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Abstract

Blind separation of sources from nonlinear mixtures is a challenging and often ill-
posed problem. We present three methods for solving this problem: an improved
nonlinear factor analysis (NFA) method using a multilayer perceptron (MLP) net-
work to model the nonlinearity, a hierarchical NFA (HNFA) method suitable for
larger problems and a post-nonlinear NFA (PNFA) method for more restricted
post-nonlinear mixtures. The methods are based on variational Bayesian learning,
which provides the needed regularisation and allows for easy handling of missing
data. While the basic methods are incapable of recovering the correct rotation of
the source space, they can discover the underlying nonlinear manifold and allow
reconstruction of the original sources using standard linear independent component
analysis (ICA) techniques.

Key words: Bayesian learning, blind source separation, nonlinear mixtures,
post-nonlinear mixtures, variational Bayes
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1 Introduction

Independent component analysis (ICA) [1], that is blind separation of indepen-
dent sources from their linear mixtures, forms the basis for most source sepa-
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ration work today. Introduction of Bayesian methods based on the variational
approximation for models capable of solving the ICA problem in 1999 inde-
pendently by Attias [2] and Valpola 1 [3] was an important step for Bayesian
source separation. Later, slightly different methods based on the same princi-
ples have been proposed by a number of authors [4–7].

The Bayesian modelling approach is very useful in source separation, as in
addition to providing tools for model order selection, it is open to all kinds
of extensions simply by extending the model [8,6,7]. This was illustrated, for
instance, by the nonlinear factor analysis (NFA) and nonlinear independent
factor analysis (NIFA) models for blind separation of sources from nonlinear
mixtures by Valpola and Honkela [9]. While the original NFA/NIFA model
could be used to solve the difficult nonlinear separation problem in many
cases, we have developed new variants of the model to better deal with certain
specific instances.

The hierarchical nonlinear factor analysis (HNFA) method [10] was intro-
duced to overcome the quadratic computational complexity with respect to
the number of the sources in original NFA/NIFA, thus allowing solving larger
problems. The special case of post-nonlinear mixtures was addressed by post-
nonlinear factor analysis (PNFA) [11]. Other important general extensions
include ability to handle missing data [12,13], improved initialisation strate-
gies [14] as well as more accurate approximation of the nonlinearity in NFA/NIFA
leading to increased stability [15]. In this paper we summarise these new results
presented in scatterd conference papers, and present the improved methods in
full detail together with new experimental comparisons.

The paper is organised as follows. In Sec. 2, the nonlinear blind source sepa-
ration problem and some basic theory behind it are introduced, followed by a
review of other existing methods in Sec. 3. This is followed by presentation of
our models to solve the problem in Sec. 4. Learning the models is discussed
in Sec. 5. Some experimental results on the methods are presented in Sec. 6
with discussion and conclusion in Secs. 7 and 8.

2 Nonlinear Blind Source Separation

Blind separation of sources from their nonlinear mixtures—known as nonlinear
blind source separation (BSS)—is generally a difficult problem, both from a
theoretical and a practical point of view [1,16,17]. The task is to extract the
sources s(t) that have generated the observations x(t) through a nonlinear

1 At the time his surname was Lappalainen.
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mapping f(·):
x(t) = f [s(t)] + n(t) . (1)

Here x(t) is the observed N -dimensional data (mixture) vector at time instant
or index value t, f : R

M → R
N is an unknown mixing function, s(t) is an M -

vector whose elements are the M unknown source signals si(t), i = 1, 2, . . . ,M ,
and n(t) is an N -dimensional vector containing the additive noise terms.

In the basic linear case
x(t) = As(t) (2)

where A is an N × M mixing matrix, the BSS problem can be solved using
ICA [1] under certain conditions. Linear ICA methods utilise the strong but
often realistic assumption that the source signals are statistically independent.
Furthermore, all but possibly one of the source signals are assumed to be non-
Gaussian, there is no or only a little noise and the number of sources M equals
the number N of mixtures [1]. Under these conditions, the sources in (2) can
be estimated using ICA up to permutation, scaling, and sign.

Linear ICA and other BSS methods have been extended for the cases where
the number of the sources is different from the number of mixtures, and for the
noisy case. But the extension to the nonlinear mixture model (1) is difficult
since both the nonlinear mapping and the underlying sources must be learned
from the data in a blind manner, and the problem is highly ill-posed without
suitable regularisation [18,1,16]. The independence assumption used in ICA
is no longer sufficient for achieving separation. It can be shown that in the
nonlinear case x and y can be mixed and still be statistically independent [18].
Additionally if x and y are two independent random variables, any of their
functions f(x) and g(y) are also independent. These uniqueness issues have
been considered in more detail in [18,16].

A related problem is that it is often quite difficult to infer the number of
sources and the structure of the mapping f(·). From a practical point of view,
efficiency and reliability of nonlinear BSS algorithms are critical issues. They
have restricted the number of sources that can be separated in practice to
be quite small in many instances. An important reason for this is that the
computational load of many nonlinear BSS methods increases quite rapidly
with the dimensionality of the problem, preventing in practice their application
to high-dimensional data sets [1].

An important special case of the general nonlinear mixing model (1) consists
of so-called post-nonlinear mixtures. There each mixture has the form

xi(t) = fi




M∑

j=1

Aijsj(t)


 , i = 1, . . . , N. (3)

Thus the sources sj(t), j = 1, . . . ,M, are first mixed linearly according to
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the basic linear ICA/BSS model (2), but after that nonlinear functions fi are
applied to them to get the final observations xi. It can be shown [19,16] that
for the noiseless post-nonlinear mixtures, the indeterminacies are usually the
same as for the basic linear instantaneous ICA model (2). That is, the sources
can be separated or the independent components estimated up to the scaling,
permutation, and sign indeterminacies assuming the post-nonlinearities fi are
invertible and under weak conditions on the mixing matrix A and source
distributions. The post-nonlinearity assumption is useful and reasonable in
many signal processing applications, because it can be thought of as a model
for a nonlinear sensor distortion. In more general situations, it is a restrictive
and somewhat arbitrary constraint.

3 Existing methods

Existing nonlinear BSS methods have been reviewed in [16,17], and earlier in
Chapter 17 of the book [1]. The paper [16] reviews especially uniqueness results
on nonlinear ICA and BSS, separation methods for post-nonlinear mixtures,
and our variational Bayesian estimation methods, referring to papers in which
the detailed results have been presented. In this section, we will briefly review
methods for BSS in nonlinear mixtures with i.i.d. samples.

The nonlinear blind source separation problem has been approached using
auto-associative multilayer perceptron (MLP) networks, that is MLP networks
trained with input-output pairs (x,x) [20]. The number of nodes in a hidden
layer is restricted to be smaller than the number of inputs and outputs, thus
creating a bottleneck. The extracted nonlinear features can be retrieved from
the values of the hidden nodes. With standard back-propagation this approach
is very prone to overfitting and local minima, but more advanced learning
methods such as flat minimum search can provide a method for nonlinear
BSS [21]. The computational complexity from explicitly learning both mixing
and demixing models can still be high.

