simulations of polymers, proteins, and states of solid materials, and

even, studies of phase transitions at the quantum levels (for more applications, see Earl &

Deem, 2005).

In the rest of this section, PT sampling having multiple Gibbs sampling chains with varying

levels of temperatures used to obtain good samples from the state space is briefly discussed.

The basic idea of PT sampling is that samples are collected from multiple chains of Gibbs

sampling with different temperatures1. The term temperature in this context denotes the

level of the energy of the overall system. The higher the temperature of the chain, the more

likely the samples collected by Gibbs sampling move freely.

For every pair of collected samples from two distinct chains, the swap probability is com-

puted, and the samples are swapped according to the probability. The swap probability of a

pair of samples is formulated according to the Metropolis rule (see, e.g., Mackay, 2002) as

Pswap(xT1 ,xT2) = min

(

1,
PT1(xT2)PT2(xT1)

PT1(xT1)PT2(xT2)

)

, (3.1)

where T1 and T2 denote the temperatures of the two chains, and xT1 and xT2 denote samples

collected from the two chains.

After each round of sampling and swapping, the sample at the true temperature T = 1

is gathered as the sample for the iteration. The samples come from the true distribution ,

P (v,h | θ) in case of RBMs, assuming that enough iterations are run to diminish the effect

of the initialization.

It must be noted that the Gibbs sampling chain with the highest temperature (T = 0) is never

1Since the lower value denotes the higher temperature, a term inverse temperatures from the highest

temperature T = 0 to the current temperature T = 1 is frequently used, but in this thesis, temperature

will be used.
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multi-modal such that all the neurons are mutually independent and likely to be active with

probability 1
2
. So, the samples from the chain are less prone to missing some modes. From

the chain with the highest temperature to the lowest temperature, samples from each chain

become more and more likely to follow the target model distribution. How PT sampling

could avoid being trapped into a single mode is illustrated in Figure 3.1.

Figure 3.1: Illustration of how PT sampling could avoid being trapped in a single mode.

The red, purple, and blue curves and dots indicate distributions and the samples from

the distributions with the high, medium, and cold temperatures, respectively. Each black

line indicates a single sampling step.

This nature of swapping samples between the different temperatures enables better mixing

of samples from different modes with much less number of samples than that would have

been required if Gibbs sampling was used.

3.1.2 Parallel Tempering Learning

PT sampling in training RBMs can be simply uses as a replacement of Gibbs sampling in

the negative phase. This method is, from now on, referred to as PT learning. Due to the

previously mentioned characteristics, it is expected that the samples collected during the

negative phase would explain the model distribution better, and that the learning process

would be successful even with a smaller number of samples than those required if Gibbs

sampling is used.

A brief description of how PT sampling can be carried out for RBMs is given in Algorithm

3. This is the procedure that is run between each parameter update during learning.
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Algorithm 3 PT sampling steps for an RBM

Create a sequence of RBMs (R0, R1, · · · , RK) such that parameters of Rk are θk =
(TkW, Tkb, Tkc), where 0 ≤ T0 < T1 < · · · < TK = 1.
Create an empty set of samples X = {}.
Set x0 = (x0,0, · · · ,xK,0) such that every xk,0 is a uniformly distributed random vector

(or use old ones from the previous epoch).

for m = 1 · · ·M do

Sample xm = (x0,m, · · · ,xK,m) from the sequence of RBMs such that xk,m is sampled

by one-step Gibbs sampling starting from xk,m−1.

for j = 2 · · ·K do

Swap xj,m and xj−1,m according to Pswap(xj,m,xj−1,m) computed using (3.1).

end for

Add xK,m to X .

end for

X is the set of samples collected by parallel tempering sampling.

3.2 Experiments

Two different sets of experiments were made. The goal of the first set of experiments was

to test the capability of RBMs to capture the data distribution. Samples were generated

from the RBM trained on the OptDigits data set. The data set was acquired from the UCI

Machine Learning Repository (Asuncion & Newman, 2007) and it consisted of handwritten

digits of the size 8 × 8 pixels. The samples were collected by parallel tempering sampling

starting from a randomly drawn state. Most of the samples were observed to resemble the

digits regardless of the initial state.

The second set of experiments was conducted in order to compare the performance of

RBMs depending on two different learning methods: CD learning and learning using sam-

pling with PT. The performance was evaluated by the estimated likelihood of the training

data set and the estimated probability of the test data set, both computed by annealed im-

portance sampling (AIS).

Furthermore, in the second experiment the probability of uniformly randomly generated

data is computed for the current RBM model. The goal was to observe a potential problem

of CD learning that the samples generated during the negative phase do not represent the

state space as well as the samples generated by PT sampling, but only represent the region

centered around the training samples (Bengio, 2009). The probability of random data was

computed for different learning methods and compared.2

2We assume that uniformly drawn samples do not lie close to the training data because the size of the

training data set is much smaller than the size of the state space which is 2
64.
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(a) Training data set

(b) Visualization of hidden nodes (CD1) (c) Visualization of hidden nodes (PT)

Figure 3.2: Training data set and visualization of hidden nodes. (a): 10 training samples

where for each digit one sample was randomly chosen. (b) (c): the weights associated

with nine randomly chosen hidden neurons.

3.2.1 Generating samples from a trained restricted Boltzmann ma-

chine

RBMs were constructed such that there are 64 visible neurons and 100 hidden neurons.

Each RBMwas trained with 3822 training samples of 8×8 handwritten digits. The original

OptDigits data set provides 17-level greyscale digits, but for simplicity the intensity of each

pixel was rounded so that the intensity less than 8 became 0 (and 1 otherwise).

Each RBM was trained separately by CD learning with n = 1 and learning with PT sam-

pling. PT sampling was done with K = 20 temperatures T0 = 0, T1 = 0.05, . . . , T20 = 1.

The models represented by the RBMs are named CD1 and PT, respectively. Each gradient

update was done in the full-batch style so that all the training samples were used. CD1 and

PT were trained for 2000 epochs, and the learning rate η started from 0.05 and gradually

decreased following the search-then-converge scheduling such that the learning rate η(t) at

the t-th update is

η(t) =
η(0)

1 + t
t0

,

where η(0) = 0.05 for both the weight and the bias, and t0 = 300 for both CD1 and PT.

Figure 3.2 shows the training data samples and the visualization of the hidden nodes after

training. The visualization of the hidden node was done by displaying the weights associ-

27



(a) CD1

(b) PT

Figure 3.3: Samples generated by parallel tempering sampling from the RBM trained

with (a) CD1 and (b) PT started from the random sample. The first digits of both figures

are the random initial samples.

ated with the node as a grey-scale digit. It can be observed that each hidden node represents

a distinct feature.

Figure 3.3 shows the activation probabilities for the visible neurons of the generated sam-

ples from the models learned with CD1 and PT. The digits in the figure are 19 samples

chosen out of 2000 samples collected by PT sampling starting from the random sample.

Each consecutive samples are separated by 100 sampling steps, and the first digit in both

figures of Figure 3.3 represents the random initial sample. It is clear that the trained RBM

is able to generate digits which look similar to the training data regardless of the training

methods.

3.2.2 Comparison between CD learning and PT learning

For the second experiment, RBMs with 100 hidden neurons were trained using four learning

algorithms: CD1, CD5, CD25 and PT, where CDn denotes CD learning with n Gibbs

sampling steps per gradient update.

The parameters K and M of parallel tempering were chosen so that the number of total

Gibbs sampling steps during one gradient update matches that of CD1 which uses as many

samples as the number of the training data samples. PT was, therefore, trained with K = 20

temperatures and M = 192 samples per gradient update. This choice is reasonable in the

sense that the difference in CD learning and learning with PT sampling only depends on the

number of Gibbs sampling steps, whereas the computational cost of additional operations

may vary largely depending on the implementation.
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Figure 3.4: Average probabilities of test data against the processor time. The dashed

line indicates the initial log-likelihood. The numbers denote the number of epochs after

which the value was measured.

Each RBM was trained for 635 epochs and the probabilities of both training and test data

were estimated. 50 AIS runs with 5000 temperatures were averaged to obtain the estimate

of the normalizing constants. All the models were trained 30 times and the averaged per-

formance indices were calculated.

Figure 3.4 and Figure 3.5 show that the probability of the test data and the likelihood of

the model increase, while the probability of the random data decreases over the gradient

updates. This is consistent with the fact that the gradient maximizes the likelihood accord-

ing to the distribution of the training data. Figure 3.6 confirms that the probability of the

unseen samples that are not close to any training sample is decreased.

However, the rate of the changes in the likelihood and the probability of the test data over

updates differs from one model to another. PT achieves the highest average likelihood and

the highest average probability of the test data, and at the same time achieves the lowest

probability of the random data at the fastest rate. It can be further observed that PT learning

is computationally more favorable than CD25 and comparable to CD1.

Figure 3.7 shows the average probability of the test data set and the random data set by 30

independent trials. These results confirm that PT indeed achieves the highest probability of

the test data set and the lowest probability of the random data set. It should be, however,

noted that the variance of PT is greater than those of both CD1 and CD25.
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Figure 3.5: Average log-likelihood of the model against the processor time. The dashed

line indicates the initial log-probability of test data. The numbers denote the number of

epochs after which the value was measured.

The increase of n in CD learning certainly boosts up the rate of the increase in the likelihood

as a function of learning epochs, but even with n = 25 CD learning cannot achieve as large

likelihood as PT does. CD learning with n = 25 is much more computationally demanding

than PT. This result indicates that the use of the advanced sampling technique can yield

faster and better training of RBMs.

3.3 Practical Consideration

Although the experiments showed that gathering enough number of samples from a single

PT sampling chain consisting of multiple parallel Gibbs sampling chain is sufficient to train

RBMs, PT learning showed its weakness evidenced by the large variance of the resulting

RBMs with different initializations.

In order to reduce the high variabilities in training RBMs, PT learning can borrow the idea

from CD and PCD learning introduced in Chapter 2 such that there are multiple sets of

multiple Gibbs sampling chains starting from the training samples in the initial minibatch,

or full-batch. For each update, n steps of PT sampling is performed starting from the model

samples obtained in the previous update. For every nswap updates, the swapping of the
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Figure 3.6: Average probabilities of random data against the processor time. The dashed

line indicates the initial log-probability of random data. The numbers denote the number

of epochs after which the value was measured.

samples can be performed, where nswap is a small positive integer3.

