\ HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Engineering
Physics and Mathematics

Tapani Raiko

Hierarchical Nonlinear Factor Analysis

Master’s thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Technology

Espoo, December 3, 2001

Supervisor: Professor Juha Karhunen
Instructor: Harri Valpola, D.Sc. (Tech.)

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA
TEKNILLISEN FYSIIKAN JA MATEMATIIKAN OSASTO

Tekija: Tapani Raiko

Osasto: Teknillisen fysiikan ja matematiikan osasto
Pisaine: Informaatiotekniikka

Sivuaine: Matematiikka,

Tyo6n nimi:

Hierarkkinen epélineaarinen faktorianalyysi

Title in English: Hierarchical Nonlinear Factor Analysis

Professuurin koodi ja nimi: Tik-61 Informaatiotekniikka

Tyo6n valvoja: Prof. Juha Karhunen
Ty6n ohjaaja: TkT Harri Valpola
Tiivistelmaé:

Yleinen ongelmatyyppi koneoppimisen alalla on 16ytdd joukosta niytevektoreita
tilastollisia riippuvuuksia. Vektorin komponentit voivat olla mittauksia tehdas-
prosessista, kuvan pikselien viriarvoja tai muita reaalilukuja. Téssé tyossd havain-
noilla ei oleteta olevan erityista jarjestysta.

Faktorianalyysin tapaisissa menetelmissd sovitetaan havaintoihin niiden syn-
tyd kuvaava generatiivinen malli, joka koostuu ldhteistd (faktoreista) ja nii-
den kuvauksesta havaintoavaruuteen. Paljon Kkéytetyissd menetelmissi, kuten
padkomponenttianalyysissd ja riippumattomien komponenttien analyysissé, on ku-
vaus rajoitettu lineaariseksi. Yleisessi epélineaarisessa tapauksessa muodostuvat
laskennallinen vaativuus ja huono yleistyskyky helposti ongelmiksi. Bayesildinen
jakauma- eli ensemble-oppiminen on osoittautunut néihin varteenotettavaksi vas-
taukseksi ja lisdksi se mahdollistaa mallin rakenteen optimoinnin.

Téassd tyossa esitellddn ensemble-oppimiseen perustuva menetelmé, jossa generatii-
vinen malli rakennetaan yksinkertaisista paikallisesti opetettavista osista. Erityis-
t4 huomiota kiinnitetdin epilineaarisuuteen. Paikallisuuden johdosta laskennalli-
nen vaativuus on lineaarinen suhteessa rakenteen kokoon ja paloja eri tavoin yh-
distimalla saadaan rakenteita, joilla voi muodostaa laajan valikoiman kuvauksia.
Lihteet yhdistetdin hierarkkisesti monikerros-perseptroni-verkon tavoin kuitenkin
siten, ettd kerros kuvaa seké edellisen kerroksen lihteiden varsinaisia arvoja, etta
niiden vaihtelua. Simulaatiot keinotekoisilla kuvapaloilla osoittavat ettd algoritmi
loytad alkuperdisen kaltaisen generatiivisen mallin. Simulaatiot luonnollisilla kuvilla
tuottivat mielenkiintoisia havaintoja ja kehitysideoita menetelmélle.

Sivuméira: 89 Avainsanat: epéilineaarisuus, neuraalilaskenta, ensemble-
oppiminen, faktorianalyysi, harvakoodaus

Taytetddn osastolla
Hyvéksytty: Kirjasto:

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER’S THESIS
DEPARTMENT OF ENGINEERING PHYSICS AND MATHEMATICS

Author: Tapani Raiko

Department: Department of Engineering Physics and Mathematics
Major subject: Computer and Information Science

Minor subject: Mathematics

Title:

Hierarchical Nonlinear Factor Analysis

Title in Finnish:
tle n Finnis Hierarkkinen epalineaarinen faktorianalyysi

Chair: Tik-61 Computer and Information Science
Supervisor: Prof. Juha Karhunen

Instructor: Harri Valpola, D.Sc. (Tech.)

Abstract:

A common problem class in machine learning is to find statistical dependencies
among a group of data vectors. The elements of the vector can be measurements of
an industry process, colour values of image pixels or some other real numbers. In
this thesis, the observations are not assumed to have a certain order.

Methods related to factor analysis fit a generative model to the data. The model
consists of sources (factors) and a mapping from source space to the data space. The
mapping is restricted to be linear in many commonly used methods like principal
component analysis and independent component analysis. In the general nonlin-
ear case, computational complexity and the ability to generalise are problematic.
Bayesian ensemble-learning has proved to answer to these challenges and it provides
means to optimise the model structure.

This thesis presents an ensemble-learning based method in which a generative model
is built from simple blocks with local update rules for learning. Special attention is
given to the nonlinearity. It results from the local computations that the compu-
tational complexity is linear w.r.t. the size of the structure and a rich combination
of mappings can be constructed by combining the blocks in various ways. A model
is built hierarchically to resemble the multi-layer perceptron network, but in such a
way that a layer represents both the actual values and the variation of the sources on
the previous layer. Simulations with artificial image patches show that the algorithm
can find a generative model similar to the original one. Simulations with natural
images provide interesting findings and suggest improvements for the method.

Number of pages: 89 Keywords: nonlinearity, neural networks, ensemble learn-
ing, factor analysis, sparse coding

Department fills
Approved: Library code:

Preface

This work has been done in the Laboratory of Computer and Information
Science at Helsinki University of Technology and funded by the European
Commission research project BLISS.

I wish to thank professor Juha Karhunen for supervision and for financial
support. I thank Dr. Harri Valpola for essential guidance on the subject. I
also wish to thank Antti Honkela and Jaakko Peltonen for creative discussions
and technical advice on Matlab, IXTEX and Unix.

Finally I wish to thank Anna Hiironen and my family for their encouragement
and support.