The MISEP method [22] is a generalisation of the infomax method of linear
ICA for nonlinear mixtures using an MLP network to model the nonlinear-
ity. The method provides good separation results in several low-dimensional
artificial examples as well as in a real nonlinear image mixture problem [23],
but it has not been demonstrated for more than 4 mixtures of 4 sources.
Nonlinear denoising source separation [24] can also be applied to separate
low-dimensional nonlinear mixtures.

Kernel methods have recently become popular in producing nonlinear coun-
terparts for many linear statistical methods based on second-order statistics.
Kernel principal component analysis (KPCA) [25] is an extension of linear
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principal component analysis (PCA) that operates on a high-dimensional fea-
ture space formed by a nonlinear transformation of the data space. The inner
product features required for PCA can be evaluated efficiently in data space
using the kernel trick. The method is computationally very efficient, but the
results are highly dependent on the choice of the kernel. Additional post-
processing is naturally also required to recover independent sources.

The Bayesian kernel method of Gaussian Process Latent Variable Model (GPLVM) [26]
offers a probabilistic alternative to KPCA. The presentation of the method
seems to focus on use in visualisation and it has not been demonstrated for
more than 3 dimensional latent spaces.

Post-nonlinear ICA has been approached, for instance, by direct minimisation
of mutual information [19] as well as by heuristic methods. These are based on
compensating for the invertible post-nonlinearities by first transforming the
marginal densities of the data to be as Gaussian as possible and then applying
standard ICA [27]. The downside of all of these methods is that they only work
if the post-nonlinearities are invertible.

4 Models

In this section, the different models used in this work are presented. First, the
multilayer perceptron (MLP) network based NFA model for general nonlinear
mixtures from [9] is presented. Then, the hierarchical HNFA model based on
the Bayes Blocks framework [28–30] and the PNFA model for post-nonlinear
mixtures are introduced.

4.1 Multilayer Perceptron (MLP) Nonlinearity

Let us assume the observed data X follows the nonlinear mixing model of
Eq. (1). The nonlinearity f is parametrised with a multilayer perceptron
(MLP) network with single hidden layer with H hidden nodes [20]. This allows
for writing a generative model for a data vector x(t) as [9]

x(t) = f(s(t),θf ) + n(t) = Bφ(As(t) + a) + b + n(t), (4)

where θf = (A,B, a,b), A ∈ R
H×M and B ∈ R

N×H are the weight matrices
and a ∈ R

H and b ∈ R
N are the bias vectors of the first and second layer of the

MLP network, respectively. The weight matrices and bias vectors will hence
be collectively called the weights of the MLP. The activation function φ is
the standard hyperbolic tangent. It is applied component-wise to its argument
vector. This approach is perfectly general because MLP networks are universal
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function approximators that can model any nonlinear mapping to arbitrary
accuracy [31].

The noise n(t) and all the weight matrices and bias vectors of the MLP are
a priori assumed to be Gaussian and independent of each other. The noise is
assumed to have a general diagonal covariance and a hierarchical log-normal
variance prior of the form

p(n(t)|vn) = N(n(t); 0, diag(exp(2vn))) (5)

p(vni
|mvn

, vvn
) = N(vni

; mvn
, exp(2vvn

)), (6)

where vn = (vn1
, . . . , vnN

) and diag(v) is a diagonal matrix with the elements
of vector v on the main diagonal. The log-normal parametrisation is used
because it is easy to define a hierarchical prior. As the variance model is not
that important in this application, a conjugate inverse Gamma variance prior
could be used here as well. Restriction to an isotropic noise model with the
noise covariance of the form λI is also possible. The noise model and the
generative model (4) imply the likelihood

p(x(t)|θf , s(t),vn) = N(x(t); f(s(t),θf ), diag(exp(2vn))). (7)

The hierarchical priors of the MLP weights are similar to those of the noise
except that the prior of A is fixed to unit variance to resolve the scaling
ambiguity between A and s, and the different columns of B have their own
priors:

p(Aij) = N(Aij; 0, 1) (8)

p(Bij|vBj
) = N(Bij; 0, exp(2vBj

)) (9)

p(ai|ma, va) = N(ai; ma, exp(2va)) (10)

p(bi|mb, vb) = N(bi; mb, exp(2vb)) (11)

p(vBj
|mvB

, vvB
) = N(vBj

; mvB
, exp(2vvB

)). (12)

The highest-level hyperparameters mvn
, vvn

, ma, va, mb, vb, mvB
and vvB

have
vague Gaussian priors N(0, 1002) 2 .

To complete the definition of the model, the prior of the sources s must still be
determined. In this case there are several possibilities, leading to models with
different benefits and drawbacks. The differences between the alternatives are
discussed in more detail in Section 4.4 below.

The simplest source model is the Gaussian model used in nonlinear factor

2 The data is usually preprocessed by scaling to approximately unit variance to
ensure proper scaling of the weights so that the priors really are vague.
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analysis (NFA). This is achieved by

p(s(t)|vs) = N(s(t); 0, diag(exp(2vs))) (13)

p(vsi
|mvs

, vvs
) = N(vsi

; mvs
, exp(2vvs

)), (14)

where the hyperparameters mvs
and vvs

again have noninformative prior N(0, 1002).
With these definitions, the sets of observations X = {x(t)|t} and sources S =
{s(t)|t} are defined as usual. The parameter vector θ contains everything de-
scribed above, that is θ = (θf ,vn,mvn

, vvn
, (vBj

),ma, va,mb, vb,mvB
, vvB

,vs,mvs
, vvs

)
including all j in vBj

.

The Gaussian model is computationally simple, but it suffers from the same
rotation indeterminacy as the linear factor analysis (FA) model. This can be
corrected in the same way linear independent factor analysis [2] extends linear
FA: by using a mixture of Gaussians as the source prior. Introducing a new
latent variable Mi(t) to denote the active mixture component for source i at
sample t leads to a nonlinear independent factor analysis (NIFA) model with
a prior of the form

p(si(t)|Mi(t) = l,msil, vsil) = N(si(t); msil, exp(2vsil)) (15)

p(msil|vms
) = N(msil; 0, exp(2vms

)) (16)

p(vsil|mvs
, vvs

) = N(vsil; mvs
, exp(2vvs

)). (17)

The mixing proportions have a logistic normal prior given by the softmax
function

p(Mi(t) = l|ci·) = exp(cil)/
∑

l′

exp(cil′) (18)

p(cil|vc) = N(cil; 0, exp(2vc)). (19)

All the highest level parameters vms
, mvs

, vvs
and vc again have a noninfor-

mative prior N(0, 1002). The parameters θ can be defined similarly as above.