Although the experimental results with this modification are not presented in this chapter,

it is clear from the experiments in Chapter 4 and Chapter 5 that the variance is reduced

significantly when the modification is employed.

3.4 Conclusions

This chapter proposed an alternative approach which utilizes parallel tempering for training

RBMs. This approach does not sacrifice the optimality of the direction of the gradient,

as CD learning does, but reduces the computational cost by improving the quality of the

samples.

Two separate experiments were done for (1) confirming the capability of RBM to capture

the data distribution and (2) showing that RBM trained by the proposed PT approach is

superior to that trained by the conventional CD learning. The former experiment confirmed

that RBM trained by either CD learning or learning with PT sampling is able to generate

samples resembling the training data. The second experiment confirmed that the use of the

proposed PT approach can result in a more accurate RBM. As a performance measure, the

3This practical modification is mathematically justified by Younes (1989).

31



−18.5

−18

−17.5

−17

−16.5

−16

−15.5

−15

−14.5

−14

−13.5

L
o
g
-p
ro
b
ab
il
it
y

PT CD1 CD25

Test data

−170

−160

−150

−140

−130

−120

−110

−100

−90

−80

L
o
g
-p
ro
b
ab
il
it
y

PT CD1 CD25

Random data

Figure 3.7: Left: Box plots of probabilities of test data after 635 epochs over 30 repeated

runs. Right: Box plots of probabilities of random data over 30 repeated runs. For

probability values, the red line inside the box denotes the median, the edges of the box

are 25-th and 75-th percentiles, and the whiskers are extended to the extreme value not

considering possible outliers.

log-likelihood estimated using AIS was used.

Learning with PT sampling was superior in all aspects of the experimental results. We

observed higher likelihood computed on the training data and higher probability of the

test data. The increase of the likelihood over the gradient updates was also faster. The

probability of random samples by PT sampling was less than any other model trained with

CD learning. This confirmed the existence of the potential problem of CD learning that

the samples generated by CD learning during the negative phase do not represent the state

space well and fail to decrease the probabilities over the regions which are far from the

training data. At the same time, the computational complexity of the gradient update by PT

sampling was comparable to that of CD learning.

Recently, the use of PT learning for RBMs has been proposed independently also by Des-

jardins et al. (2010b). Desjardins et al. (2010b) illustrated the possible explanations why

PT learning performs better than CD learning, and presented the experimental results show-

ing the superiority of PT learning. This chapter essentially showed the similar results, and

additionally showed that PT learning could be as efficient as CD learning in terms of the

computational complexity.

Additionally, Desjardins et al. (2010a) proposed an adaptive method for maintaining the op-

timal distributions with different temperatures. The method shows its superiority compared

to PCD learning and PT learning with the fixed configuration of temperatures. However, the

computational cost of the method is higher than maintaining the fixed number of tempered

distributions.
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Chapter 4

Enhanced Gradient and Adaptive

Learning Rate

In this chapter, a new training algorithm which addresses the difficulties of training RBMs

discussed in Chapter 2 is proposed. The proposed improvements include an adaptive learn-

ing rate and a new enhanced gradient estimate. The adaptation rule for the learning rate is

derived from maximizing a local approximation of the likelihood. The enhanced gradient

is designed such that it does not contain the terms which often distract learning using the

traditional gradient. The new gradient is also invariant to the data representation.

Extensive experiments comparing the conventional learning algorithms with the proposed

one are presented at the end of the chapter. The experiments use the MNIST handwritten

digits data set (LeCun et al., 1998) and the Caltech 101 Silhouettes data set (Marlin et al.,

2010) as benchmark problems.

As discussed previously in Chapter 2, the data set 1-MNIST is known to be more difficult

to learn, and the chapter gives an explanation fot this effect. The empirical results suggest

that the new learning rules can avoid many difficulties in training RBMs including learning

dense data sets.

4.1 Adaptive Learning Rate

Here an algorithm for automatically adapting the learning rate while training RBMs using

stochastic gradient is proposed. The automatic adaptation of the learning rate is based on

maximizing the local estimate of the likelihood.
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Algorithm 4 Adaptive Learning Rate

Input: parameters θ = (W,b, c)
previous learning rate η0

gradients G = (∇W,∇b,∇c)
data samples Xd

model samples Xm

Prepare a set of candidate learning rates Cη based on η0.

for η in Cη do

Compute a candidate model θ′ by (2.9) – (2.11).

Compute a local likelihood Pθ
′(vd) in (4.1)

end for

η̃ = arg maxη cη.

Output: learning rate η̃

Let θ = (W,b, c) be the current model, θ
′ = (W′,b′, c′) is the updated model with

some learning rate η and Pθ(v) = P ∗
θ
(v)/Zθ is the probabilistic density function (pdf) with

normalizing constant Zθ for the model with parameters θ. Assuming that the learning rate

is small enough and therefore the two models are close to each other, the likelihood of θ
′

can be computed as in SIS using (2.13):

Pθ
′(vd) =

P ∗
θ
′(vd)

Zθ

Zθ

Zθ
′

=
P ∗

θ
′(vd)

Zθ

〈

P ∗
θ
′(v)

P ∗
θ
(v)

〉−1

Pθ

, (4.1)

where vd denotes the training data.

Now a learning rate is selected so as to maximize the likelihood of the new parameters

θ
′. Equation (4.1) can be used to approximate the required likelihood. The unnormalized

pdf P ∗
θ
′ is computed using the training samples and (2.8), and the expectation 〈·〉Pθ

can be

estimated using the samples from Pθ, like in SIS. These samples are collected in order to

estimate the negative term in the gradients and therefore computing this expectation can be

done practically for free 1.

The pseudo-code for the adaptive learning rate is provided in Algorithm 4.

In principle, one could find the optimal learning rate that maximizes the local estimate of

the likelihood on each iteration. However, this would likely lead to large fluctuations of the

learning rate because of the small sample size of the mini-batch. In our experiments, the

new learning rate was selected from the set {(1− ǫ)2η0, (1− ǫ)η0, η0, (1+ ǫ)η0, (1+ ǫ)2η0},
where η0 is the previous learning rate and ǫ is a small constant.

1The experiments showed that if the same samples were used both for obtaining the gradients and the

adaptive learning rate, learning rate fluctuated too much in case of PT learning and diverged in case of CD

learning. Hence, in practice, it is advised to use samples from the next mini-batch.
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4.2 Enhanced Gradient

In this section, a new gradient is proposed to be used instead of (2.9)–(2.11). Let the

covariance between two variables under distribution P be defined as:

CovP (vi, hj) = 〈vihj〉P − 〈vi〉P 〈hj〉P .

Then, the standard gradient (2.9) can be rewritten as

∇wij = Covd (vi, hj)− Covm (vi, hj) + 〈vi〉dm∇cj + 〈hj〉dm∇bi , (4.2)

where ∇cj and∇bi are the gradients defined in (2.10)–(2.11) and 〈·〉dm = 1
2
〈·〉d + 1

2
〈·〉m is

the average activity of neuron under the data and model distributions.

The standard gradient (4.2) has several potential problems. The gradients with respect to

the weights contain the terms that point to the same direction as the gradient with respect

to the bias terms (and vice versa). This effect is prominent when there are many neurons

which are mainly active, that is for which 〈xi〉dm ≈ 1. These terms can distract learning of

meaningful weights, which often leads to the case when many neurons try to learn features

resembling the bias terms, as shown in Figure 2.6(b). When 〈xi〉dm ≈ 0 for most of the

neurons, this effect can be negligible, which might explain why learning 1-MNIST is more

difficult than MNIST and partially explain why sparse Boltzmann machines discussed in

Section 2.4.3, have been successful.

A related problem is that the update using (4.2) is different depending on the data represen-

tation. This can be shown by using transformations where some of the binary units of RBM

are flipped such that zeros become ones and vice versa:

x̃k = x1−fk

k (1− xk)
fk , fk ∈ {0, 1} , (4.3)

where xk can be either a visible or a hidden neuron. The parameters can then be transformed

accordingly to θ̃:

w̃ij = (−1)fi+fjwij, (4.4)

b̃i = (−1)fi

(

bi +
∑

j

fjwij

)

, (4.5)

c̃j = (−1)fj

(

cj +
∑

i

fiwij

)

, (4.6)
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such that the resulting RBM has an equivalent energy function, that is E(x̃ | θ̃) = E(x |
θ)+const for all x. Details on obtaining the transformations are described in Appendix B.1.

When a model is transformed, updated, and transformed back, the resulting model depends

on the transformations fk:

wij ← wij + η
[

〈vihj〉d − 〈vihj〉m − fi

(

〈hj〉d − 〈hj〉m
)

− fj (〈vi〉d − 〈vi〉m)
]

= wij + η
[

Covd (vi, hj)− Covm (vi, hj)

+ (〈vi〉dm − fi)∇cj +
(

〈hj〉dm − fj

)

∇bi

]

(4.7)

bi ← bi + η
[

∇bi −
∑

j

fj (∇wij − fi∇cj − fj∇bi)
]

(4.8)

cj ← cj + η
[

∇cj −
∑

i

fi (∇wij − fi∇cj − fj∇bi)
]

, (4.9)

where ∇θ are the gradients defined in Eqs. (2.9)–(2.11). More details on the derivations

are provided in Appendix B.2.

There are, thus, 2nv+nh different update rules defined by different combinations of binary fk,

k = 1, . . . , nv+nh, where nv, nh are the number of visible and hidden neurons, respectively.

All the update rules are well-founded maximum likelihood updates to the original model.

The new gradient is, then, proposed to be a weighted sum of the 2nv+nh gradients with the

following weights:

nv+nh
∏

k=1

〈xk〉fk

dm (1− 〈xk〉dm)1−fk . (4.10)

By using these weights the new gradient prefers sparse data representations for which

〈xk〉dm ≈ 0 because the corresponding models get larger weights.