Otaniemi, December 3, 2001

Tapani Raiko

Contents

List of abbreviations 3
List of symbols 4
1 Introduction 6
1.1 Aimof the Thesis 6
1.2 Problem Settings oo 7
1.3 Structure and Contributions of the Thesis 8
2 Extensions of Factor Analysis 9
2.1 Linear Models 9
2.2 Nonlinear Models 12
23 Sparse Codingo 18
2.4 Learning Criteria L o oL 19
3 Bayesian Inference and Ensemble Learning 21
3.1 Bayesian Probability Theory 21
3.2 Ensemble Learningo o oL 24
3.3 Generalisation 27
4 Building Blocks for Hierarchical Nonlinear Factor Analysis 31

4.1 Gaussian Variables 33
4.2 Addition 36
4.3 Multiplication L 37
4.4 Gaussian Variable with Nonlinearity 38
4.5 Form of the Cost Function 40

Hierarchical Nonlinear Factor Analysis with Variance Mod-

elling 42
5.1 Variance Neurons 43
5.2 Formulation of the Model Structure 44
5.3 Simple Example oL oL 48

6 Learning Algorithm
6.1 Initialisation Lo o
6.2 Adjustment
6.3 Learning the Structure
6.4 Avoiding Nonglobal Minima

7 Bars Problem
7.1 Learning Procedure oL
72 Results.

8 Experiments with Image Data
8.1 Learning Procedure oL
82 Results.

9 Discussion
References
A Cost Function of the Gaussian Variable

B Update Rule of the Nonlinear Node

53
o4
95
26
o7

59
99
60

64
65
67

73

78

85

87

List of abbreviations

DCT
EM
FA
HNFA
HNFA+VM
ICA
KL
MAP
ML
MLP
NCA
NFA
PCA
pdf
RBF
SOM
std

Discrete cosine transform
Expectation maximisation

Factor analysis

Hierarchical nonlinear factor analysis
Hierarchical nonlinear factor analysis with variance modelling
Independent component analysis
Kullback-Leibler (divergence)
Maximum a posteriori (solution)
Maximum likelihood (solution)
Multi-layer perceptron (network)
Nonlinear component analysis
Nonlinear factor analysis

Principal component analysis
Probability density function

Radial basis function

Self-organising map

Standard deviation

List of symbols

> %
=

PR
S

0
—

S~
~—

T 2 b

D(q(0)||p(0|X,H))

()

3
[
f—'_‘—\
—_—

>z e el e 3 Q
’5;‘ N
Rl
3¢

The data vector at time ¢

The mixing matrix

The kth principal component

The transpose of a

The source or factor vector at time ¢

The data matrix containing all the observed data vectors
The prior beliefs

The parameters including the sources of a model
Probability density of A with condition B

Posterior density

Likelihood density

Prior density

Evidence density

The parametric approximation of the posterior

The Kullback-Leibler divergence

The Kullback—Leibler divergence between ¢(0) and
p(6|1 X, H)

Expectation over the distribution ¢(0)

Variance over the distribution ¢(0)

The cost function C = C, + C),

A signal that gives a prior mean of a source

A signal that gives a prior variance of a source

A nonlinearity (in most cases f(s) = exp(—s?))

Mean of the Gaussian distribution of ¢(s)

Variance of the Gaussian distribution of ¢(s)

Gaussian distribution of s with mean § and variance s
The time index of an observation or source vector

The dimension of an observation or source vector

The kth source on the ith layer for the ¢th observation
The variance source attached to s; (%)

The matrix used for the mapping from (i + 1)th layer to
the sources of the ith layer

The matrix used for the mapping from (i + 1)th layer to
the variance sources of the ith layer

The matrix containing the orthonormal eigenvectors of the
covariance of the data matrix

The diagonal matrix containing the eigenvalues of the co-
variance of the data matrix

The matrix containing the model vectors used in vector
quantisation initialisation

The scaling factor used in initialisation

Chapter 1

Introduction

A flexible scheme to learn to classify, to infer and to predict things simply
by observing examples, would be invaluable. Visualisation techniques help
humans to perceive large data sets at a glance, but there is still trouble in
perceiving data with high intrinsic dimensionality. An automatic system is
not limited to any strict number of dimensions. As the processing power and
the amount of available raw data grows, the greatest cost of analysation is the
amount of human intervention.

Analysing images is an effective way to study these models since the results are
relatively easy to interpret. Images can be considered as high dimensional data
by thinking that each pixel is a component of a data vector. One observation
vector is thus an image patch. The human brain is specialised among many
other things to interpreting visual observations. Fairly sophisticated computer
vision methods for certain tasks like for face recognition [68] exist, but they
are highly specialised and thus incapable of adapting to new situations. The
capabilities of such a system are limited by the engineering work, which easily
builds up to the system until it is an incomprehensible mass of finely tuned
rules.

1.1 Aim of the Thesis

The aim of this thesis is to build a system that is able to model high-dimensional
static data such as image patches. The model could then be used for noise
reduction, for reconstruction of missing values and thus to supervised learning
tasks [57], for predicting future observations or as a part of an autonomous

1.2. Problem Settings 7

intelligent system. These practical applications are briefly discussed in Chap-
ter 9.

Generative models are promising approaches to unsupervised learning tasks.
A factor-analysis like latent variable model called hierarchical nonlinear factor
analysis with variance modelling (HNFA+VM) is used in this thesis. It belongs
to generative models. As the structure and the complexity of the model is
highly adjustable, there is a need for a cost function that can be used for
learning the model structure and balancing between over- and under-fitting.
As the dimensionality of the data is high, the computational complexity is also
a very important issue.

Ensemble learning [25] provides such a cost function. It can be used so that
the complexity scales linearly with respect to the size of the system. Ensemble
learning and related variational methods have been successfully applied to vari-
ous extensions of linear Gaussian factor analysis. The extensions have included
mixtures-of-Gaussian distributions for source signals [2, 10, 49], nonlinear units
[15, 50] and MLP networks to model nonlinear observation mappings [43] and
nonlinear dynamics of the sources [63]. Ensemble learning has also been ap-
plied to large discrete models such as belief networks [51] and hidden Markov
models [48].

In this thesis, a model is presented which is built from addition, multiplication
and Gaussian variables possibly followed by a nonlinearity. The Gaussian
variables also model the variance of other Gaussian variables allowing also
the variance to have a hierarchical model. Related model structures have
been proposed for instance in [40, 8, 56, 19, 30, 29] but with these methods
it is difficult to learn the structure of the model or compare different model
structures.

1.2 Problem Settings

Two different experimental settings are used in this thesis. First an extension
to the artificial bars problem [12] is studied to demonstrate that the algo-
rithm actually finds a model that is similar to the one used to generate the
data. Small image patches are generated by randomly inserting horisontal and
vertical bars and areas with increased noise level to an image.