In the following, the simpler NFA model is used instead of the more complex
NIFA model. More detailed justification for this is presented in Sec. 4.4. Most
of the discussion generalises fairly easily to NIFA as well, as is shown in [9,32].

4.2 Hierarchical Nonlinearity

The computational complexity of learning the NFA model is quadratic with
respect to the number of the sources. This arises from the need to evaluate
the Jacobian matrix of the outputs of the MLP network with respect to the
inputs for each sample. The Jacobian is needed to reliably approximate the
nonlinearity [15].
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One way of defining a more efficiently learnable new model is to introduce
additional latent variables to the hidden nodes of the MLP-like network as
is done in the hierarchical nonlinear factor analysis (HNFA) model [10]. The
HNFA model is defined by the equations

s(t) ∼ N(0, I) (20)

h(t) ∼ N(As(t) + a, diag(exp(−vh))) (21)

x(t) ∼ N(Cs(t) + Bφ(h(t)) + b, diag(exp(−vn))), (22)

where h(t) are the latent variables modelling the values of the hidden nodes,
the vectors vh and vn parametrise the variances of the noise or innovation of
the hidden nodes and the observations, respectively, φ is a vector of activation
functions and A, B, C, a, b are the weights of the mapping. The activation
function is chosen to be φ(y) = exp(−y2), for computational simplicity. The
structure of the model is illustrated in Fig. 1.

Linear mixing

Sources

Additional latent variables

followed by nonlinearity

Observations

Fig. 1. The HNFA model is illustrated. Square nodes correspond to weight matrices
and round nodes to the variables with shaded nodes being observed and unshaded
latent.

When assigning hierarchical priors to the parameters of the mapping, we have
taken into account the role of different parameters in the model. The weights
between different layers, that is A, B and C, can be expected to scale ac-
cording to the scales of inputs and outputs. Since all si(t) are assumed nor-
mally distributed, there should be no significant differences in the scales of
the weights leaving different nodes but the hidden nodes and observations can
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have different scales. This is reflected in the following parametrisation:

p(Aij|vI,hi
) = N(Aij; 0, exp(−vI,hi

)) (23)

p(Bij|vI,xi
, vO,hj

) = N(Bij; 0, exp(−vI,xi
− vO,hj

)) (24)

p(Cij|vI,xi
) = N(Cij; 0, exp(−vI,xi

)) (25)

p(ai) = N(ai; 0, 1) (26)

p(bi) = N(bi; 0, 1). (27)

The parameters vO,hj
reflect the different scales of weights leaving the hidden

nodes and vI,hi
and vI,xi

correspond to the different scales of weights entering
the hidden nodes and observations, respectively.

Finally, the parameters which model variances on logarithmic scale, that is vh,
vn, vI,hi

, vI,xi
and vO,hj

, each have hyperparameters for mean and log-variance.
Their priors are N(0, exp(7)) and N(0, exp(4)), respectively.

MLP networks with sigmoid activation function are known to be universal
approximators [31]. Similarly, the set of deterministic HNFA mappings without
the linear shortcut

f(s) = Bφ(As(t) + a) + b, (28)

where φ(y) = exp(−y2), has the universal approximation property exactly
analogous to that of MLP networks [33].

The HNFA model can be implemented efficiently using the building-blocks
framework [28–30]. As the additional latent variables h(t) are independent
by definition of the factorial posterior approximation, there is no need to
evaluate any nontrivial Jacobians. The disadvantage of HNFA is that the
approximation of the posterior density is farther away from the true posterior
density. This may occasionally lead to inferior performance [34]. The linear
shortcut is included in the model to partially help this, because representing
nearly linear mappings would otherwise be significantly more difficult than
with the MLP model.

4.3 Post-nonlinear Model

As discussed in Section 2, post-nonlinear (PNL) mixtures are restricted non-
linear mixtures of the form

xi(t) = fi




M∑

j=1

Aijsj(t)


 + ni(t), i = 1, . . . , N (29)

where the functions fi : R → R are called the post-nonlinearities and ni is
additive Gaussian noise. PNL mixtures are a theoretically important special

9



case of nonlinear ICA, because they can be proven to be separable in the
noiseless case if the post-nonlinearities are invertible and the mixing matrix
satisfies certain regularity conditions [19].

A variational Bayesian approach to post-nonlinear mixtures was first presented
in [11]. The post-nonlinear factor analysis (PNFA) model is based on the
generative model

xi(t) = fi




M∑

j=1

Aijsj(t); θfi


 + ni(t), (30)

where the post-nonlinearities fi are modelled with MLP networks with weights
θfi

as

fi(y, θfi
) = Diφ(Ciy + ci) + di, (31)

where θfi
= (Ci, ci,Di, di) includes the column weight and bias vectors Ci, ci,

row weight vector Di and bias scalar di. This approach also allows for non-
invertible post-nonlinearities.

Most of the weights have priors governed by higher level hyperparameters

p(Aij) = N(Aij; 0, 1) (32)

p(Cij|vCi
) = N(Cij; 0, exp(2vCi

)) (33)

p(cij|mci
, vci

) = N(cij; mci
, exp(2vci

)) (34)

p(Dij|vDi
) = N(Dij; 0, exp(2vDi

)) (35)

p(di|md, vd) = N(di; md, exp(2vd)), (36)

with hierarchical priors for vCi
,mci

, vci
, vDi

similar to those used in the NFA
model in Eq. (12). The highest level parameters again have vague priors
N(0, 1002).

The source model used in PNFA is Gaussian. It could in principle be rather
easily replaced with mixtures-of-Gaussians, but simple post-processing of the
extracted sources with linear ICA is often sufficient, as discussed below in
Sec. 4.4.

4.4 On different source models

Two different source models were presented above: a Gaussian nonlinear factor
analysis (NFA) model in Eq. (13) and a mixture-of-Gaussians based nonlinear
independent factor analysis (NIFA) model in Eq. (15). From purely theoretical
perspective, the NIFA model is preferable as its non-Gaussian model is able
to resolve the rotation indeterminacy inherent to the Gaussian model.
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In practice, things are not quite that simple. The NIFA model with its fully
factorial posterior approximation seems to suffer from similar problems of not
being able to extract the true independent sources as linear algorithms based
on similar principles [34].

Using the more complicated NIFA model slows down the computation and
requires careful initialisation of the mixture components. As this seems to
cause more trouble than offer benefits, we have usually chosen not to do it
and only use plain NFA. In order to achieve BSS, standard linear ICA can be
applied as post-processing to the extracted sources. This approach resembles
the one used in [35] for linear separation, where linear factor analysis is used as
pre-processing for ICA instead of PCA. Use of factor analysis pre-processing
has been shown to lead to good results in case of noisy linear mixtures. The
nonlinear case is, however, more difficult as the model may try to nonlinearly
transform the sources to be more Gaussian than they should be. Some evidence
of this behaviour can be seen in the experiments in Sec. 6.2. Even with a
Gaussian source model the sources are, however, not fully Gaussian and using
linear ICA to determine the rotation is thus possible.