The proposed weighted sum yields the enhanced gradient

∇̃wij = Covd (vi, hj)− Covm (vi, hj) (4.11)

∇̃bi = 〈vi〉d − 〈vi〉m −
∑

j

〈hj〉dm ∇̃wij (4.12)

∇̃cj = 〈hj〉d − 〈hj〉m −
∑

i

〈vi〉dm ∇̃wij, (4.13)

in which, by the choice of the weights (4.10), the effect of the bias gradients in ∇wij is

canceled out completely. In Appendix B.3, detailed derivations on how the weighted sums
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Figure 4.1: 100 randomly chosen samples from MNIST data set.

are computed are provided.

The new rules are invariant to the bit-flipping transformations. One can note that the en-

hanced gradient shares all zeroes with the traditional gradient.

In Figures 4.2–4.3, some experimental analysis of the proposed gradient is presented. Fig-

ure 4.2 shows the norms of the gradient for the weights of the RBMwith 361 hidden neurons

trained on MNIST data set (see Figure 4.1 for examples of samples). It is clear that the ad-

ditional terms that distract learning dominate in the traditional gradient, especially at the

early stage of training.

Figure 4.3 shows the differences in the update directions for different neurons of the RBM

trained on MNIST. Each element of a matrix is the absolute value of the cosine of the angle

c(·, ·) between the update directions for the two neurons, where the cosine of the angle

between two vectors x and y is defined as

c(x,y) =
xTy

‖x‖‖y‖ .

The gradients obtained by the traditional rule are highly correlated to each other, especially,

at the early stage of learning. On the contrary, the new gradient yields update directions

that are close to orthogonal, which allows the neurons to learn distinct features.

4.3 Experiments

In this section, the proposed improvements and the traditional learning algorithms are ex-

perimentally compared. In Sections 4.3.1–4.3.3, RBMs are trained on the MNIST data set

(LeCun et al., 1998), and in Section 4.3.4, the Caltech 101 Silhouettes data (Marlin et al.,

2010) is used.

All experiments run 20 epochs with a mini-batch size of 128 unless otherwise mentioned.
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Figure 4.2: L2-norms of the gradients for weights while training RBM with 361 hidden

neurons. The blue curve plots the norms of the traditional gradient, and the green curve

plots the norms of the proposed robust gradient. The norms of the difference between

two gradients are drawn with the red curve.

Thus, each RBM was updated about 9,400 times. Both biases b and c were initialized to

all zeros. Weights were randomly initialized such that wij = λ ·u where λ is a weight scale

and u ∼ U(−1, 1) denotes a sample from the uniform distribution on −1 to 1. By default,

λ = 1/
√

nv + nh was used.

For PT learning, there were 11 different temperatures equally spaced from t0 = 0 to t10 = 1.

For CD learning, each update performed n = 1 step of Gibbs sampling. For each setting,

RBMs were independently trained with five different initializations of parameters. After

training, the normalizing constant of each model was estimated using AIS and the log-

probability of the test data was computed. Each AIS used RBMs with parameters θi =

(tiW, tib, tic) and 10,001 equally-spaced temperatures from 0 to 1. Each estimate of Z(θ)

was averaged over 100 independent AIS runs.

4.3.1 Sensitivity to Learning Rate

In order to demonstrate how the learning rate can greatly affect training results, RBMs with

361 hidden neurons were trained using the traditional gradient with five different learning
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Figure 4.3: The angles between the update directions for the weights of the RBMwith 36

hidden neurons. White pixels correspond to small angles, while black pixels correspond

to orthogonal directions. From left to right: (top) traditional gradient after 26 updates,

traditional gradient after 352 updates, (bottom) enhanced gradient after 26 updates, and

enhanced gradient after 352 updates.

rates {1, 0.1, 0.01, 0.001, 0.0001}.

The black curves in Figure 4.4(a) show the log-probability of the test data obtained with

PT and CD sampling strategies. It is clear that the resulting RBMs have huge variance

depending on the choice of the learning rate. Too small learning rate prevents the RBM

from learning barely anything, whereas too large learning rate often results in models which

are worse than those RBMs trained with proper learning rates. In case of using a learning

rate 10, the learning failed completely.

In order to test the proposed adaptive learning rate, RBMs with 361 hidden neurons were

trained using the traditional gradient and the same five values {1, 0.1, 0.01, 0.001, 0.0001}
to initialize the learning rate. The blue curves in Figure 4.4(a) show the obtained log-

probabilities of the test data. The results are now more stable and the variance among

the resulting RBMs trained with different initial learning rates is smaller compared to the

results obtained with fixed learning rates (the black curves in the same figure). Regardless

of the initial learning rate, all the RBMs were trained quite well.

These results suggest that the adaptive learning rate works well. However, it was still
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Figure 4.4: Log-probabilities of test data samples computed after 20 epochs for five runs

with different initializations for different learning rates on MNIST (left) and 1-MNIST

(right). Log-probabilities that do not appear on the plot are smaller than −400. In case

of 1-MNIST, only the results obtained using PT learning are shown.

slightly better to use manually tuned training parameters (using the constant learning rate

of 0.1).

Figure 4.5 shows the evolution of the learning rate during learning. Even with very small

initial learning rate, the adaptive learning rate could find the appropriate learning after only

a few hundred updates. Remarkably, the learning rates converge to the same value when

the enhanced gradient is used.

The red curves in Figure 4.4(a) show the log-probabilities of the test data obtained with the

new enhanced gradient and the adaptive learning rate initialized with five different values.

Both PT and CD sampling were tried. It is apparent that the enhanced gradient improves

the overall learning performance compared to the traditional gradient.

Similar performance was obtained on 1-MNIST which is shown in Figure 4.4(b). For 1-

MNIST, only PT learning was used for comparing the traditional learning method and the

proposed one. It is clear that the traditional gradient with the fixed learning rate results in

huge variance depending on both the learning rate and the initialization of the parameters2.

On the other hand, the proposed method combining the enhanced gradient with the adap-

tive learning rate provides the consistent result, regardlessly. This confirms that the new

enhanced gradient is invariant to data representation.

2A higher log-probability obtained using the traditional learning method with the learning rate fixed to 0.1

may be due to the failure of AIS (see, Schulz et al., 2010, for examples of the failure of AIS).
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Figure 4.5: Evolution of the adaptive learning rate from five different initializations

during learning. The learning rates are shown as a function of the number of updates.

The RBMs were trained with the traditional gradient (left) and the enhanced gradient

(right).

4.3.2 RBM as Feature Extractor

In addition to the log-probabilities of the test data, simple logistic regression classifiers were

trained on top of the RBMs to check their feature extracting performance. The activation

probabilities of the hidden neurons were used as the features.

In order not to destroy the already learned structure of the RBM, no discriminative fine-

tuning was performed. This explains why the accuracies reported in this paper are far from

the state-of-the-art accuracy on MNIST using deep neural networks (Salakhutdinov, 2009b;

Ciresan et al., 2010). However, the relative difference in the accuracies between two rules

can be used as a guide for assessing the superiority of the proposed method.

The black curves in Figure 4.6 show high variance of the classification results for the tra-

ditional gradient depending on the chosen learning rate. The results obtained for MNIST

(the left plot) are pretty good although the choice of the learning does have an effect on

performance. However, the classification accuracy obtained for 1-MNIST (the right plot)

is very bad, which proves that 1-MNIST is more difficult for learning using the traditional

gradient.

The blue curves in Figure 4.6 show that the adaptive learning rate can reduce the variance

of the results obtained with the traditional gradient. However, the results were quite signif-

icantly worse for the initial learning rate 1.

The red curves in Figure 4.6 shows the superior performance of the enhanced gradient and

the adaptive learning rate compared to the traditional gradient. Regardless of the initial
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Figure 4.6: Classification accuracy of test data samples computed after 20 epochs for

MNIST (left) and 1-MNIST (right). For each initial learning rate, the learning was

conducted five times. The results that do not appear on the upper plot were below 88%
for MNIST and below 10% for 1-MNIST. For 1-MNIST, only the results obtained using

PT learning are shown.

learning rate, all the RBMs leaned features which yielded high classification performance.

Note that the results are excellent also for 1-MNIST.

4.3.3 Sensitivity to Weight Initialization

In the next experiment, the sensitivity of training results to the scale λ of the weight initial-

ization is investigated. Small RBMs with 36 hidden neurons were trained on MNIST using

different scales of the initial weights and varying learning rates. Here, PT sampling was

used to draw model samples from the RBMs.

Figure 4.7(a) visualizes the filters learned by the RBMs using the traditional gradient with

fixed learning rate. It is clear that the results are highly dependent on the choice of the

training parameters: The combination of the initial weight scale and the learning rate should

be selected very carefully in order to learn reasonable features. The combination of learning

rate η = 0.1 and weight scale λ = 0.1 seems to give the best results for the reported

experiments. In practice, an optimal combination of the training parameters is usually found

by trial and error, which makes training a laborious procedure.

Figure 4.7(b) shows the filters learned using the new gradient and the adaptive learning rate

initialized with five different values. It is clear that the features are much better than the

ones obtained with the traditional gradient. Remarkably, no hidden neuron is either dead

or always active regardless of the scale of the initial weights and the choice of the initial

learning rate.
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Figure 4.7: Visualization of filters learned by RBMs with 36 hidden neurons on MNIST

with various initial learning rates and initial weights scaling. Learning was performed

for 5 epochs each.
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Figure 4.8: 100 randomly chosen samples from Caltech 101 Silhouettes data set.

Figure 4.9: Visualization of weights learned by an RBM with 1000 hidden neurons on

Caltech 101 Silhouettes data set. (Top) 80 filters with large L2-norms. (Bottom) 80

filters with small L2-norms.

4.3.4 Caltech 101 Silhouettes

Finally, the proposed learning rules were experimented on Caltech 101 Silhouettes data

set (Marlin et al., 2010). Figure 4.8 presents randomly chosen samples from Caltech 101

Silhouettes data set. RBMs with 500, 1000, and 2000 hidden neurons were trained using

the proposed algorithm for 300 epochs with the mini-batch size set to 256. The learning

rate was initialized to 0.0001.

With the hidden activations obtained from the trained RBMs, simple logistic regression

classifiers were trained to check the classification accuracies.