The second experiment setting consists of analysing patches of natural gray-
scale images. In this case there is no right answer, but the resulting model
can be compared to what biologists know about the human brain. Hyvarinen

1.3. Structure and Contributions of the Thesis 8

and Hoyer [30, 29, 31] applied independent component analysis (ICA) and its
extensions to natural images. The basic ICA leads to emergence of simple
cell properties and the extensions lead to emergence of both topography and
invariances similar to complex cell properties.

Frey and Jojic estimated a mixture model for images with a fixed set of trans-
formations [16]. Using 100 frames of head-and-shoulder video sequences of a
person walking across a higly cluttered background and a fixed set of transla-
tional invariances, they could capture clusters that presented the person with
different poses, while background was interpreted as noise.

1.3 Structure and Contributions of the Thesis

This thesis is organised as follows. Chapter 2 discusses previous work on exten-
sions of factor analysis that can be used for unsupervised learning. Chapter 3
gives an overview of Bayesian ensemble learning which is the essential theo-
retical background. Building blocks and their usage with ensemble learning
are described in Chapter 4. The model structure used in hierarchical nonlin-
ear factor analysis with variance modelling (HNFA+VM) is built from these
blocks in Chapter 5. Chapter 6 describes the algorithm that is used to let the
model learn from the data.

Two sets of experiments were conducted using HNFA-+VM. In Chapter 7, an
artificial bars problem is analysed and in Chapter 8, the model is applied on
natural image data. Finally, the benefits, restrictions and applications of the
model and future work are discussed in Chapter 9.

The update rule for the Gaussian variable with nonlinearity has been developed
by the author. The experiments as well as the code for preprocessing and
parts of the learning procedure like initialisation, pruning, regeneration and
rebooting, have beed developed by the author.

Chapter 2

Extensions of Factor Analysis

This chapter describes shortly the ideas behind factor analysis and how it has
been extended. It also describes how the model in this thesis is related to other
work in the field.

In factor analysis, regularities in the observations are assumed to be caused by
hidden factors or sources. The problem setting in all the factor-analysis like
models is to find those factors and the mapping to the data. These models are
generative which means that they describe a random process which is thought
to have generated the data. Generative models have some useful properties.
The learning criterion is easy to formulate and thus includes no heuristics. The
models can be combined and their performances can be compared. They also
offer a straightforward way to handle missing values.

The data is in this case a collection of real-valued vectors x(¢), where t €
{1,2,...,T} is the time index for the observation. In static analysis, the
dependencies between consequent time indices are neglected and the data could
be permutated, still giving the same result as opposed to dynamical analysis.
The mean of the data is assumed to be a zero vector to simplify the equations.

2.1 Linear Models

2.1.1 Factor Analysis

The basic approach is simply called factor analysis [22, 38] (FA). The data x(t)
is thought to have been generated from factors s(t) through a linear mapping

2.1. Linear Models 10

Factor Analysis Independent Component Analysis
3
2
1
0
-1
-2
7
-3 -3
3 2 -1 o 1 2 3 3 -2 -1 0 1 2 3

Figure 2.1: Left: Factor Analysis. The image has been generated by mixing
two Gaussian factors with a matrix visualised with the solid lines. In factor
analysis, the rotation is not fixed, but principal component analysis selects the
orientation with orthogonal axis shown with the dash lines. Right: When the
factors have non-Gaussian distributions the rotation is fixed and can be found
using independent component analysis.

A using the formula
x(t) = As(t) + n(t), (2.1)

where n(t) is noise or reconstruction error vector. The vectors As(t) are called
the reconstructions. Typically the dimensionality of the factors is smaller
than that of the data. Factors and noise are assumed to have a Gaussian
distribution. Figure 2.1 shows a two dimensional example. Factor analysis
can be seen as trying to fit a Gaussian distribution to the data points.

Equation 2.1 does not fix the matrix A, since there is a group of rotations that
yield identical observation distributions. Several criteria have been suggested
for determining the rotation. One is called the parsimony, which roughly means
that most of the values in A are close to zero. Others include independency
of the factors and discarding the assumption of Gaussian distribution of them
and instead maximising the nongaussianity. These have led to independent
component analysis [31, 35] (ICA) that is described below.

2.1. Linear Models 11

2.1.2 Principal Component Analysis

Principal component analysis (PCA)[32, 38] also known as the Hotelling trans-
form or the Karhunen-Loeve transform is a widely used method for finding the
most important directions in the data in the mean-square sense. It is the so-
lution of the FA problem with minimum mean square error and an orthogonal
weight matrix.

The first principal component a; corresponds to the line on which the projec-
tion of the data has the greatest variance:

T
T 2
a; = arg max a ' x(t))”. 2.2
s D (e x(0) (22
The other components are found recursively by first removing the projections
to the previous principal components:

a, = arg |max [aT (x(t) - 2 aiaiTx(t))] . (2.3)

al|=1
Jal|=1 4=

In practice, the principal components are found by calculating the eigenvectors
of the covariance matrix C of the data

C = E {xt)x(t)"} (2.4)

The eigenvalues are positive and they correspond to the variances of the pro-
jections of data on the eigenvectors.

Principal components can be found in various fields of science. For example,
there is an analogy to the physics. If three dimensional data points are con-
sidered to be the mass points of a rigid body, the eigenvalues correspond to
the principal moments of inertia and the principal components to the principal
axes of the body.

2.1.3 Independent Component Analysis

The mixing model of independent component analysis (ICA) is similar to that
of the FA, but in the basic case without the noise term. The data has been
generated from components s(¢) through a square mixing matrix A by

x(t) = As(t). (2.5)

2.2. Nonlinear Models 12

The distribution of the components are assumed to be non-Gaussian contrary
to FA. Figure 2.1 shows an example with super-Gaussian components.

The number of components is typically the same as the number of observation
and the observations can be thus reconstructed perfectly. Such an A is searched
for that the components s(t) = A~!x(t) would be ’as independent as possible’.
True independence is defined as

(81,82, -+, 8n) = p1(s1)p2($2) - - - Pr(Sn), (2.6)

which means that the density is factorised to a product of the marginal den-
sities of the components. In practice, the independence can be maximised
e.g. by maximising non-Gaussianity of the components or minimising mutual
information [31].