5 Learning

In this section, methods for learning the models presented in Sec. 4 are pre-
sented. The learning method for NFA is again heavily based on earlier work [9]
but uses a new method of linearising the MLP [15] that leads to significantly
more stable and reliable algorithm.

All the models presented in Sec. 4 are learned using variational Bayesian
(VB) learning [36]. Given the data X and a model with parameters θ and
latent variables or sources S, the method is based on approximating the pos-
terior distribution p(S,θ|X,H) with a factorial approximation q(S,θ|ξ) =
q(S|ξS)q(θ|ξθ), where ξ are the variational parameters and H represents the
background assumptions of a particular model. The approximation is fitted by
minimising the Kullback–Leibler divergence between q and p, or equivalently
maximising a lower bound on marginal log-likelihood of the data. By changing
the sign, this can be formulated as minimisation of the cost

C =

〈
log

q(S,θ|ξ)

p(S,θ,X|H)

〉

= DKL(q(S,θ|ξ)||p(S,θ|X,H)) − log p(X|H) ≥ − log p(X|H),

(37)

where 〈·〉 denotes the expectation over q and DKL(q||p) is the Kullback–Leibler
divergence between q and p.
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Most applications of variational Bayesian learning [37] involve only models in
the conjugate exponential family. The models described in Sec. 4 are clearly
not in the exponential family, so the learning methods are somewhat different
and require numerical minimisation of the cost or even only its approximation.

In almost all the models, we use the näıve mean field approximation, that is
a fully factorial Gaussian distribution

q(S,θ|ξ) = q(S|ξS)q(θ|ξθ) =
∏

i,t

q(si(t)|ξsi(t)
)
∏

j

q(θj|ξθj
). (38)

The individual factors are parametrised with variational parameters corre-
sponding to the posterior mean and variance of the variable as

q(si(t)|ξsi(t)
) = N(si(t); si(t), s̃i(t)) (39)

q(θj|ξθj
) = N(θj; θj, θ̃j). (40)

For parameters modelling the mean of a Gaussian, the Gaussian distribution
is a conjugate prior and the optimal free-form approximation is of this form,
assuming the factorisation. For parameters modelling the log-variance of a
Gaussian, the Gaussian prior is not conjugate and the posterior approximation
is only an approximation.

The definition of the model and the approximating distribution allow evalu-
ating the cost (37) as a function of the variational parameters ξ. The cost can
be split into two parts as the negative entropy of the approximation and an
expected energy

C = Cq + Cp = 〈log q(S,θ|ξ)〉 + 〈− log p(X,S,θ|H)〉 . (41)

Using the factorisation of q, the negative entropy term Cq splits into

Cq = 〈log q(S,θ|ξ)〉 =

〈
log

∏

i,t

q(si(t)|ξsi(t)
)
∏

j

q(θj|ξθj
)

〉

=
∑

i,t

〈
log q(si(t)|ξsi(t)

)
〉

+
∑

j

〈
log q(θj|ξθj

)
〉

.
(42)

The remaining terms are negative entropies of univariate Gaussians having
values depending only on the variance

〈
log q(θj|ξθj

)
〉

= −
1

2
−

1

2
log(2πθ̃j). (43)

The expected energy term Cp is more model specific and is presented separately
for the different models.
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5.1 MLP nonlinearity

While basic NFA uses a fully factorial posterior approximation, this is not the
case for NIFA. Instead, the dependences between Mi(t) and si(t) are modelled
so that the approximation for them is of the form

q(Mi(t), si(t)) = q(si(t)|Mi(t))q(Mi(t)) (44)

which yields a Gaussian mixture approximation for si(t)

q(si(t)) =
∑

l

q(si(t)|Mi(t) = l)q(Mi(t) = l). (45)

Otherwise the approximation is similar to NFA.

5.1.1 Evaluating the cost

Evaluating the expected energy term Cp is slightly more difficult than term
Cq. Using the definition of the model, it can for NFA and PNFA models be
factored into terms

Cp = 〈− log p(X|S,θ,H)〉 + 〈− log p(S|θ,H)〉 + 〈− log p(θ|H)〉

=
∑

i,t

〈− log p(xi(t)|s(t),θ,H)〉 +
∑

i,t

〈− log p(si(t)|θ,H)〉 + 〈− log p(θ|H)〉 .

(46)

The terms in the second and third summand are expectations of negative
logarithm of Gaussian pdf over Gaussian mean and log-variance parameters.
These can be evaluated for example parameter θ ∼ N(m, exp(2v)) through
integrals of the form [38]

〈− log p(θ|m, v,H)〉 =
∫∫∫

− log N(θ; m, exp(2v)) q(θ) q(m) q(v) dθ dm dv

=
1

2
log(2π) + v +

1

2

[
(θ − m)2 + θ̃ + m̃

]
exp(2ṽ − 2v).

(47)

The terms of the first summand of Eq. (46),

〈− log p(xi(t)|s(t),θ,H)〉 = 〈− log N(xi(t); fi(s(t),θf ), exp(vni
))〉

=
1

2
log(2π) + vni

+
1

2

[
(xi(t) − f i(t))

2 + f̃i(t)
]
exp(2ṽni

− 2vni
), (48)

are more difficult as they depend on the mean f i(t) and variance f̃i(t) of
the outputs of the MLP network. Techniques for approximating these are
presented in Appendix A.
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5.1.2 Update algorithm

The posterior approximations of the parameters of the hierarchical model,
that is those of the type mθ and vθ, can be updated using a standard VB EM
algorithm [38,9]. The update rules for the sources S as well as the weights
θf of the MLP network are more difficult and they are therefore presented in
more detail 3 .

The variational parameters corresponding to the means of S and θf are up-
dated with a conjugate gradient algorithm. The required derivatives can be
computed from the expression of the cost function. In case of inputs and
weights of the MLP, this leads to similar computation of partial derivatives
as in back-propagation. The parameters corresponding to the variances are
updated using a fixed point algorithm that can be derived by differentiating
the split cost (41) with respect to θ̃j and using the evaluated result (43). This
yields

∂C

∂θ̃j

=
∂Cq

∂θ̃j

+
∂Cp

∂θ̃j

= −
1

2θ̃j

+
∂Cp

∂θ̃j

. (49)

Setting this to zero leads to a fixed point update rule for the variances of the
sources and MLP network weights

θ̃j =
1

2

(
∂Cp

∂θ̃j

)
−1

. (50)

Blindly applying this rule may in some cases lead to instability. This can
be corrected by some form of dampening, such as halving the step length
on logarithmic scale until the update does not increase the value of the cost
function. The variance must also not be set to a negative value, even if the
derivative is negative.