The obtained results are presented in Table 4.1. Remarkably, the classification accuracy

improved by more than 5 % over the best result reported by Marlin et al. (2010).

Figure 4.9 shows two sets of 100 filters of the RBM with 1000 hidden neurons that have the

largest L2-norms (left) and the least L2-norms (right), respectively.
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Log-probability Accuracy (%)

Hidden neurons PT CD PT CD

500 -127.40 -280.91 71.56 68.48

1000 -129.69 -190.80 72.61 70.39

2000 -131.19 -166.72 71.82 71.39

Table 4.1: Log-probabilities and classification accuracies of the test data of Caltech 101

Silhouettes after 300 epochs.

4.4 Conclusions

This chapter experimentally showed the difficulties of training RBMs discussed previously

in Chapter 2, and then, a new algorithm for training RBMs that addresses those difficulties

was proposed. It consists of an adaptive learning rate and an enhanced gradient, and is

formulated with well-founded theoretical background. The proposed algorithm was exper-

imented extensively with RBMs on the MNIST handwritten digits and Caltech 101 Silhou-

ettes data set.

The enhanced gradient helps overcome the problem of having hidden neurons learning

near-identical features. It was able to speed up the overall learning significantly. Also,

unlike the traditional gradient rules which were dependent on the representation of the data

samples, the enhanced gradient which was derived to be invariant to the representation

could successfully learn very dense data set without any difficulty.

The chapter mainly focused on parallel tempering learning, but showed that contrastive

divergence learning is also improved by adopting the proposed improvements.

Although the theoretical background suggests that the robust learning rate is well-suited for

learning BMs, the experiments were only done with RBMs and a limited number of data

sets. It is expected that the proposed learning rule will improve and ease training more

generalized BMs such as DBMs and fully-connected BMs.

The application of the proposed adaptive learning rate and the enhanced gradient in Gaussian-

Bernoulli RBMs will be discussed more in Chapter 5.
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Chapter 5

Restricted Boltzmann Machines for

Continuous Data

The conventional RBM assumed that the state of each neuron is binary, e.g. {0, 1}. It seri-
ously limits the application area of RBMs, as many available data are real-valued. Although

there have been attempts to use the binary RBM to learn the real-valued data set by scaling

the values to [0, 1] and considering each value as a probability (Hinton & Salakhutdinov,

2006), it has not been used widely.

There have been two notable approaches to overcome this limitation, and they both re-

place the binary visible neurons with neurons that follow other types of distributions. One

approach adopts Gaussian visible neurons and proposes a Gaussian-Bernoulli Restricted

Boltzmann Machine (GBRBM). The other approach replaces the binary visible neuron with

the softmax unit (Salakhutdinov, 2009a). The former is more appropriate for real-valued

continuous data, and the latter for the discrete data with the small number of possible states.

This chapter mainly focuses on GBRBMs and proposes a novel modification to them in

order to improve learning. The modification is applied to the energy function of the model

and to the gradient learning rules.

5.1 Gaussian-Bernoulli RBM

Let v = [vi] be real-valued Gaussian neurons with biases b = [bi] and variances σ = [σi].

Identical to the conventional binary RBM, let us assume that each hidden neuron hi can be

either 0 or 1 and that it has a bias ci. Then, the energy of GBRBM given the model and the

values for the visible and hidden neurons is traditionally defined as (see e.g. Krizhevsky,
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2009; Salakhutdinov, 2009a)

E(v,h|θ) =
nv
∑

i=1

(vi − bi)
2

2σ2
i

−
nv
∑

i=1

nh
∑

j=1

Wijhj

vi

σi

−
nh
∑

j=1

cjhj. (5.1)

Then, the conditional probabilities for each visible and hidden neuron given the others are

derived to be

p(vi = v|h) = N
(

v|bi + σi

∑

j

hjWij, σ
2
i

)

, (5.2)

and

p(hj = 1|v) = sigmoid

(

cj +
∑

i

Wij

vi

σi

)

, (5.3)

where N (· | µ, σ2) denotes the pdf of the Gaussian distribution with mean µ and variance

σ2, and sigmoid(x) = 1
1+exp(−x)

.

By taking the partial derivative of the log-likelihood function which can be derived by

marginalizing out the hidden neurons from the joint probability density of the model with

respect to each parameter, it is possible to obtain the gradient update rule. Obtaining the

update rules is similar to that for the original binary RBM and is omitted in this chapter (see

Krizhevsky (2009) for details).

The update rules for the weight wij , the visible bias bi, the hidden bias cj , and the standard

deviation σi are, then,

∇Wij =
1

σi

(

〈vihj〉d − 〈vihj〉m
)

, (5.4)

∇bi =
1

σ2
i

(〈vi〉d − 〈vi〉m) , (5.5)

∇cj = 〈hj〉d − 〈hj〉m , (5.6)

∇σi =
1

σ3
i





〈

(vi − bi)
2 − σi

∑

j

vihjwij

〉

d

−
〈

(vi − bi)
2 − σi

∑

j

vihjwij

〉

m



 ,

(5.7)

where 〈·〉p represents the expected value over the distribution p, and d and m are the empir-

ical distribution and the model distribution, respectively.
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5.1.1 Practical considerations

GBRBM , in general, is known to be difficult to train. This difficulty mainly comes from

learning standard deviations σi of the visible neurons.

Unlike other parameters such as wij , bi, and cj , the standard deviations are constrained to

be positive. However, with an inappropriate learning rate, it is possible for the obtained

gradient update rule to result in a non-positive standard deviation. This leads either to the

infinite energy of the model (in case of σi = 0) or to the ill-defined conditional distribution

of the visible neuron (in case of σi < 0).

Since all gradients other than that of the hidden bias are scaled by the standard deviation,

inappropriate learning of it affects learning of other parameters, also. Too rapid decrease

of the standard deviation increases the gradients of the weights and the visible biases such

that the stochastic gradient learning either diverges or converges very slowly.

In order to overcome this problem of learning the standard deviations Krizhevsky (2009)

suggested using a separate learning rate for the standard deviations which should be 100 to

1000 times smaller than that of the other parameters. However, this imposes a problem of

how to choose the right learning rate.

There has been a general consensus that it is enough to update the weights and the bi-

ases only, and use fixed, possibly unit, standard deviations. Many impressive results using

GBRBMs without learning standard deviations have been published recently (Salakhutdi-

nov, 2009b; Mohamed & Hinton, 2010; Krizhevsky, 2009).

Furthermore, instead of sampling from the Gaussian distribution of the visible neurons, the

mean vectors are commonly used as the samples from the visible neuron. It is due to the fact

that the standard deviations are not updated, and thus, the samples of the visible neurons

are either dominated by the noise or affected only marginally by the standard deviations.

The strategy of no sampling for the visible neurons is possible, since the stochastic nature of

the Boltzmann machine could be maintained by the stochastic hidden neurons only rather

than by both visible and hidden neurons. It could also be thought analogue to the mean-field

approximation for the binary RBM (Welling & Hinton, 2002).
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5.2 Improved Learning of Gaussian-Bernoulli RBM

5.2.1 Modified Energy Function

The traditional energy function of GBRBM in Equation (5.1) introduced an unintuitive

conditional distribution of visible neurons described in Equations (5.2). The problem comes

from the fact that the noise level defined by σi affects the mean of the visible neuron,

and thus, the noise level cannot be considered solely as a noise, but also as a scaling, or

importance, factor for the weights. The role of σi as an importance factor can be observed

from the conditional distribution of the hidden neurons such that when σi is large, the

contribution of the value of the visible neuron is small, and vice versa.

In other words, σi in the first term of Equation (5.1) denotes a noise level of vi given the

hidden neurons, but the same σi in the second term acts as an importance factor for the i-th

visible neuron.

Furthermore, the update rules for weights and visible biases in Equations (5.4)–(5.5) are

scaled by σi, but with different exponents. This could potentially affect the gradient update

as σi decreases.

Therefore, a modified energy function of GBRBM that addresses the above mentioned prob-

lems is newly defined as:

E(v,h|θ) =
nv
∑

i=1

(vi − bi)
2

2σ2
i

−
nv
∑

i=1

nh
∑

j=1

Wijhj

vi

σ2
i

−
nh
∑

j=1

cjhj. (5.8)

The only difference can be found in the exponent of σi in the second term of the energy

function. Instead of using a plain σi, the modified energy function uses a squared σi.

Under the modified energy function, the conditional probabilities for each visible and hid-

den neurons given others are

p(vi = v|h) = N
(

v|bi +
∑

j

hjWij, σ
2
i

)

, (5.9)

and

p(hj = 1|v) = sigmoid

(

cj +
∑

i

Wij

vi

σ2
i

)

. (5.10)

Comparing these to (5.2) – (5.3), the obvious change can be observed from the conditional

distribution of visible neuron vi, where the standard deviation σi does not appear in the
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mean of the Gaussian distribution. The conditional distribution of hidden neuron hj was

modified such that the value of each visible neuron is now scaled by the square of σi.

The update rules for the parameters are, then,

∇Wij =
1

σ2
i

(

〈vihj〉d − 〈vihj〉m
)

, (5.11)

∇bi =
1

σ2
i

(〈vi〉d − 〈vi〉m) , (5.12)

∇cj = 〈hj〉d − 〈hj〉m , (5.13)

∇σi =
1

σ3
i





〈

(vi − bi)
2 − 2

∑

j

vihjwij

〉

d

−
〈

(vi − bi)
2 − 2

∑

j

vihjwij

〉

m



 ,

(5.14)

where all the symbols follow the convention of those used for defining the update rules

based on the traditional energy function.

It is clear to see that the gradients for both weights and visible biases are now scaled iden-

tically by σ−2
i . Also, all terms in the gradient of σi are now scaled equally by σ−3

i , whereas

the gradient obtained from the conventional energy function two terms were scaled with the

inverse of a square, and the others were with the inverse of a cube.

Learning log-standard deviation

In addition to the proposed modified energy function, this section proposes to re-parameterize

the variance σ2
i with an exponentiated new variable zi in the energy function of GBRBM

such that

E(v,h|θ) =
nv
∑

i=1

(vi − bi)
2

2ezi
−

nv
∑

i=1

nh
∑

j=1

Wijhj

vi

ezi
−

nh
∑

j=1

cjhj.