ICA has many forms [31]. It can be approached from different starting points.
In some extensions the number of independent components can exceed the
number of dimensions of the observations making the basis overcomplete [46,
31]. The noise term can be taken into the model. ICA can be viewed as a
generative model when the one dimensional distributions for the components
are modelled with for example mixtures-of-Gaussians [2, 10, 49].

Experiments have shown that some components found by ICA tend to be
active, i.e. nonzero simultaneously in most natural data. Taking this into
account in the model has led to topographic ICA and independent subspace
analysis [30, 29, 31]. In topographic ICA, the components are organised in
a grid. The model states that the energies s;(¢)* and s;(¢)? of components i
and j are positively correlated, if the components are close to each other in
the grid. In independent subspaces, the components are grouped to feature
subspaces such that inside the group the probability distribution is spherically
symmetric and the energies are correlated. The groups are considered mutually
independent.

2.2 Nonlinear Models

Nonlinear extensions of factor analysis can be divided into at least three cate-
gories: 1) Using multiple clusters that each resemble FA; 2) Mapping the data
nonlinearly to a higher dimensional feature space and then performing linear
computations there; 3) Finding the nonlinear shape of the data distribution.
The model used in this thesis fits into the third category.

Examples from each category will be described. From the first category, a

2.2. Nonlinear Models 13

mixture model is considered. The self-organising map fits somewhere between
the first and the third category. Nonlinear Hebbian learning [54, 53] and
nonlinear component analysis (NCA) or kernel-PCA are examples of the second
category. Examples from the third category include nonlinear factor analysis
and principal curves [23]. Most of the previous work in nonlinear supervised
learning tasks can be applied to nonlinear factor analysis and therefore they
are considered for background.

2.2.1 Mixtures of Linear Models

The first approach to extend factor analysis to nonlinear manifolds is to use a
mixture model
x(t) = Ags(t) +ax + n(t), (2.7)

where k is a discrete random variable that selects the kernel or the mixing
matrix and the corresponding bias. The bias term a; is needed here even if
the data is centered i.e. it has zero mean. The mixture model can be seen as
trying to cover the data points precisely with a distribution containing several
Gaussians.

Bishop et al. [7] used this kind of a model with Bayesian inference to image
modelling tasks. There was considerable enhancement in the performance
when compared to linear methods.

A mixture model is often inadequate with high dimensional data like images.
To represent shapes and colours of different object in an image, one would
need a componentwise representation of the parameters of the objects. But to
represent the multiple objects, one would need several representations active
at one time, which is not allowed.

It is possible to restrict the model in (2.7) by using only diagonal mixing
matrices Ay, leaving out the whole term Ays(t) or leaving out the noise term
n(t). Restrictions simplify the model and thus one can use a greater number of
kernels with the same total complexity. Restricted models come close to vector
quantisation [1]. Mixture models have also been extended to mixture-of-ICA
models [36, 45].

2.2. Nonlinear Models 14

2.2.2 Nonlinear Component Analysis

The basic idea of nonlinear component analysis (NCA) or kernel PCA [60] is
to replace the covariance matrix in equation (2.4) with

C = E{2(x(1))2(x(1))" }, (2.8)

where @ is a fixed nonlinear mapping to a feature space which has a larger
dimensionality than the data space. The principal components are then com-
puted in the feature space.

The mapping @ is typically not a surjection, i.e. onto and therefore the recon-
struction of a data vector given the extracted components can be problematic.
Linear principal components can be visualised easily since they correspond
to vectors or directions in the data space, whereas the kernel-based principal
components do not have a counterpart in the data space. Therefore NCA is
not viewed as a generative model.

Scholkopf et al. [60] have developed an efficient algorithm for NCA where the
dimensionality of the feature space can be very large. They also developed a
method for iteratively finding a reconstruction in the data space for a point
in the feature space. Their experiments suggest that compared to PCA, NCA
extracts features which are more useful for classification purposes. The same
approach can be used to construct e.g. nonlinear ICA.

2.2.3 Self-Organising Map

The self-organising map (SOM) [39], also known as the Kohonen map, lies in
a sense between vector quantisation and nonlinear factor analysis. It operates
with map units which are comparable to kernels of mixture models. The map
units are organised into a typically two-dimensional grid, where the model
vectors of neighbours in the grid are neighbours in the data space.

The actual learning of SOM is done basically as follows. A data sample x(?)
is compared to the model vectors m; and the winner index ¢(x(t)) is selected
with

c = arg miin |x(t) — m,| (2.9)

and the model vectors are adjusted towards the data vector
m; ney = M; + h(c(x(t)),7)(x(t) — m;), (2.10)

where the h is called the neighbourhood function. It is a decreasing function
of the distance between the the ith and cth model on the map grid.

2.2. Nonlinear Models 15

If the map grid is just two dimensional, it is useful for visualisation. When the
dimensionality gets larger, however, the number of map units grows exponen-
tially and therefore the model is not well suited for tasks with high intrinsic
dimensionality. There are plenty of modifications [39] to the basic SOM. The
so called generative topographic map [6] is a generative model which is closely
related to the SOM.

2.2.4 Supervised Learning Tasks

Nonlinear models have long been used for supervised learning tasks. The
task in supervised learning is to learn a mapping f from observation pairs
{x(t),d(t)}. The model is typically written as

y(t) = f(x(t),0) (2.11)

e(t) = d(t) - y() (2.12)
where y(t) is the output of the network f and e(¢) is the error signal or the
difference between the desired response d(¢) and the output y(t).

The mapping f has a fixed structure and parameters 8 control the actual shape
of the mapping. The essential difference to factor-analysis-like models is that
here both the inputs and outputs are observed. The only hidden variables that
have to be learned are the parameters @ that control the shape of the mapping
f.

One of the most common structures for f is the multilayer perceptron (MLP)
network [5, 24] with one hidden layer defined by

y(t) = Aig(Asx(t) + ag) + ay, (2.13)

where g(+) is a nonlinear activation function like the hyperbolic tangent applied
to each component of the vector separately. It is an universal approximator
[26, 17], which means that given enough hidden units, it can approximate any
measurable function to any desired degree of accuracy. The learning can be
done by adjusting the parameters A and a so that the error signal e(t) gets
close to zero. There are plenty of other structures and methods [24].