5.1.3 Initialisation

The MLP network and the gradient-based learning algorithms are notoriously
prone to local minima [40,20]. In order to achieve good results, the methods
require a reasonable initialisation.

The NFA method is typically initialised by setting the means of the sources
to values given by suitable number of principal components of the data. The
means of the MLP weights are initialised to random values while all the vari-
ances are initialised to small constant values. After this, only the MLP weights
are updated during the first 20 iterations of the update algorithm so that the

3 A Matlab toolbox [39] implementing the NFA method is available at http://

www.cis.hut.fi/projects/bayes/software/.
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model can learn a mapping from the PCA sources to the observations. The
hyperparameters of the model are only updated after the first 100 iterations.

The PCA initialisation is easy to compute and sufficient for many purposes,
but its linearity may sometimes lead to suboptimal results. To resolve this,
kernel PCA (KPCA) was used in the initialisation in [14]. The KPCA initial-
isations are sensitive to the choice of the kernel and its parameters, but with
suitable choices they may help NFA yield significantly better results while
using less time. The kernel can also be selected with the variational Bayesian
criterion by running the learning algorithm for a few iterations with different
initialisations and comparing the cost function values.

5.2 Hierarchical nonlinearity

The HNFA model is defined by a graphical model of Gaussian variables com-
bined using addition, multiplication and nonlinearities directly following the
variables. Such models can be implemented using the building-blocks frame-
work introduced in [28–30]. The learning scheme is designed to minimise the
cost function

C =

〈
log

q(S,H ,θ|ξ)

p(S,H ,θ,X|H)

〉
, (51)

where H = {h(t)|t} is the set of all hidden nodes. The cost function is other-
wise the same as Eq. (37), except that the hidden nodes H have been included
as unknown variables.

The basic operation during learning is an iteration where all the terms q(θi|ξθi
),

q(si(t)|ξsi(t)
) and q(hi(t)|ξhi(t)

) of the approximation

q(S,θ,H|ξ) = q(S|ξS)q(θ|ξθ)q(H|ξH)

=
∏

i,t

q(si(t)|ξsi(t)
)
∏

j

q(θj|ξθj
)
∏

i,t

q(hi(t)|ξhi(t)
) (52)

are updated one at a time by minimising (51) with respect to the correspond-
ing variational parameters ξ. The approximation is again otherwise the same
as Eq. (38), except for the inclusion of the hidden nodes H . Details of the
minimisation of the q-terms are presented in [30, Appendices A and C] 4 .

In addition to the basic updates, several other operations are performed in
order to help avoid local optima and speed up learning:

• addition of hidden nodes;

4 The Bayes Blocks toolbox [41] and the code for the HNFA method are available
at http://www.cis.hut.fi/projects/bayes/software/.
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• addition of weights;
• pruning of weights; and
• line search.

Line search has been explained in [42]. The idea is to monitor the individual
updates during one iteration and then perform a line search simultaneously
for all terms of the approximation. We applied the line search after every tenth
iteration.

The addition and pruning operations aim at optimising the model structure.
Incremental addition of hidden nodes to the HNFA model is necessary be-
cause the hidden nodes are “expensive” and thus easily pruned out by making
their outgoing weights approach to zero. The cost function (37) relates to the
marginal likelihood p(X|H) which can be used to find the most likely model
structure.

In general, addition takes place randomly and pruning is based on estimating
whether the cost function can be decreased by removing a weight. The moti-
vation for this is that variational Bayesian learning can effectively prune out
parts of the model which are not needed. The weights in the matrix B corre-
sponding to one hidden node can for instance approach zero. The cost function
can usually be decreased by removing such weights. If all outgoing weights of
a hidden node have been removed, the hidden node becomes useless and can
be removed from the model. Variational Bayesian learning cannot, however,
actively make room for a part of the model which may be added in the fu-
ture. It usually takes some time for the rest of the model to accommodate to
additions.

5.2.1 Evidence node

In order to avoid local minima in variational Bayesian learning, it is neces-
sary to initialise some variables and keep them fixed for a while until other
parts of the model have accommodated appropriately. In the building-blocks
framework, we have adopted the virtual-evidence approach [43]. This is im-
plemented by attaching evidence nodes [44], as we call them, to a variable
θi, whose value we want to set. The node provides a term for the likelihood
p(children|θi). When q(θi|ξθi

) is updated, the distribution of θi will be close
to the value set by evidence node if the likelihood term has a narrow peak
but θi can accommodate to other parts of the model if the likelihood term is
wide. Since all the prior distributions in the present model are Gaussian, it is
convenient to use the same functional form for the evidence nodes:

− log p(virtual child|θi; αi(τi), µi, σ
2
i ) = αi(τi)

(θi − µi)
2

2σ2
i

, (53)
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where µi and σ2
i are the mean and variance induced by the evidence node.

The term α(τi) controls the decay of the virtual evidence. It decreases lin-
early from α(0) = 1 to α(T ) = 0 after which the evidence node is removed.
The persistence of the initialisation can thus be controlled by the life-span T
(iterations) of the evidence node.

5.2.2 Phases of learning

The model is built in stages. First, only the linear mapping Cs(t) is used, so
that there are no hidden nodes. The sources s(t) are initialised by principal
component analysis (PCA) using evidence nodes with a life-span of 40 itera-
tions and variance σ2 = 10−3 in order to estimate a reasonable C. The linear
model is learned for 100 iterations.

After that, 50 randomly initialised hidden nodes are added to the model and
estimation of the model structure begins. That is, weights are added and
pruned and hidden nodes are added every now and then. Every time new hid-
den nodes are added, five of them are selected from a pool of 1,000 random
candidates. After each addition of hidden nodes, there is a period of 30 iter-
ations during which no pruning is applied. This gives the new hidden nodes
enough time to fit themselves into the model.

Hidden nodes are added a limited number of times. After that, learning con-
tinues with pruning and random additions of weights. The number of weights
to be added decreases with time. Finally, only line searches are applied for the
last 1,000 iterations. The total number of iterations in the HNFA simulations
is 10,000 unless otherwise stated.

5.2.3 Addition of hidden nodes

The hidden nodes are latent variables which can independently represent some
aspects of the observations. Due to our model structure, this usually corre-
sponds to a local minimum of the cost function. It is better that the sources
s(t) represent the data since they can share their information with all hidden
nodes. Local minima can be avoided by evidence nodes which keep the variance
of the Gaussian noise, innovation, associated to each newly added hidden node
hi(t) through the corresponding parameter vhi

low. Once the sources take the
responsibility for the representation, the variances of hidden nodes no longer
grow significantly. In our experiments, the life-span of these evidence nodes
was 500 iterations and their mean and variance were set to 9 and unity, re-
spectively. Since the parameter controls the logarithm of the inverse variance,
value of 9 corresponds to standard deviation of approximately 1/90.