Then, the square of standard deviation of the conditional distribution of each visible neuron

vi is ezi , and zi = log σ2
i . The gradient of zi is

∇zi =e−zi





〈

1

2
(vi − bi)

2 −
∑

j

vihjwij

〉

d

−
〈

1

2
(vi − bi)

2 −
∑

j

vihjwij

〉

m



 .

The gradient is now scaled identically to the other parameters by σ−2
i
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As discussed earlier in this chapter, there have been papers proposing not to update σi when

training GBRBMs. Krizhevsky (2009) reported that learning standard deviations of visible

neurons tremendously decreased the reconstruction error1 while also claimed that it made

filters learned by GBRBM more noisy. Also, Salakhutdinov (2009a) claimed that σi would

be fixed to a predetermined value in practice. It is, however, not easy to have a universal

method for determining the appropriate values.

In the experiments that will be presented later in this chapter the effect of learning standard

deviations will be discussed.

5.2.2 Parallel Tempering

Although CD learning can be applied directly to GBRBMs without any modification other

than the gradient update rules, parallel tempering learning needs to be redefined.

The main problem is that the usual practice of multiplying each parameter with the tem-

perature, as described in Chapter 3, does not apply in the case of GBRBM , because of the

standard deviations σi.

A naive approach of multiplying σi with the temperature results in the base model (which

is the model with the highest temperature 0) having visible neurons that have zero standard

deviations. On the other hand, if tempering is considered to be done on the energy function

such that the energy of GBRBM with its temperature t is defined as tE(v,h), the standard

deviation of each visible neuron at the base model approaches infinity.

In order to overcome this problem, a new scheme for constructing the intermediate tem-

pered GBRBM is proposed such that its parameters are given by

W
(t)
ij = tWij,

b
(t)
i = tbi + (1− t)mi,

c
(t)
j = tcj,

σ
(t)
i =

√

tσ2
i + (1− t)s2

i ,

where Wij , bi and cj are the parameters of the model, and the superscript (t) indicates that

they are of the tempered intermediate model with the temperature t, respectively.

mi and s2
i are the mean and the variance of the i-th component of the training data samples,

1Refer to Chapter 2 for its definition.
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and they are defined by

mi =
1

N

N
∑

n=1

x
(n)
i , si =

√

√

√

√

1

N − 1

N
∑

n=1

(

x
(n)
i −mi

)2

,

in which x
(n)
i is the i-th component of the n-th training sample in the training data set

{x(n)}Nn=1.

In this proposed scheme, the intermediate model is the result of interpolating the base model

and the current model, and the base model consists of independent Gaussian variables that

has the means and variances of the training data samples.

5.2.3 Adaptive Learning Rate

As it was pointed out in Chapter 4, training RBMs is often sensitive to the choice of learning

rate and its scheduling. According to the experiments of which the results will be shown

later in this chapter, GBRBM tends to be more sensitive to the choice than RBM is. Also,

various experiments showed that if the learning rate is not annealed over time approaching

zero, GBRBMs diverges easily after initial convergence.

This problem can be, in practice, easily addressed by limiting the maximum learning rate.

In all the experiments in the rest of this chapter, the adaptive learning rate is limited from

above such that the learning rate is taken to be max(η, η̄).

Additionally to limiting the learning rate from above, a lower-bound can also be set. This

possibly prevents the adaptive learning rate from getting stuck in the area where the suffi-

ciently small neighborhood does not improve the local likelihood estimate2.

5.2.4 Enhanced Gradients

The enhanced gradient was proposed in Chapter 4 for improving both the speed and the

resulting performance, in terms of log-likelihood and feature extracting capability, for the

conventional RBM. The same enhanced gradient can be applied to GBRBMs for enhancing

learning, however, with a slight difference in deriving the enhanced rules.

2This strategy can directly be applied to the conventional binary RBM as well, although the experiments

presented in Chapter 4 showed that PT learning with the swapping interval nswap set to 1 prevents the diver-

gence of the learning rate, which minimizes the need for this strategy when training binary RBMs.
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Unlike RBM the visible neuron of GBRBM is not binary, but real-valued. It is not possible

to apply the bit-flipping transformation to the visible neuron, but only to the hidden neuron.

Hence, a different transformation to which the traditional update rules for GBRBMs are not

invariant can be defined as follows:

ṽi = vi − µi,

where ṽi is a shifted version of original vi.

Identically to how the gradient update rule for the weights of RBM was rewritten, the gra-

dient update rule for the weights of GBRBM can also be rewritten as:

∇wij = Covd (vi, hj)− Covm (vi, hj) + 〈vi〉dm∇cj + 〈hj〉dm∇bi ,

where ∇cj and ∇bi are the gradients defined in (5.5)–(5.6) and 〈·〉dm = 1
2
〈·〉d + 1

2
〈·〉m is

the average activity of neuron under the data and model distributions. Remarkably, it is

identical to that of the conventional RBM.

In a similar manner, the enhanced gradient rules are obtained by transforming the energy,

updating the transformed energy, and transforming it back. They, then, remain in the same

forms as they were for RBM with both binary visible and hidden neurons.

In the case of standard deviations σi, the enhanced gradient obtained from the shifting

transformation does not change the update rule. The same update rule in (5.7) can be used.

5.3 Learning Human Faces

In all experiments, the following settings were used. Weights were initialized to uniform

random values between ± 1
nv+nh

. Biases bi and cj were initialized to zero and variances σi

to ones. Adaptive learning rate candidates (see Section 4.1) were {0.9η, η, 1.1η}, where η

is the previous learning rate. In PT learning, there were 21 equally spaced temperatures

t ∈ {0, 0.05, . . . , 1}, and in CD learning, a single Gibbs step was taken for each update.

For images, each pixel was normalized into [0, 1].

The CBCL data used in the experiment contains 2,429 faces and 4,548 non-faces as training

set and 472 faces and 23,573 non-faces as test set (MIT Center For Biological and Com-

putation Learning). Since the intention of the experiment is to check whether GBRBM can

learn meaningful features of a probabilistic distribution, only the faces from the training

set of the CBCL data were used. A set of randomly chosen samples of faces are shown in
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Figure 5.1.

Figure 5.1: 40 randomly chosen faces from CBCL data.

5.3.1 Sensitivity to learning rate scheduling

The aim of the first experiment was to test whether the learning rate scheduling is important

and whether GBRBM is more sensitive to it than the conventional binary RBM as discussed

in Section 5.2.3.

The procedure was simply to train a GBRBM with 256 hidden neurons using both the

traditional gradient and the enhanced gradient with the learning rate fixed to 0.001 while

updating both standard deviations and other parameters. The divergence of the GBRBM

was observed by monitoring the reconstruction error.
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Figure 5.2: Reconstruction errors obtained by training GBRBMs without using any

learning rate scheduling, but a learning rate fixed to 0.001.

As can be seen from Figure 5.2 which shows the reconstruction errors (see Section 2.3.2
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for the definition) computed during learning, regardless of the gradients (either traditional

or enhanced) or the learning methods (either PT learning or CD learning), the learning

diverged after some updates. Out of the expectation, the traditional gradient seems to be

more resilient to the divergence, but the mean and the variance of the reconstruction error

increased over time, regardlessly. It became more evident after more than 6000 updates,

which is not shown in the figure.

This divergence is an evidence for GBRBM ’s sensitivity to the learning rate scheduling.

Considering that the divergence became significant when the standard deviations decreased

significantly (this is not shown in the figures, though) the divergence can be explained by

the scaling factors embedded in the gradient update rules which are highly dependent and

increase exponentially with respect to the values of the standard deviations.

Further experiments were, thus, performed with the adaptive learning rate in order to auto-

matically anneal the learning rate. As will be shown, when the learning rate is annealed, the

divergence was not observed, emphasizing the importance of using the adaptive learning

rate.

5.3.2 Learning standard deviation is important

The trained GBRBM had 256 hidden neurons. Initially, the standard deviations of the

visible neurons were not updated, but fixed to the constant value of 1. The training was

performed for approximately 650 epochs which is equivalent to around 12466 gradient

updates. The training was performed by CD learning with a single Gibbs sampling step to

obtain the model samples.

The enhanced gradient and the adaptive learning rate were used, and the initial learning

rate was 0.0001, and the upper-bound and the lower-bound were set to 0.01, and 0.0001,

respectively.

Figure 5.3 shows the learned filters and samples generated from the GBRBM after approx-

imately 650 epochs. The reconstruction error nearly converged (see Figure 5.5), but it is

clear that the samples are very noisy. Additionally to the samples, the filters learned by the

GBRBM are quite noisy, possibly suggesting that there is more room for training further.

Further training continued, however, now with updating the standard deviations of the visi-

ble neurons for 1000 epochs. From both the weights and the generated samples, it is obvious

that the noise presented previously has been reduced tremendously.

From the reconstruction error shown in the left figure of Figure 5.5, it is clear that learn-
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Figure 5.3: Filters (top, middle) and samples (bottom) generated by the GBRBM trained

without updating standard deviations. The filters were sorted with respect to the L2-

norms such that 128 filters with the large norms are shown in the top figure and the others

are in the middle figure (from top to bottom, left to right). Between each consecutive

samples 100 Gibbs sampling steps were performed.
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Figure 5.4: Filters (top) and samples (bottom) generated by the GBRBM that was con-

tinued to be trained now with updating the standard deviations. The filters were sorted

with respect to the L2-nors. Between each consecutive samples 100 Gibbs sampling

steps were performed.
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ing the standard deviations decreases the reconstruction error immediately. The underlying

reason for this behavior could be explained as the GBRBM has become aware of the im-

portance among visible neurons so that it emphasizes those pixels that are more important

while modeling the training data set.
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Figure 5.5: Evolutions of reconstruction error over gradient updates.

It is interesting to see the visualization of the learned standard deviations which is shown

in Figure 5.6. It is interesting to see that those parts of a face that are important for the

recognition such as eyes and a mouth have lower standard deviations while other parts such

as both chins have higher standard deviations that are close to the standard deviations of

the training samples. It corresponds to the earlier explanation of σi being an importance

factor as GBRBM focuses more on those important parts when modeling the faces, and

since those parts are rather well modeled, given the values of the hidden neurons, the noise

levels of visible neurons are significantly lower.