2.2.5 Nonlinear Factor Analysis

In nonlinear factor analysis (NFA), the mixing matrix used in FA is replaced
by a general mixing model

x(t) = £(s(t)) + n(?). (2.14)

2.2. Nonlinear Models 16

For the mapping f, one can use the same collection of structures as in the
supervised tasks.

The assumption that the factors have a Gaussian distribution like in the basic
FA is not restrictive anymore since the nonlinear mapping can compensate
for it. The complexity is typically polynomial w.r.t. the number of factors
which means that data with intrinsic dimensionality of the order of ten can
be handled. It should be noted, however, that if the data is clustered, the
corresponding mapping f would be very highly nonlinear and difficult to learn.
Other methods are better suited for clustering.

If the mapping f is modelled with for example an MLP network with one hidden
layer, an analogy to nonlinear component analysis (NCA) can be found. There
is a nonlinear mapping between the data space and the higher dimensional
feature space or hidden layer. The mapping between the underlying factors
and the feature space or hidden layer is linear. The main difference is that in
NCA, the mapping to feature space is predefined, but in NFA, the mapping
from hidden layer to data is learned, too. The feature space in NFA is typically
of higher dimensionality than the hidden layer in NFA.

The solutions of NFA are highly nonunique [31]. When compared to supervised
learning where only the mapping f can be adjusted, one finds out that in NFA|
many mappings are reasonably good, since the factors s(t) can be adjusted
accordingly. NCA is comparable to NFA with part of the mapping fixed.
There is a downside to the freedom of NFA: simple learning criteria lead to bad
overfitting as will be discussed in Section 2.4. The problem can be overcome
with e.g. Bayesian learning.

Valpola et al. [43, 64] used an MLP network to model the mapping of NFA
and ensemble learning for finding the parameters. Experiments showed that
compared to the linear FA, a smaller number of factors was required to acquire
the same level of accuracy in the reconstructions. Experiments with a mod-
ification by the present author and Valpola [57] showed that NFA performed
better at reconstructing missing values in observations than FA.

2.2.6 Nonlinear Dynamical Factor Analysis

The NFA model can be extended to model the nonlinear dynamics of the
factors [20, 65, 63, 64]

x(t) = f(s(t)) +n(¢) (2.15)
s(t) = g(s(t—1)) +m(), (2.16)

2.2. Nonlinear Models 17

Sources Sources

Data Data

Figure 2.2: If the mapping from the sources to the data is strongly nonlinear,
it might be much easier to learn it in parts as in the figure on the right.

where the m(t) is called process noise or innovation process. The mapping
g modelling the dynamics is handled somewhat similarly as the mapping f.
Experiments [65, 63] have given good results in prediction of artificial time
series compared to traditional time series methods.

2.2.7 Hierarchical Nonlinear Factor Analysis

In some of the described models the data is thought to have been generated
from original factors or source signals through a linear or nonlinear mapping.
The mapping and the sources can be adjusted to match the data better by
propagating the reconstruction error of the data upwards in Figure 2.2. If the
nonlinearity is strong, but the mapping is not yet very meaningful, it is hard
to determine how the adjustments should be made.

In hierarchical nonlinear factor analysis (HNFA), the hidden units or calcu-
lating units of an MLP-like network in NFA are replaced by latent variables.
Even if the mapping between two adjacent layers is only slightly nonlinear, the
total mapping through all the layers can be strongly nonlinear. The learning
or the adjustments can be done layer by layer. One part can learn even if the
total mapping is not yet very meaningful.

Hierarchical models for parameters are widely used in modern Bayesian data

2.3. Sparse Coding 18

analysis [18, 59]. That is, observations are modelled conditionally on some
parameters which themselves are modelled by hyperparameters. In HNFA,
however, the hierarchy applies also to the time dependent sources and not
only to the parameters.

HNFA belongs to Bayesian networks [33]. In Bayesian networks, the variables
are connected as a directed acyclic graph. Some of the variables are observed
and others are latent or hidden. Variables can be continuous valued or discrete.

Neal developed the logistic belief net [51], which is like HNFA with binary
variables. He replaced symmetric connections of Boltzmann machine with
directed connections that form an acyclic graph. After that, the probabilistic
calculations become easy.

Frey and Hinton [15] constructed a nonlinear Gaussian belief network for tasks
such as stereo vision and speech recognition. Gaussian latent variables were
passed through linear, binary, rectified and sigmoidal functions to get nonlinear
units. Maximum likelihood and Gibbs sampling were compared as learning
methods.

Murphy [50] used a variational approximation to the logistic function to per-
form approximate inference in Bayesian networks containing discrete nodes
with continuous parents. The experiments showed that the variational ap-
proximation is much faster than sampling, but comparable in accuracy.

2.3 Sparse Coding

In many of the described models, the observations are reconstructed as a
weighted sum of model vectors. In vector quantisation [1], only one of the
model vectors is active at a time, which means that all but one of the weights
are zero. This is called local coding. There has to be lots of model vectors to
get a reasonable accuracy. In basic factor analysis, the factors have a Gaussian
distribution and therefore most of them can be active or nonzero at a time.
This is called global coding. Sparse coding fits in between these two extremes;
Each observation is reconstructed using just a few active units out of a larger
collection. Biological evidence suggests [14] that the human brain uses sparse
coding. It is said to have benefits like good representational capacity, fast
learning, good generalisation and tolerance to faults and damage.

Sparsity implies that the distribution of a source has a high peak, but the vari-
ation can still be broad. The peak corresponds to the inactivity and therefore

2.4. Learning Criteria 19

1 1
0.5 0.5
0 0
-1 0 1 -1 0 1
1
0.5
0 —
-1 0.5 1

Figure 2.3: Two ways to obtain a supergaussian distribution from a Gaussian
one. Top: The mean of three Gaussians with different variances is taken.
Bottom: a Gaussian is fed through a nonlinearity marked with the dashed
curve. The resulting distributions are shown on the right hand side.

it is typically at zero. Kurtosis is one measure of peakedness. It is defined as
kurt(s) = F{s*} —3 [E{52}]2 : (2.17)

if s is assumed to have zero mean. For Gaussian distributions, the kurtosis
is zero and for peaked and heavy tailed, it is positive. ICA can be carried
out by maximising the absolute values of the kurtosis which means that it can
promote sparsity.