Fig. 2 shows a clear correlation of the quality of the results for the experimen-
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tal setting described in Sec. 6.1, and a measure of the amount of independent
innovation in the hidden nodes, the latter of which can be influenced by in-
troducing the evidence nodes. More detailed discussion is presented in [45].
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Fig. 2. The attained signal-to-noise ratio of the sources separated using HNFA with
and without evidence nodes. (From [45], c© 2004 IEEE.)

In addition to restricting the innovations, the incoming weights A of the hid-
den nodes are initialised to random values by evidence nodes with variance
σ2 = 10−2 and life time of 40 iterations, when new nodes are added. However,
after the first addition, the added hidden nodes are selected from a large pool
of candidate initialisations. The hidden nodes which correlate best with the
remaining modelling error of the observations are selected. The first hidden
nodes are able to model many of the large scale nonlinearities in the data. It
is much more difficult to find useful hidden nodes by random initialisations
later on since the new nodes tend to be quickly pruned away.

5.3 Post-nonlinear model

The evaluation of the cost function and the learning process of the PNFA
model are similar to those of the general NFA. Approximating the nonlinearity
is a little easier, as there is only one “source” input with larger posterior
variance. The posterior variances of the MLP weights are typically smaller
as a single weight affects and thus gains evidence from several observations.
This allows for using a hybrid of a Gaussian quadrature with respect to the
MLP inputs yi(t) =

∑M
j=1 Aijsj and a Taylor approximation with respect to

the weights θfi
, as presented in Appendix A. The more general approach used

with NFA could of course be used as well.

Using the approximation of the nonlinearity presented in Appendix A, the
PNFA cost function can be evaluated using Eqs. (41)–(43) and (46)–(48). The
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sources s and all the weights A and θfi
are updated by conjugate gradient

and all the other parameters by VB EM, as described for the NFA model in
Sec. 5.1.2.

The initialisation of the PNFA method is similar to NFA: the sources are ini-
tialised with PCA. It would be possible to use other simple post-nonlinear
methods such as Gaussianisation [27]. After the initialisation, the sources and
the hyperparameters are kept fixed for the first 100 and 150 iterations, respec-
tively, while the linear mapping A and the post-nonlinearities fi are updated.

5.4 Missing Values

The Bayesian framework facilitates principled handling of missing or partially
missing elements in the data matrix [44]. Assuming the elements are missing
at random, they provide no evidence and can hence be simply ignored in
learning. After learning, the missing values can be reconstructed by using the
posterior predictive distribution.

Missing values in nonlinear FA have been studied using NFA and HNFA mod-
els in [12,13].

6 Experiments

In this section, we present the results of two comparisons of the methods
using artificial data sets. The artificial data sets are necessary for comparing
different methods as the true sources are not known in most real applications
and comparison of different methods is thus practically impossible.

6.1 General nonlinear mixtures

The NFA and HNFA methods were tested with an artificial example. The data
set consisted of 1,000 samples from nonlinear mixtures of eight sources. Four
of the sources were super-Gaussian and the remaining four were sub-Gaussian.
The nonlinear mixing was a randomly initialised MLP network with sinh−1 as
the activation function for the 30 hidden nodes. The standard deviation of the
additive Gaussian noise was one tenth of that of the signal. This corresponds
to a signal-to-noise ratio (SNR) of 20 dB. The same data set was also used
in [10] and a noiseless version of it in [9].

Linear models (implemented as HNFA models without any hidden nodes) as
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well as NFA and HNFA models were tested with varying number of sources.
The values of the cost function attained after learning were compared. The
best linear model had 14 sources while the best NFA and HNFA models had
eight sources. Hence both NFA and HNFA methods are able to infer the
correct subspace dimension, while the linear model tries to model nonlinear
effects using extra dimensions.

In addition to the proposed variational methods, the experiment was repeated
using maximum a posteriori (MAP) estimation for the sources and MLP
weights of the NFA model (MAP-NFA). In this case all the priors and the
model structure were fixed to the their generative values.

Unfortunately most other nonlinear BSS methods do not scale to problems
of this size. For Kernel PCA [25] the size is not a problem, but out of sev-
eral Gaussian and polynomial kernels tested, the best results were attained
with a linear kernel which is equivalent to linear PCA. Finding a better ker-
nel may certainly be possible, but at least very difficult. We also tried the
MISEP method [22], but were unable to attain better results than using lin-
ear methods. Again, this may be caused by the authors’ lack of experience
with MISEP.

VB−NFA HNFA MAP−NFA PCA
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Fig. 3. Boxplot showing variation in the results of different algorithms in the general
artificial mixture example.

The experiment was repeated a number of times with different random initial-
isations. Because of the flexibility of the nonlinear models, each of these ended
in a different local optimum. The variation among the results is illustrated in
Fig. 3 in terms of signal-to-noise ratio (SNR) with respect to the true sources
after rotation of the extracted sources by symmetric FastICA [1]. The results
shown are from 10 experiments with VB-NFA, 42 experiments with HNFA
and 20 experiments with MAP-NFA. The results show that VB-NFA consis-
tently finds very good solutions while there is lot more variation in the results
of HNFA and especially MAP-NFA.
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The figure also shows VB-NFA to be clearly superior to MAP-NFA, which
suffers from serious overfitting. Additionally, there is relatively strong correla-
tion between the VB cost function value and SNR, making it easy to find the
best solutions among the alternatives. For MAP-NFA, the correlation between
posterior density value and SNR is significantly weaker.

PCA + FastICA: SNR = 5.47 dB

HNFA + FastICA: SNR = 12.90 dB

NFA + FastICA: SNR = 19.60 dB

Fig. 4. Each scatter plot shows the values of one original source signal plotted against
the best corresponding estimated source signal after a rotation with FastICA. The
perfect result would be a straight line.

After a nonlinear subspace has been estimated by NFA or HNFA, standard
linear ICA algorithms [1] can be used for rotating the subspace to obtain
independent source signals. Fig. 4 shows scatter plots of the original sources
and the sources obtained after a rotation by symmetric FastICA. The plots are
from the best results in Fig. 3 according to the VB cost function, hence they
are not necessarily the ones with the best overall SNR. On the first two rows,
standard linear PCA has been used to estimate the subspace. The middle
two rows show the results when the subspace was estimated using the HNFA
method and the two bottom rows when the NFA method was used.

The results show that linear methods alone are not sufficient to separate the
sources. The results attained by HNFA are reasonably good while those of
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NFA are already very good. The difference in performance between the meth-
ods may be partly due to the fact that the generative nonlinearity more closely
resembles that used in the NFA model, even though it is not the same. The
computation times required by NFA and HNFA in this experiment are com-
parable.