 

 

Figure 5.6: Learned standard deviations after approximately 1645 epochs using CD

learning.
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5.3.3 Parallel tempering for training Gaussian-Bernoulli RBM

In order to see (1) if there is any risk in learning standard deviations from the beginning and

(2) if the use of PT learning with the intermediate distributions proposed in Section 5.2.2

works, an additional experiment was conducted. A GBRBM with the same number of

hidden neurons was trained using PT learning while updating the standard deviations from

the very first gradient update.

The observation of the reconstruction error on the right-hand figure of Figure 5.5 suggests

that learning the standard deviations from the beginning indeed helps. Also, it is apparent

that the learning does not diverge thanks to the adaptive learning rate.

In addition to the reconstruction error that revealed that PT learning with the proposed in-

termediate distribution works well, the samples were generated from the trained GBRBM.

Visual inspection of the generated samples in Figure 5.7 and Figure 5.4 suggests that the

GBRBM trained using PT learning is more suitable for generating a richer variety of sam-

ples, which indirectly indicates that a better generative model was learned by PT learning.

5.4 Learning Features from Natural Image Patches

An experiment was conducted in order to see if the learned GBRBM can be used as a feature

extractor.

CIFAR-10 data set (Krizhevsky, 2009) which consists of three-channel (R, G, B) color

images of size 32 × 32 with ten different labels3 was divided into three sets which are

training, validation, and test data sets. They contain 40000, 10000, and 10000 images,

respectively. Some of the sample images are shown in Figure 5.8.

5.4.1 Learning image patches with CD and PT learning

In this experiment, the procedure proposed by Ranzato &Hinton (2010) is roughly followed

which was successfully used for classification tasks (Krizhevsky, 2009, 2010; Coates et al.,

2010). The procedure, first, trains GBRBM , or any other feature extractor of the choice,

on small image patches (see Figure 5.9 for a number of examples).

Two GBRBMs, each having 300 hidden neurons, constructed under the modified energy

function were trained on 8× 8 images patches of which each pixel consists of 3 real values

3Labels are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
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Figure 5.7: Filters (top) and samples (bottom) generated by GBRBM trained without

updating standard deviations. The filters were sorted with respect to the L2-norms. Be-

tween each consecutive samples 100 Gibbs sampling steps were performed.
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Figure 5.8: 40 randomly chosen samples from CIFAR-10 data set.

Figure 5.9: 80 randomly chosen samples out of image patches extracted from CIFAR-10.

corresponding to red, green, and blue color components. One GBRBM learned the patches

using CD learning, and the other one did using PT learning. The proposed enhanced gradi-

ent and the adaptive learning rate were used by both GBRBMs.

The GBRBM trained using PT learning was updated for 200 epochs, and the other was

updated for 300 epochs. No preprocessing was performed for the patches other than nor-

malizing each color component into [0, 1].

Figures 5.10–5.11 visualize the filters learned by the GBRBMs. It is clear that the filters

with the large norms learn mostly the global structure of the image patches, whereas those

with the smaller norms tend to model more details, regardless of the learning method.

It is notable that the GBRBM was able to learn both the straight edge filters and the curved

edge filters. It is more obvious in case of PT learning, whereas in case of CD learning, the

filters with the small norms mostly learned not-so-useful global structures.

Furthermore, the GBRBM favored high frequency edge-like filters for black-and-white fil-

ters, whereas on the other hand, the low frequency filters that model more global features

show the variety of colors. This can be explained so that the image patches can be mod-

eled by the combination of the global color patterns and the position information of edges
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Figure 5.10: (Top) 128 filters with the largest L2-norms, (middle) 128 filters with the

least L2-norms, and (bottom) 90 samples where each consecutive samples are separated

by 100 Gibbs sampling steps, obtained by training a GBRBM on natural image patches

using PT learning.

(Krizhevsky, 2009).

The standard deviations were distributed in [0.1681 0.2074] and [0.1756 0.1932] for GBRBMs

trained with PT learning and CD learning, respectively. In both cases, the learned standard

deviations were significantly smaller than those of the training samples, which were dis-

tributed between 0.2338 and 0.2641. This was expected and is desirable.

5.4.2 Learning features for classifying natural images

For the actual classification task, 49 patches were obtained in a convolutional way for each

image. Each patch was, then, preprocessed and converted to 64 independent components by

the already obtained independent component analysis (ICA) filters. The activation probabil-

ities of the 200 or 300 hidden neurons of GBRBMs were obtained with the 64 components

and used for the classification. The classification was done by the simple logistic regression.

To classify the color image, independent component analysis (ICA) (Hyvärinen et al., 2001)

and GBRBMwere trained on the randomly chosen patches from the training data set. More
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Figure 5.11: (Top) 128 filters with the largest L2-norms, (middle) 128 filters with the

least L2-norms, and (bottom) 90 samples where each consecutive samples are separated

by 100 Gibbs sampling steps, obtained by training GBRBM on natural image patches

using CD learning.

precisely three patches were randomly chosen from each training image to obtain the mix-

ing and separating matrices of ICA where the hyperbolic tangent function was used as the

non-linearity function and the components were estimated symmetrically (see Figure 5.12

for the obtained separating matrix).

The algorithm for ICA was FastICA (Hyvärinen, 1999). For the efficient training and the

removal of any possible noise, only the first 64 components of the largest eigenvalues were

retained at the whitening phase of the ICA training, and therefore, 64 independent compo-

nents were obtained after ICA.

Figure 5.12: 64 filters (separating matrix) obtained by ICA on 8×8-patches of the natural
images.
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(a) GBRBM filters - before learning (b) GBRBM filters - after learning

Figure 5.13: (Left) filters of ICA+GBRBM before training, and (right) filters by

ICA+GBRBM learned from the natural image patches. GBRBM filters were visualized

by ICA projection.

The independent components obtained by ICA for each training image were used as the

training data for a GBRBM. The GBRBM had 200 or 300 binary hidden neurons, and was

trained by PCD learning using the traditional learning rules without updating the standard

deviations, but fixing them to 1. The minibatch of size 20 was used.

The traditional gradient rules were used instead of the proposed enhanced gradient rules,

since some preliminary experiments suggested that the traditional gradient rules performed

without any problem if GBRBM learned the independent components. Further, the learning

rate was fixed to 0.005 for the whole training and for all models instead of the adaptive

learning rate, as the sensitivity to the learning rate scheduling is mostly influenced by the

learning of standard deviations which, in this experiment, are not updated, but fixed to 1.

Figure 5.13 shows 200 filters learned by the GBRBM. It is worthwhile to note that the filters

expanded by the GBRBM after ICA shows more variety of the edge-like filters obtained by

ICA shown in Figure 5.12. Also, some of the filters by the GBRBM are the combinations

of ICA filters.

The best classification accuracy of 63.75% was achieved with ICA+GBRBM having 64 in-

dependent components and 300 hidden neurons after training the GBRBM for only about 35

epochs. The similar accuracy were observed by using whitening only instead of ICA. The

accuracy obtained using Whitening+GBRBM with 200 hidden neurons was 62.38%. Only

difference that could be observed was the not-so-significant slow-down in the convergence
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and the marginally worse final accuracy.

Also, worse accuracies could be achieved if the image patches were not preprocessed with

ICA nor whitening. Using the filters obtained in the previous experiment (in Section 5.4),

the accuracies were 57.42% and 55.20% for PT learning and CD learning, respectively.

This suggests that the appropriate preprocessing of the samples is important for extracting

the features using GBRBM .

Despite the minor differences, all the accuracies obtained by using the features extracted by

GBRBMs were much higher than the classification accuracy obtained by a simple logistic

regression classifier on raw pixel values. Only about 40% accuracy could be achieved when

the raw pixels were used as features for the classifier. It suggests that GB-RBMs are also

capable of extracting features that are more suitable for the classification task.

The obtained best accuracy is comparable to the previous research. Some of the previ-

ous results using the variants of RBM without deep neural networks and fine-tuning in-

clude 63.78% obtained by GBRBM without any preprocessing, but whitening (Krizhevsky,

2009), 62.8% obtained by the factored 3-way RBM (Ranzato et al., 2010), and 68.2% ob-

tained by the mean and covariance RBM (mcRBM) with the data preprocessed with PCA

(Ranzato & Hinton, 2010). However, the result is far from the current state-of-the-art ac-

curacies, e.g. 79.6% obtained by Coates et al. (2010), or 78.90% obtained by Krizhevsky

(2010).

It should be noticed that the mentioned results by other researchers were obtained by using

the images other than those contained in CIFAR-10 data set. All of them used a non-

overlapping set of images from Tiny Images data set4 which is the unlabeled superset

of CIFAR-10. This kind of including other unlabeled data, which can be regarded as a

semi-supervised learning, has been shown to improve the generalization performance of

the model as well as the classification performance (Krizhevsky, 2009; Ranzato & Hinton,

2010; Ranzato et al., 2010; Hinton & Salakhutdinov, 2006; Salakhutdinov, 2009b). Thus,

the performance of the proposed model has the potential for better accuracy if more unla-

beled data were used.

5.4.3 Learning images

Due to the difficulty in training GBRBMs, only data sets with comparably small dimension-

ality have been used in various papers. For instance, one of the most popular benchmark

4http://groups.csail.mit.edu/vision/TinyImages/
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data sets has been natural image patches (Krizhevsky, 2009, 2010; Coates et al., 2010; Ran-

zato et al., 2010; Osindero & Hinton, 2008) which consist of 8 × 8 images of which each

pixel consists of three color channels-red, green, and blue.

In case of CIFAR-10 which was used for experimenting the feature extracting performance

of GBRBMs in the previous section, Krizhevsky (2009) asserted that GBRBM was unable

to learn any meaningful features from the whole images. Later, Krizhevsky (2010) tried

various heuristics to prevent GBRBM from learning filters that are focused on modeling

the boundaries of the images.