Most of the probability density functions in this thesis are Gaussian. However,
by varying the variance or using a nonlinearity with a flat part as in Figure 2.3,
a peaked distribution can be obtained. Beale showed [4] that by varying the
variance of a symmetrical distribution, the kurtosis always increases. Because
of the biological and experimental motivation to use sparse coding, it is made
sure in Chapter 5 that the model is rich enough to use it.

2.4 Learning Criteria

Solving problems with complex models cannot be done analytically. Instead,
one can formulate a learning criterion typically in a form of a cost function.

2.4. Learning Criteria 20

The learning can done by adjusting parameters iteratively such, that the cost
function is minimised. Once the criterion is determined, one can use methods
of optimisation theory, such as gradient descent.

The first candidate for a cost function could be the mean square reconstruction
error

Cons = 7 D [x(t) — K1) (218)

It is easy to see [5] that it is equivalent to maximising the likelihood of the data
p(x]s, f(-)) assuming a Gaussian noise with equal variance on each component
of x(t). A logarithm of the reconstruction error is linearly dependent on the
likelihood of the noise term. This approach works fine with supervised learning
tasks, when the number of free parameters is relatively small.

In the basic ICA, the dimensionality of the model is the same as the dimen-
sionality of the data. The reconstructions are perfect and the learning criterion
cannot be based on reconstruction error. Instead, one can maximise the non-
gaussianity of the components. Also, when the curvature is allowed to be high
enough in a nonlinear model, the data can be reconstructed perfectly. That
does not guarantee that the model would be meaningful or generalise to new
samples. The problem is called overfitting and one needs a better criterion for
learning something meaningful.

With simple criteria, the amount of data required for avoiding overfitting is
directly proportional to the number of free parameters [24]. In supervised
learning, increasing the number of data points will always overcome the prob-
lem. In unsupervised learning, however, the number of unknown variables
grows with the number of data points, since the factors corresponding to each
observation are also unknown. This would suggest that the simple methods
work only, when the number of factors is small enough compared to the di-
mensionality of the data. Even that is not true if one tries to estimate the
variance of the noise. This will be demonstrated in Section 3.3.2. Bayesian
inference solves the problem of overfitting and it is addressed in Chapter 3.

Chapter 3

Bayesian Inference and
Ensemble Learning

This chapter gives an overview of ensemble learning with emphasis on solutions
yielding linear computational complexity. More comprehensive introductions
to ensemble learning can be found for instance in [61, 34, 44].

In generative models, inference can be done by estimating how likely a set of
parameter values could have produced the observed data. Basically one wants
to find a representative of the probability mass in the parameter space, but
there are different methods for doing it in practice.

3.1 Bayesian Probability Theory

The definition of probabities using frequencies will run into problems in some
cases. What is the probability of six when a player throws a dice? One out of
six. But what if the dice was biased? That is a good hypothesis and it should
be tested. After trying a hundred throws the player is somewhat confident
that the dice is biased. What is the probability of another six? How does it
change exactly?

Another example is that a mathematician has a hypothesis, which he thinks is
probably true. After writing the first half of the proof and sketching the other
half he is somewhat more certain that the proof exists and the hypothesis is
true. It is clear that in this case the probability is a subjective degree of belief.
The frequency of a certain mathematical hypothesis to be true or not is quite

21

3.1. Bayesian Probability Theory 22

absurd as a concept in this example.

In contrast to the traditional definition of probability using relative frequencies,
the Bayesian probability theory interprets probability as a degree of belief.
This offers a way to put all the hypotheses to prior beliefs H. The data or the
observations X are in the player example the dice throws and the parameters
0 are the studied properties of the dice.

Cox has shown [11] that from very general requirements of consistency and
compatibility with common sense, the basic laws concerning beliefs are equiv-
alent to

p(A,B|C)=p(A[C)p(B|AC) (3.1)
p(A|B) +p(A|B) =1, (3.2)

from which the two basic rules of Bayesian inference, Bayes rule and the
marginalisation principle can be derived.

3.1.1 Bayes Rule

The Bayes rule
p(X |0, H)p(6 | H)
p(X | H)

indicates how observations change the beliefs. It is named after an English
reverend Thomas Bayes, who lived in the 18th century. H marks the prior be-
liefs, X is the observed data and 0 is the parameter vector to be inferred. The
term p(@ | H), the probability of the parameters given only the prior beliefs
or the probability prior to the observations is called the prior probability. The
term p(0 | X,H), the probability of the parameters given both the observa-
tions and the prior beliefs is called the posterior probability of the parameters.
The Bayes rule tells how the prior probability is replaced by the posterior after
getting the extra information i.e. the observed data. The term p(X | 6,H)
is called the likelihood of the data and the term p(X | H) the evidence of the
data. Note that here p(-) stands for a probability density function (pdf) over
a vector space.

p(0 | X, H) = (3.3)

When inferring the parameter values @, the evidence term is constant and the
learning rule (3.3) simplifies to

p(0| X, H) < p(X |0, H)p(6 | H) (3.4)

Bayes rule tells a learning system (the player) how to update its beliefs after
observing X . Now there is no room for 'what if’; since the posterior contains

3.1. Bayesian Probability Theory 23

everything that can be inferred from the observations. Note that the learning
cannot start from void - some prior beliefs are always necessary as will be
discussed in Section 3.3.3.

3.1.2 Marginalisation Principle

The marginalisation principle specifies how a learning system can predict or
generalise. The probability of observing A with prior knowledge of B is

p(A | B) = / p(A | 6, B)p(6 | B)db. (3.5)

It means that the probability of observating A can be acquired by summing
or integrating over all different explanations 8. The term p(A | 8, B) is the
probability of A given a particular explanation @ and it is weighted with the
probability of the explanation p(@ | B).

Using the principle, the evidence term can be written as
p(X | H) = [p(X | 8,1)0(6 | H)d. (36)

This emphasises the role of the evidence term as a normalisation coefficient.
It is an integral over the numerator of the Bayes rule (3.3).

3.1.3 Approximations

In practice, exact treatment of the posterior probability density of the pa-
rameters is infeasible except for very simple models. Therefore, some suitable
approximation method must be used. There are at least three options: 1) a
point estimate; 2) sampling; 3) parametric approximation.