6.2 Post-nonlinear (PNL) mixtures

The proposed NFA and PNFA methods were also tested with a three-dimensional
PNL mixture of two independent sources. The sources were a sine wave and
uniformly distributed white noise. The PNL transformation used for generat-
ing the data contained two non-invertible post-nonlinear distortions:

y =




1.2 0.2

1 0.7

0.2 0.8



s ; x =




(y1 − 0.5)2

(y2 + 0.4)2

tanh(2y3)




. (54)

The observations were centred and normalised to unit variance and observation
noise with variance 0.01 was added. The number of samples was 400. The data
set is illustrated in Fig. 5.
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Fig. 5. The data set from the PNL mixture experiment.

The NFA and PNFA models were trained by trying different model structures,
i.e. different numbers of hidden nodes in the MLPs, and several random ini-
tialisations of weights of the linear and nonlinear mappings. The PNFA model
with the lowest cost had 5 nodes in the hidden layers of all MLPs. The corre-
sponding NFA model with the lowest cost had 10 hidden nodes in the single
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NFA + FastICA: SNR = 10.92 dB
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PNFA + FastICA: SNR = 12.95 dB
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Fig. 6. The sources found by the NFA (top) as well as PNFA (bottom) and further
rotated with the FastICA algorithm. (a) The scatter plots; (b) the estimated time
series; (c) the distribution of the sources. The signal-to-noise ratio is 10.92 dB for
NFA and 12.95 dB for PNFA.

MLP. The PNFA model was trained for 10000 iterations and NFA for 5000
iterations.

The sources found by NFA and PNFA were further rotated by the FastICA
algorithm to obtain independent signals (see Fig. 6). The scatter plots in
Fig. 6a show how well the original sources were reconstructed. Each point
corresponds to one source si(t). The abscissa of a point is the original source
which was used for generating the data and the ordinate is the estimated
source. The optimal result would be a straight line which would mean that
the estimated values of the sources coincide with the true values. For PNFA,
the sources were estimated quite well except for some points at the edges,
while the sources recovered by NFA are not as good.

The PNL distortions learned by the best PNFA model are presented in Fig. 7.
The post-nonlinearities fi are estimated quite well except for some points at
the edges. The difficulties mostly affect the two quadratic functions which are
difficult to model with such small MLP networks and relatively few observa-
tions, especially at those edges.
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Fig. 7. The estimated post-nonlinear distortions fi against the functions used for
generating the data (the dashed line). Each point in the figure corresponds to a
single observation.

Fig. 8. A grid of original sources s as mapped through the mixing to x and demixing
to their reconstructions ŝ: the perfect solution would be a regular square. Because
of the noise, the mappings are only approximate. The results are shown for the
PNFA method (left) and Taleb–Jutten PNL ICA algorithm [19] based on invertible
post-nonlinearities fi (right).

As expected, regular PNL ICA methods using invertible post-nonlinearities
cannot recover the true sources at all. This is illustrated in Fig. 8, which
shows a relatively clean separation by PNFA compared to severely tangled
solution by Taleb–Jutten algorithm [19].

The mediocre overall quality of the results is understandable due to the great
difficulty of the test problem: There are only two bounded sub-Gaussian
sources in the mixture and their linear combinations are quite far from Gaus-
sianity assumed by NFA and PNFA. Another difficulty is the complex PNL
mapping with a small number of observations and several non-invertible post-
nonlinear distortions. Removing any of the observations from the mixture
would make the mixing process non-injective and the separation problem un-
solvable. The results of PNFA are slightly better than those of regular NFA,
which is also natural as the data follows the more restricted model.
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7 Discussion

Nonlinear BSS is a very difficult problem, as illustrated by the non-uniqueness
results for nonlinear FA and ICA. From a Bayesian perspective, having a mul-
titude of potential solutions that all should somehow be taken into account
does not sound so unreasonable. The Bayesian averaging procedure together
with reasonable priors on the mapping will help avoid most overly compli-
cated solutions. This was also illustrated experimentally in Sec. 6.1. Using a
slightly simpler EM-like approach with point estimates for the parameters of
the nonlinear mapping would probably be enough to avoid most overfitting
problems. However, as integration over the sources is the most complicated
operation, the computational savings would be limited and the ability to infer
the structure of the nonlinearity would be lost.

The variational approach used in this work has also other properties that
further help regularise the problem. The flexible nonlinear model has many
internal symmetries that are reflected in the true posterior. For purposes of
the source separation problem, these symmetries are, however, not interesting.
The variational approximation breaks the symmetry by ignoring the depen-
dencies between different groups of parameters and the sources. The unimodal
posterior approximation will find a broad region of potential solutions, thus
returning essentially a single most plausible solution.

The regularisation power of the variational Bayesian approach is nicely demon-
strated in [46], where HNFA is shown to prefer a linear model for a magne-
toencephalographic (MEG) brain imaging data set where there are theoretical
grounds to assume a linear mixing process. The example with approximately
50 sources extracted from 122 channels also demonstrates the scalability of
HNFA, using NFA in a problem of this size would be infeasible.

Instead of a nonlinear model with a non-Gaussian prior capable of separating
independent sources, simpler Gaussian source prior and post-processing by
linear ICA has been used in this work to separate the independent sources.
The main reason for using this suboptimal process is practical: even with a
non-Gaussian source prior the factorial source posterior approximation would
not allow determining the proper rotation of the independent sources [34].
This could be corrected by more advanced approximation techniques [5]. Ap-
plication of such techniques for nonlinear models is an interesting topic of
future research.

In this work layered mappings have been used to model the nonlinearities.
This gives a quite strong prior that allows us to solve the difficult example
cases demonstrated in Sec. 6. The broad literature on applications of MLP
networks on a wide variety of real world problems provides empirical evidence
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that such a prior may also be useful in real world applications. Still, having
a more easily interpretable prior for the nonlinearities through a Gaussian
process [26], for instance, would be interesting.

The presented HNFA and NFA methods have also been compared in recon-
structing missing values in speech spectrograms in [30]. According to those
experiments, the performance of HNFA was between linear FA and NFA when
there were major differences. This seems to indicate that HNFA may empha-
sise less nonlinear solutions than NFA through stronger regularisation. Thus
HNFA is likely better suited for mildly nonlinear problems.

8 Conclusion

We have presented a number of methods for BSS of nonlinear mixtures based
on variational Bayesian learning. The basic NFA method uses a MLP net-
work to model the nonlinearity. With a suitable linearisation technique, the
variational Bayesian methodology can be easily applied to perform learning
and inference on the model much more reliably than before [9]. The compu-
tational complexity of the resulting algorithm is quadratic in the number of
the sources. To avoid this, an alternative HNFA method based on a hierarchi-
cal nonlinearity was proposed. The attained speedup comes at the expense of
less accurate results as there are more latent variables in the model and the
variational approximate posterior provides a poorer fit to the true posterior.
The speeds of NFA and HNFA are comparable in the examples with approx-
imately 10 sources presented in Sec. 6, but better scalability allows applying
HNFA to larger problems, where no other alternatives are available. Addition-
ally, a variant of NFA specifically designed for more restricted post-nonlinear
mixtures was proposed.