In this experiment, using the enhanced gradient and the adaptive learning rate while the

standard deviations are learned, the whole images of CIFAR-10 are learned by GBRBM

. It was expected that the standard deviations which also act as importance factors would

prevent GBRBM from focusing too much on unimportant boundary pixels, but would en-

courage it to learn both the boundary and the interior of the images.

A GBRBM with 4000 hidden neurons was trained on the images of CIFAR-10 data set. CD

learning with the adaptive learning rate and the enhanced gradient was used.

The initial learning rate and the upper-bound were set to 0.001, and no lower-bound for

the learning rate was set. The standard deviations were learned from the beginning. The

GBRBM was trained for only 70 epochs which is equivalent to 27,370 gradient updates as

the minibatch of size 128 were used.

Figure 5.14 show 512 filters learned by the GBRBM sorted by the L2-norms. Clearly, the

filters with the large norms tend to model the global features such as the overall background

color and the separation between the background seen in the boundary and the object in the

middle. Filters with the smaller norms, on the other hand, model those small, fine details

mostly concentrated on the interior of the image.

This visualization shows that GBRBM with the modified energy function, the enhanced

gradient update, the adaptive learning rate, and learning standard deviations, as proposed in

this chapter does not suffer from the problem described by Krizhevsky (2010) which stated

that GBRBM easily fails to model the whole image by focusing mostly on the boundary

pixels only.

The evolution of the reconstruction error over training shown in the left-hand side of Fig-

ure 5.15 shows that regardless of the large dimensionality of the data set which is 3072, the

GBRBM was able to learn the images stably. Also, the adaptive learning rate was able to

anneal the learning rate appropriately over the training, as can be observed in the right-hand

figure of Figure 5.15.
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Figure 5.14: Visualization of weights of GBRBM trained on the whole images of

CIFAR-10. (Left) 256 filters with the largest L2-norms, and (right) 256 filters with

the least L2-norms.
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Figure 5.15: Evolutions of reconstruction error and learning rate while training the

GBRBM using CD learning with updating the standard deviations on the whole images

of CIFAR-10.

In addition to the visualization of the learned filters and the reconstruction error, it is possi-

ble to observe that the GBRBM was able to capture the essence of the training samples by

looking at the reconstructed images obtained by a single step Gibbs sampling. Figure 5.16

shows both the randomly chosen original training samples and their reconstructions. The

reconstructed images look like blurred versions of the original ones, however, still main-

taining the overall structures.

For instance, the reconstructed image of the bottom-left image which has a sedan shows

that the GBRBM could capture the uniform background information, the darker color of

the bottom of the sedan, and the overall shape of the car. A reconstruction of an eagle

flying in the sky (the top third image from the right) captures black wings and white head

and tail while ignoring too local, small details. This ignorance can be considered as a sign

for either more training being required or more hidden neurons being required.

These results clearly indicate that GBRBM trained with the modified energy function, the

enhanced gradient, and the adaptive learning while also learning the standard deviations is

able to learn the whole images without much difficulty. Especially, the visualized filters do

not possess those filters that can only be considered as global, noisy filters (see Figure 2.1

of Krizhevsky, 2009). Also, clearly most filters do not focus nor model the boundary of the

images, which was considered harmful and difficult to address.
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Figure 5.16: (Top) 20 randomly chosen samples from CIFAR-10 data set. (Bottom)

One-step reconstruction using the GBRBM.

5.5 Conclusions

This chapter illustrated how RBM can be extended to learning real-valued data by introduc-

ing a Gaussian-Bernoulli RBM (GBRBM) which uses Gaussian visible neurons instead of

Bernoulli visible neurons of the conventional RBM.

Based on the widely used traditional form of GBRBM, the chapter proposed a modified

GBRBM which uses a different parameterization of the energy function. The modification

led to more elegant forms for visible and hidden conditional distributions given each other

and gradient update rules.

Furthermore, the chapter described how the three advances proposed in Chapters 3 – 4 can

be applied to GBRBMs; they are parallel tempering learning, the enhanced gradient, and

the adaptive learning rate. To train GBRBMs using the parallel tempering, a method for

constructing the intermediate tempered distributions was proposed.

It was shown that the difficulty of preventing the divergence of learning could be addressed

by the adaptive learning rate. However, some preliminary experiments (not shown in the

thesis) revealed that training GBRBMs using the adaptive learning rate is highly sensitive to

the associated learning parameters, and in most cases either the learning rate or the recon-

struction error diverged. This problem was addressed by simply having the predetermined

upper bound of the learning rate.

The enhanced gradient which was proposed earlier in Chapter 4 was applied to GBRBMs.

As a way for adapting it to Gaussian visible neurons, the shifting transformation was pro-

posed. However, it must be reminded that the shifting transformation may not be the opti-

mal one for GBRBM . There certainly exists a room for other transformations that would
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give better performance over the shifting transformation. Hence, further investigation is

required.

Finally, the use of GBRBM and the proposed modifications were tested through the series

of experiments on realistic data sets including human faces and natural images. Those

experiments showed that GBRBM is not only possible to learn continuous real-valued data,

but similarly to the conventional RBM, it is able to learn interesting features of the data

samples so that the obtained features can increase performance in such machine learning

tasks as classification.

Despite these successful applications of GBRBMpresented in this chapter, training GBRBMs

is still more challenging than training RBM. Further research in improving and easing the

training will be required.
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Chapter 6

Conclusions

Although Boltzmann machines (BM) and restricted Boltzmann machines (RBM) have been

introduced already in 1980s, the wide usage of them had to wait until Hinton (2002) intro-

duced contrastive divergence (CD) learning in 2002. The main barrier in the acceptance

of RBMs was the difficulty in computing the stochastic gradient for training the model.

Thanks to CD learning, the popularity of RBM and its variants grew rapidly, and a whole

field called deep learning had opened (Bengio, 2009).

Unfortunately, recent papers (see e.g. Schulz et al., 2010; Fischer & Igel, 2010) reported

that it is not trival to train a simple RBM as learning can easily diverge. Without careful

tuning of learning parameters, even a simple problem of learning handwritten digits fails,

which is observed by the decreasing likelihood or the failure of sampling any meaningful

digits from the trained model.

In order to address this difficulty in training RBMs, this thesis aimed to provide methods

that could ease training from the difficulties and would potentially result in better trained

RBMs. The propositions did not concentrate on a single weakness of learning, but consid-

ered the solutions from the various angles.

Firstly, the weakness in computing the learning gradient was addressed. PT learning em-

ployed an advanced Markov-Chain Monte-Carlo (MCMC) sampling method for replacing

the simple Gibbs sampling which has been the sampling method of choice for computing

the negative term of the learning gradient. Chapter 3 described how PT learning can be

adapted to training RBMs and provided the experimental results showing the superiority of

PT learning over the conventional learning method, CD learning.

The second point on which the thesis focused was the problem with the traditional gradient

update rules. The close observation into the original update rules revealed that the conven-
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tionally used gradients were not invariant to the representation of training samples and also

had hidden terms that distract learning. Based on this observation, in Chapter 4 the thesis

proposed the enhanced gradient update rules that have the property of invariance to the data

representation and remove the distracting terms from the original gradients. Extensive ex-

periments on a realistic data set confirmed that, regardless of the learning method and the

training data sets, the enhanced update rules outperformed the traditional ones.

Furthermore, the difficulty of choosing the learning parameters was addressed with the

adaptive learning rate in the same chapter. As Fischer & Igel (2010) pointed out, any inap-

propriate choice of the learning rate results in a diverging behavior. The adaptive learning

rate, based on the local estimate of the likelihood, was able to address this problem by

automatically adapting the learning rate on-the-fly. It was confirmed with the various ex-

periments.

Lastly, in Chapter 5, the thesis presented how RBMs can be extended to model continuous,

real-valued data sets. Based on a Gaussian-Bernoulli RBM (GBRBM) (Hinton & Salakhut-

dinov, 2006), the chapter proposed modifications and improvements that make GBRBMs

readily available to learn high-dimensional data sets easily. The experimental results sug-

gested that GBRBM which in its original form is more sensitive to the learning parameters

and is known to be difficult to learn can more easily learn high-dimesional data sets with the

proposed improvements. Although the presented results failed to provide any solid num-

bers that are state-of-the-art, the indirect evidences such as the visualization of the weights,

the reconstruction error, and the generated samples, revealed the improvements gained by

the proposed methods.

Clearly from the empirical evidences presented throughout the thesis, the proposed im-

provements for both RBM and its extension GBRBM address the difficulties reported by

the researchers. It is expected that the adaptation of these improvements will encourage

many other researchers to work on RBMs, and further, on deep learning.

Deep neural networks such as deep belief networks (DBN) (Hinton & Salakhutdinov, 2006),

deep Boltzmann machines (DBM) (Salakhutdinov & Hinton, 2009), and convolutional

DBN (Lee et al., 2009), have gained popularity, since Hinton & Salakhutdinov (2006)

showed that they can be easily trained when each layer of the networks is pretrained, as

if it were RBM .

Without pretraining, it is generally considered that learning deep architectures is difficult, if

not impossible, except for few exceptional cases such as training an MLP for classification

tasks (Ciresan et al., 2010; Martens, 2010). Salakhutdinov & Hinton (2009) even men-

tioned that MNIST handwritten digits could not be learned successfully by DBMs without
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pretraining.

The proposed improvements presented in this thesis mainly focused on training RBMs with

a single layer. All experiments were conducted using single layered architectures only

without any relaxation of the structural restrictions imposed on RBMs. However, clearly,

the theoretical aspects of the three proposed improvements do not restrict their use in more

general Boltzmann machines such as DBMs.

It will be an interesting research topic to apply the proposed methods to deep architectures,

either as a part of pretraining or as a sole learning method. As the experiments in the thesis

have shown the significant improvements and the possibility of much easier training for

RBMs, it can be anticipated that the proposed learning methods would help training more

generalized and deeper generative architectures.

Additionally, more applications of RBMs need to be discovered and experimented. In-

cluding this thesis, most machine learning tasks tackled so far by the deep learning have

mainly been the classification tasks of well-known benchmark data sets. Other application

areas that could potentially gain improvement from RBM and its variants include missing

value reconstruction, collaborative filtering, image segmentation, and clustering of high-

dimensional data sets. More research effort will need to focus on diversifying the applica-

tion areas.
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Appendix A

Update Rules for Boltzmann Machines

Let us start from Equation (2.1), however, with x being split into v and h such that

P (v,h | θ) =
1

Z(θ)
exp [−E(v,h | θ)] .