The result of inferring the parameter values is called the solution. The Bayesian
solution is the whole posterior pdf. In point estimates the solution is a single
point. The maximum likelihood (ML) solution for the parameters 0 is the point
in which the likelihood p(X | 0,H) is highest. The maximum a posteriori
(MAP) solution is the one with highest posterior pdf p(@ | X,#). Point
estimates are easiest to calculate but they fail in some situations as will be
seen in Section 3.3.2.

It is possible [18] to construct a Markov chain that will draw points 6 from the
posterior distribution p(6 | X,H). Instead of integrating over the posterior

3.2. Ensemble Learning 24

distribution in (3.5), one can sum over the sequence @y. This sampling ap-
proach has originated from the Metropolis algorithm in the statistical physics
and developed into e.g. Gibbs sampling and hybrid Monte Carlo method. Gen-
erally they are called Markov chain Monte Carlo methods. The length of the
sequence for the approximation to be adequate can get too large to be used in
practice when the problem is hard and has a large number of parameters.

Ensemble learning is a compromise between the Bayesian solution and the
point estimates. It is used in this thesis and therefore the whole Section 3.2 is
dedicated to it.

3.2 Ensemble Learning

Ensemble learning [25, 3, 44, 52| is one type of variational learning. The basic
idea in ensemble learning is to minimise the misfit between the exact posterior
pdf p(@ | X) and its parametric approximation ¢(0). The misfit is measured
with the Kullback-Leibler (KL) divergence

Crr, = D(¢(6) || p(6 | X, 7)) = <1n %> (3.7)

_)
- [a0 T g0 20

where the operator (-) denotes an expectation over the distribution ¢(6). KL
divergence is hard to evaluate and therefore the cost function C' that is actually

used is
q(0)

The terms C and Cki, differ by the term Inp(X | #), the logarithm of the
evidence. While optimising the distribution ¢(@) for a single model #, the
evidence is constant and can be ignored.

The cost function can be divided to a sum C' = C, 4 C,,, where

C, = (ing(6)) (3.9)
C, = —(up(X,0|H)). (3.10)

Density estimates of continuous valued latent variables offer a great advantage
over point estimates in being robust against over-fitting and providing a cost

3.2. Ensemble Learning 25

function suitable for learning model structures. With ensemble learning the
density estimates can be almost as efficient as point estimates. Roberts [58]
compared Laplace approximation, sample based and ensemble learning with
ICA problem on music data. The sources were well recovered using ensemble
learning and the approach was considerably faster than the other methods.

3.2.1 Factorial Approximation

One can choose a posterior approximation ¢(@) that can be written as a prod-
uct of independent densities

q(0) = q(01)q(02) ... q(On), (3.11)

where N is the number of parameters. This will simplify C, in (3.9) to a sum of
simple terms. Factorial approximation allows linear computational complexity.

The factorial approximation allows building of efficient algorithms, but it might
not work well with all kinds of model structures. It does work well with
models in which the posterior dependencies are not too strong, like in the
sparse coding. It seems that almost maximally factorial ¢(@) suffices for latent
variable models, since the rotational and other invariances can be used by
choosing a solution where the factorial approximation is most accurate. A
good model structure seems to be more important than a good approximation
of the posterior probability of the model.

Miskin and MacKay [49] used ensemble learning for blind source separation.
They compared two approximations of the posterior: The first was an M-
dimensional Gaussian with full covariance matrix, which resulted in a memory
requirement of the order M? and a time complexity of the order M3. The
second was the factorial approximation. They noticed that the factorial ap-
proximation is computationally more efficient and still gives a bound on the
evidence and does not suffer from overfitting.

3.2.2 Hierarchical Models

In a hierarchical model, the data X depends only on some of the parameters.
They are called the parameters of the first layer ;. Parameters of the first
layer depend only on the second layer parameters 8, and so on.

The term p(@, X | H) in equation (3.10) can be split into a product of simpler
terms since dependencies over layers p(6;|6;,1,...,60,) = p(6;|0;11) can be

3.2. Ensemble Learning 26

truncated

p(6, X [H) = p(X|0,H)p(0|H) (3.12)
= p(X[01, H)p(6:1|62,H) - - - p(6,-1|6,, H)p(6y | H),

where n is the number of layers.

This means that also the expectation in (3.10) and thus the whole cost function
C in (3.8) become sums of simple terms.

3.2.3 Connection to coding

There is a close connection between coding and probabilistic framework. The
optimal code length of X is L(X) = —log, P(X) bits, where P(X) is the
probability of observing X. In order to be able to encode the data compactly
one has to find a good model for it. A sender and a receiver have agreed on a
model structure H and the message will have two parts: the parameters @ and
the data X. It can be shown[25] that L(X) = C — log ||dX || where the dX is
the required accuracy of the data. Therefore minimising the cost function C
of ensemble learning is equivalent to minimising the coding lenght of the data.

3.2.4 Model Selection

Ensemble learning offers another important benefit. Comparison of different
models is straightforward. The Bayes rule can be applied again to get the
probability of a model given the data

p(X | H)p(H)
p(X)
where p(H) is the prior probability of a model and p(X) is the probability of

the data, which is constant. A lower bound on the evidence term p(X | H) is
obtained from (3.8)

p(H|X)=

(3.13)

p(X | H) = exp(Ckr, — C) > exp(—C) (3.14)

Multiple models can be used as a mixture of experts model [24]. The experts
can be weighted with their probabilities given in equation (3.13). If the mod-
els have equal prior probabilities and the parameter approximations Cky, are
equally good, the weights simplify to exp(—C). In practice, the costs tend to

3.3. Generalisation 27

differ in the order of hundreds or thousands, which makes the model with the
lowest cost C' dominant. Therefore it is reasonable to concentrate on model
selection rather than weighting.

3.3 Generalisation

A learning algorithm is said to overlearn the training data set, when its per-
formance with test data starts to get worse during the learning with training
data. The system starts to lose its ability to generalise. The same can happen
when increasing the complexity of the model. The model is said to overfit to
the data. When the model is too simple or the learning is stopped too early,
the problem is called underfitting or underlearning accordingly. Balancing be-
tween over- and underfitting has perhaps been the main difficulty in model
building.