Although HNFA seems less accurate in comparison to NFA in the experiment
in Sec. 6.1, the same is not true in general. The comparison of Sec. 6.1 most
likely favours NFA somewhat, because the structure of the generative nonlin-
earity is closer to that used in the NFA model, even though it is not the same.
Other comparisons, such as some of the missing data experiments reported
in [30] show HNFA outperform NFA.

Most of the proposed methods employ a Gaussian prior on the sources and are
thus unable to perform source separation by themselves. Still, post-processing
the recovered sources by standard linear ICA was enough to recover the under-
lying independent sources in the presented examples. Using a non-Gaussian
source model does not necessarily solve the problem, as ignoring the poste-
rior correlations between the sources in the variational approximation may
cause the model to prefer more orthogonal PCA-like solutions. Extending the
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model by using a Gaussian mixture source model and modelling the posterior
correlations of the sources would be an interesting line of future work. The
computational complexity of such a model is exponential in the number of the
sources, but it would probably help in low dimensional cases.

In order to allow others use the presented methods more easily, free software
implementations of the NFA and HNFA methods [39,41] are available on the
web at http://www.cis.hut.fi/projects/bayes/software/.
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A Approximating the MLP nonlinearity

The mean f i and variance f̃i of the outputs of the MLP used in Eq. (48) can
be evaluated by multidimensional Gaussian integrals

f i(t) =
∫∫

fi(s(t),θf ) q(s(t),θf |ξ) ds(t) dθf (A.1)

f̃i(t) =
∫∫ (

fi(s(t),θf ) − f i(t)
)2

q(s(t),θf |ξ) ds(t) dθf . (A.2)

These integrals depend on all the inputs and weights of the MLP network,
thus leading to cases of the order of thousands of dimensions.

A.1 Multivariate nonlinearities

In [9], the moments were evaluated by using a first order Taylor approximation
of f for (A.2) and second order approximation for (A.1). This method was
later found to produce unreliable estimates in cases of large source posterior
variance, which are common when trying to extract a large number of sources.
This caused instability of the algorithm in such cases. This can be corrected by
a more accurate approximation based on global linearisation of f . This can be
implemented by replacing the derivatives of the activation function appearing
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in the Taylor scheme by global linearisations evaluated using Gauss–Hermite
quadratures [15].

The Gauss–Hermite quadrature is a general method for approximating inte-
grals of the form 5

I(φ) =
∫

∞

−∞

φ(y)N(y; 0, 1) dy ≈
n∑

i=1

wiφ(ti), (A.3)

where φ : R → R is a scalar function. For an approximation using n points,
the weights wi and abscissas ti can be selected so that the result is exact for
all polynomials up to order 2n. We have used a 3-point approximation as it
provides a good compromise between accuracy and efficiency. The evaluation
points can be easily transformed to handle general mean and variance of the
input distribution to get general expectation of φ(y)

φ(y)GH :=
n∑

i=1

wiφ
(
y + ti

√
ỹ
)
≈ 〈φ(y)〉 =

∫
∞

−∞

φ(y)N(y; y, ỹ) dy. (A.4)

Variance of φ(y) can be evaluated through

φ̃(y)GH :=
n∑

i=1

wi

[
φ

(
y + ti

√
ỹ
)
− φ(y)GH

]2

≈
〈[

φ(y) − 〈φ(y)〉
]2

〉
. (A.5)

Both the evaluated mean and variance of φ(y) depend on the mean and vari-
ance of y in a nonlinear manner capable of taking into account the specific
form of function φ.

The quadrature depends on the mean and variance of y(t) = As(t)+a. These
can be evaluated exactly because of the linearity of the mapping as

yi(t) =
∑

j

(
Aijsj(t)

)
+ ai (A.6)

ỹi,tot(t) =
∑

j

(
Ãij(sj(t)

2 + s̃j(t)) + A
2
ij s̃j(t)

)
+ ãi, (A.7)

where θ denotes the mean and θ̃ the variance of θ. Here it is assumed that
the posterior approximations q(S|ξS) and q(θf |ξθ) have diagonal covariances.
Full covariances can be used instead without too much difficulty, if necessary.
In order to get more accurate approximation, another quadrature is evaluated
using the variance of yi(t) originating mainly from θf ,

ỹi,weight(t) =
∑

j

Ãij(sj(t)
2 + s̃j(t)) + ãi, (A.8)

5 The general Gauss–Hermite quadrature is most commonly defined with respect to
the weight exp(−x2) but the transformation to our representation is straightforward.

28



and using the implied φ̃(yj(t))GH, weight in the evaluation of the effects of these
variances. The total variance (A.7) is still used in evaluation of the means and
the evaluation of the effects of the variance of s(t).

The evaluated mean and variance can be used to define an effective linearisa-
tion of the hidden nodes by finding a corresponding linear function that would
yield the same mean and variance. This yields the effective slope

〈φ′(yi(t))〉 :=

√√√√ φ̃(yi(t))GH

ỹi(t)
. (A.9)

The effective linearisation is able to take into account the variance of the
input, thus following the form of the function more globally when the variance
is large.

Thus the final approximation for the mean is

f i(t)〉 =
∑

j

Bijφ(yi(t))GH + bi (A.10)

and for the variance

〈 (
fi(t) − f i(t)

)2 〉
=

∑

j

(
B̃ij

(
φ(y)2

GH + φ̃(yj(t))GH

)
+ B

2

ijφ̃(yj(t))GH, weight

)

+ b̃i + ∇̃sfi diag(s̃)∇̃sf
T
i (A.11)

where the effective gradient is

∇̃sj
fi(t) =

∑

l

Bil〈φ
′(yl(t))〉Alj. (A.12)

A.2 Scalar post-nonlinearities

In case of the MLP networks modelling the scalar post-nonlinearities in PNFA,
the approximation is slightly easier as it is possible to directly use the Gauss–
Hermite quadrature with respect to the inputs of the MLP. As the variances of
the weights are usually small, their effects are represented sufficiently well by
using first-order Taylor approximation of the network with respect to them.
Thus the mean of the output is approximated as

f i(t) =
∑

j

wjfi(ŷj(t),θfi
) (A.13)

where y = As, wj are the weights and ŷj(t) = y(t) + tj
√

ỹ(t) are the basis
points of the Gauss-Hermite quadrature corresponding to the abscissas tj, and
θfi

denotes the mean of the weights θfi
.
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Correspondingly, the variance is approximated by a combined Gauss-Hermite
and Taylor approximation

〈 (
fi(t) − f i(t)

)2 〉
=

∑

j

wj

[(
fi(ŷj(t),θfi

) − f i(t)
)2

+ ∇θfi
fi(ŷj(t),θfi

) diag(θ̃fi
)∇θfi

fi(ŷj(t),θfi
)T

]
. (A.14)
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