Given a training data set {v(n)}Nn=1, the log-likelihood function (2.3) can be written as

L(θ) =
N
∑

n=1

log
∑

h

P (v(n),h | θ)

=
N
∑

n=1

log

∑

h
exp

{

−E(v(n),h | θ)
}

∑

v

∑

h
exp {−E(v,h | θ)}

=
N
∑

n=1

(

log
∑

h

exp
{

−E(v(n),h | θ)
}

− log
∑

v

∑

h

exp {−E(v,h | θ)}
)

.

(A.1)

Let θ be one parameter of θ, and then, the update rule for θ can be easily evaluated by

taking the partial-derivative of Equation (A.1) with respect to it. Then, the gradient with
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respect to θ is

∂L
∂θ

=
N
∑

n=1

∂

∂θ

(

log
∑

h

exp
{

−E(v(n),h | θ)
}

− log
∑

v

∑

h

exp {−E(v,h | θ)}
)

=
N
∑

n=1





∑

h

∂(−E(v(n),h|θ))
∂θ

exp
{

−E(v(n),h | θ)
}

∑

h
exp {−E(v(n),h | θ)} −

∑

v

∑

h

∂(−E(v,h|θ))
∂θ

exp {−E(v,h | θ)}
∑

v

∑

h
exp {−E(v,h | θ)}

)

=
N
∑

n=1





〈

∂
(

−E(v(n),h | θ)
)

∂θ

〉

P (h|v(n),θ)

−
〈

∂ (−E(v,h | θ))

∂θ

〉

P (v,h|θ)



 . (A.2)

Learning is often performed using mini-batches rather than using all training samples at

every update. Hence, the terms inside the outermost summation are computed for only a

small subset of training samples and are multiplied with an appropriate learning rate.

To obtain different learning rules for each parameter, the negative energy function needs

to be differentiated with respect to each parameter. This derivation is universal to both

Boltzmann machines and restricted Boltzmann machines, and after the derivations, the up-

date rules (2.4) – (2.6) and (2.9) – (2.11) can be obtained. Similarily, the update rules for

Gaussian-Bernoulli RBMs given in (5.4) – (5.7) and (5.11) – (5.14) can be derived.
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Appendix B

Enhanced Gradient

B.1 Bit-flipping transformation

By transforming parameters of RBM, the model can practically be made equivalent even

when a bit-flipping transformation given in Equation (4.3) is applied. Let us rewrite the

energy function of RBM (2.7) when the bit-flipping transformation is applied.

Ẽ(v,h | θ) = −
∑

i

∑

j

v1−fi

i (1− vi)
fih

1−fj

j (1− hj)
fjwij

−
∑

i

v1−fi

i (1− vi)
fibi −

∑

j

h
1−fj

j (1− hj)
fjcj,

where i and j denote indices of the visible and hidden neurons, respectively. Hence, fi and

fj also represent bit-flipping transformations for the i-th visible neuron and the j-th hidden

neuron.

Then, the above energy function can be modified as

Ẽ(v,h | θ) = −
∑

i

∑

j

((1− 2fi)vi(1− 2fj)hjwij+

fi(1− 2fj)hjwij + fj(1− 2fi)viwij + fifjwij

)

−
∑

i

((1− 2fi)vibi + fibi)−
∑

j

((1− 2fj)hjcj + fjcj)

Then, it is possible to gather the terms according to whether the term has both vi and hj ,

only one of them, or none of them. Due to the formulation of the probability function of
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RBM in Equation (2.1), any term that does not contain either vi or hj can be considered

constant and safely ignored. Also, it is possible to rewrite 1−2fi and 1−2fj as (−1)fi and

(−1)fj .

Then, the reformulated energy function looks like

Ẽ(v,h | θ) = −
∑

i

∑

j

vihj(−1)fi+fjwij −
∑

i

vi(−1)fi

(

bi +
∑

j

fjwij

)

−
∑

j

hj(−1)fj

(

cj +
∑

i

fiwij

)

= −
∑

i

∑

j

vihjw̃ij −
∑

i

b̃ivi −
∑

j

c̃jhj

From this, it is straightforward to see that Equations (4.4) – (4.6) hold.

B.2 Update Rules based on Bit-flipping Transformation

Let us consider the update of the transformed weights w̃ij . At each update, w̃ij is updated

by w̃ij + η∇w̃ij , where η is a learning rate. By the chain rule
∂wij

∂w̃ij

∂(−Ẽ)
∂wij

, the gradient of w̃ij

is, in fact, (−1)fi+fj

(〈

∂(−Ẽ)
∂wij

〉

d

−
〈

∂(−Ẽ)
∂wij

〉

m

)

.

Hence, the update rule of the weights, when a model is transformed, updated, and trans-

formed back, simply becomes

wij ← (−1)fi+fj w̃ij + η(−1)fi+fj





〈

∂
(

−Ẽ
)

∂wij

〉

d

−
〈

∂
(

−Ẽ
)

∂wij

〉

m





= wij + η(−1)fi+fj
[〈

(−1)fi+fjvihj + (−1)fivifj + (−1)fjhjfi

〉

d

−
〈

(−1)fi+fjvihj + (−1)fivifj + (−1)fjhjfi

〉

m

]

= wij + η
[

〈vihj〉d − 〈vihj〉m − fi

(

〈hj〉d − 〈hj〉m
)

− fj (〈vi〉d − 〈vi〉m)
]

, (B.1)

which is identical to Equation (4.7) with simple mathematical manipulations.

Now, let us take a look at bi. It is easy to see that the update rule for bi is invariant to the

transformation, as the update rules for both bi and b̃i are identical to 〈vi〉d − 〈vi〉m.

Hence, when a model is transformed, updated, and transformed back, each visible bias bi
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becomes

bi ← (−1)fi(b̃i + η∇b̃i)−
∑

j

fj(wij + η∇wij)

=

(

(−1)fi b̃i −
∑

j

fjwij

)

+

(

η∇bi − η
∑

j

∇wij

)

= bi + η

[

∇bi −
∑

j

fj∇wij

]

.

It must be reminded that∇wij in this context does not refer to the original update rule of the

weights (2.4) or (2.9). Rather, it is the additive term in Equation (B.1) which was derived in

the same way; transform a model, update a parameter, and transform a model back. Thus,

the update rule for bi is

bi ← bi + η

[

∇bi −
∑

j

fj

(

〈vihj〉d − 〈vihj〉m − fi

(

〈hj〉d − 〈hj〉m
)

− fj (〈vi〉d − 〈vi〉m)
)

]

Again, the derived update rule is identical to Equation (4.8). The update rule for cj can be

similarly obtained as that for bi was obtained, and the derivation is omitted here.

B.3 Obtaining Enhanced Gradients

With the newly derived update rules, it is possible to obtain the enhanced gradients as

a weighted sum of the gradients obtained from all possible combinations of bit-flipping

transformations. Each gradient is weighted by

∏

i

〈vi〉fi

dm (1− 〈vi〉dm)1−fi
∏

j

〈hj〉fj

dm

(

1− 〈hj〉dm
)1−fj

which is essentially same with Equation (4.10) except for that visible neurons and hidden

neurons are separately shown here.

It is apparent that the sum of the weight over all possible combinations of transformations

results in 1. An easy example could be constructed by considering the case where only two

neurons exist. Then, the weights are computed as shown in Table B.1.

Hence, any term in the gradient that does not depend on (is multiplied by) the transformation

fi or fj does not change over the weighted sum. Then, the weighted sum of the update rules

83



f1 f2

∏

i 〈xi〉fi

dm (1− 〈xi〉dm)1−fi

0 0 1− 〈x1〉dm − 〈x2〉dm + 〈x1〉dm 〈x2〉dm
0 1 〈x2〉dm − 〈x1〉dm 〈x2〉dm
1 0 〈x1〉dm − 〈x1〉dm 〈x2〉dm
1 1 〈x1〉dm 〈x2〉dm
Sum 1

Table B.1: Example of summing the weight

of wij over all combinations of transformations is

∇̃wij = Covd(vi, hj)− Covm(vi, hj) + 〈vi〉dm∇cj + 〈hj〉dm∇bi

−
∑

fi,fj

〈vi〉fi

dm (1− 〈vi〉dm)1−fi 〈hj〉fj

dm

(

1− 〈hj〉dm
)1−fj (∇cjfi +∇bifj)

= Covd(vi, hj)− Covm(vi, hj) + 〈vi〉dm∇cj + 〈hj〉dm∇bi

−
[

(1− 〈vi〉dm) 〈hj〉dm∇bi + (1− 〈hj〉dm) 〈vi〉dm∇cj

+ 〈vi〉dm 〈hj〉dm∇cj + 〈vi〉dm 〈hj〉dm∇bi

]

= Covd(vi, hj)− Covm(vi, hj),

which is exactly the enhanced gradient presented in Equation (4.11).

It is possible to obtain the enhanced gradients of visible and hidden biases following the

identical procedure. However, they can be derived more simply by observing that the en-

hanced gradient for wij was obtained from Equation (4.7) by setting the transformations

fi and fj to 〈vi〉dm and 〈hj〉dm, respectively. Based on this observation, by replacing these

transformations equivalently for the gradients of visible and hidden biases, the enhanced

gradients for them can be derived as

bi ← bi + η
[

∇bi −
∑

j

〈hj〉dm
(

∇wij − 〈vi〉dm∇cj − 〈hj〉dm∇bi

)

]

cj ← cj + η
[

∇cj −
∑

i

〈vi〉dm
(

∇wij − 〈vi〉dm∇cj − 〈hj〉dm∇bi

)

]

From Equations (4.2) and (4.11), it is apparent that ∇wij − 〈vi〉dm∇cj − 〈hj〉dm∇bi is

equivalent to the enhanced gradient for the weights. Thus, replacing it with ∇̃wij yields the

enhanced gradients for both visible and hidden biases (4.8) – (4.9).
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