There are ways to fight overfitting and overlearning [24, 5, 9]. Weight decay
[41] for MLP networks corresponds to moving from ML to MAP solution in
Figure 3.2. It punishes the model for using large values for weights and thus
makes the mapping smoother. The same idea can be taken further - one can do
model selection with MAP estimates by introducing a heuristical punishment
term for model complexity. A popular and less heuristic method to select
the best time to stop learning or the best complexity of a model is the cross-
validation [24]. Part of the training data is left for validation and the models
are compared based on their performance with the validation set.

Bayesian learning solves the tradeoff between under- and overfitting. If one
has to select a single value for the parameter vector, it should represent the
posterior probability mass well. The MAP solutions are attracted to high but
sometimes narrow peaks. Figure 3.1 shows a situation, where search for the
MAP solution first finds a good representative, but then moves to the highest
peak which is on the border. This type of situation seems to be very common
and the effect becomes stronger, when the dimensionality of the parameter
space increases.

Because the KL divergence involves an expectation over a distribution, it is sen-
sitive to the probability mass rather than to the probability density. Therefore
ensemble learning is not attracted so much to narrow peaks and overfitting is
largely avoided. Experiments have shown [57] that ensemble learning performs
well in generalisation.

Two example cases are described in the following Sections. In the first simple

3.3. Generalisation 28

Figure 3.1: A hypothetical posterior pdf. A point estimate could first find a
good representative of the probability mass, but then overfit to a narrow peak.

case, it is sufficient to use MAP estimate instead of ML to avoid overfitting.
In the second example, however, both of the point estimates fail.

3.3.1 An Example on Polynomial Fitting

The data set X consists of 10 points on a plane. Model H states, that the
points have been generated by a sixth order polynomial, whose weights are
drawn from a Gaussian distribution with a zero mean and standard deviation
(std) 2 and a Gaussian noise with std 0.1 is added. The problem is to find
these weights.

Figure 3.2 shows the results. There are many different polynomials that fit
quite well to the data. The ML solution does the fitting best, but the weights
of the polynomial are large and the polynomial has a complicated form. The
MAP solution takes the prior distributions into account, and the result is
smoother. Bayesian learning takes into account all polynomials and weights
them with their posterior probability. It solves the tradeoff between under-

3.3. Generalisation 29

0.5 0.5 0.5
X X
0 0 0
-0.5 X -0.5 X -0.5
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5

Figure 3.2: A sixth order polynomial is fitted to 10 data points. Left: Max-
imum likelihood solution. Middle: Maximum a posteriori solution. Right:
Bayesian solution. The three curves present 5%, 50% and 95% fractiles.

and overfitting. Note that the error fractiles are closer in the parts of the
polynomial that have data points.

3.3.2 Example Where Point Estimates Fail

The following example illustrates what can go wrong with point estimates.
Three dimensional data vectors x(t) are modelled with linear factor analysis

x(t) = As(t) + n(t), (3.15)
using a single source s(t). The weight matrix A might get a value

1
A=|o0], (3.16)

while the source can just copy the values of the first dimension of x(t)
s(t) =z (t). (3.17)
The noise model is Gaussian with zero mean and parameterised variance

p(nk) =N (n4;0,07) . (3.18)
When the reconstruction error or the noise term is evaluated

0
n(t) = x(t) — As(t) = { mgg } , (3.19)

3.3. Generalisation 30

one can see that problems will arise with the first variance parameter o7. The
likelihood of the data

plx(t) = pla() = T (2mof) s (=55) (3.20)

k=1
3
1 —1/2 a:k(t)Z 1
= \/—271_[(%0’3) exp (— 207)| o (3.21)
k=2

goes to infinity when the variance o? goes to zero. Same applies to the posterior
density, since it is basically just the likelihood multiplied by a finite factor.

The found model is completely useless and still, it is rated as infinitely good
using point estimates. These problems are typical for models with estimates
of the noise level or products. They can be sometimes avoided by fixing the
noise level or using certain normalisations [2].

3.3.3 Role of Prior Information

Basically, all generalisation is based on the prior knowledge [47]. Training data
provides information only at the data points and prior knowledge like piecewise
smoothness of natural phenomena is needed for generalising to future data.
This means that all learning has some priors that are either implicit or explicit
as in Bayesian inference. In practice, the priors are often too strict.

Bayesian solutions are sensitive to the priors. Bad or wrong prior information
can lead to too a complex model and in a sense overfitting [42]. The selection
of appropriate priors requires lots of expert work and therefore so called non-
informative priors [37] are searched for. They could be used in case of complete
ignorance of the problem at hand. With hierarchical priors [18], some choices
can be moved to higher levels which contain less information.

Chapter 4

Building Blocks for Hierarchical
Nonlinear Factor Analysis

Hierarchical latent variable models can be constructed from simple building
blocks. The basic idea is that adapting can be done locally. This provides a way
to construct complicated models that can still be used with linear complexity.
The formulas and implementation can be done for each block separately there-
fore reducing the possibility of errors and allowing more attention to other
matters. It also increases the extensibility. In this chapter, the building blocks
and equations for computation with them are introduced. The building blocks
consist of variable nodes and computation nodes. The symbols for them are
shown in Figure 4.1.

The network is described using terms of neural networks [24] and Bayesian
networks [33] when applicable. The nodes are attached to each other using
signals. Each node has input and output values or signals. For variable nodes,
input is a value which is used for the prior distribution and output is the value
of the variable. The variable nodes are continuous valued with a Gaussian
prior. Each variable can be either observed or latent. Time dependent latent
variables are called sources or neurons and time independent latent variables
are called parameters or weights. For computation nodes, output is a fixed
function of the inputs.

Since the variable nodes are probabilistic, the values propagated between the
nodes have distributions. When ensemble learning together with a factorial
posterior approximation is used, the cost function can be computed by prop-
agating certain expected values instead of full distributions as can be seen in
(4.1). Consequently the cost function can be minimised based on gradients

31

4. Building Blocks for Hierarchical Nonlinear Factor Analysis 32

m) ls

'S —L A
f 7
S i9 'Asta

Figure 4.1: Left: A Gaussian latent variable s, marked with a circle, has a prior
mean m and a prior variance exp(—v). Middle: A nonlinearity f is applied
immediately after a Gaussian variable. Right: An affine transformation is
made to the signal vector s.

w.r.t. these expectations computed by back-propagation [24]. The gradients
define the likelihood. Prior probabilities propagate forward, likelihoods prop-
agate backward and they are combined to posterior probabilities.

The input for prior mean of a Gaussian node requires the mean (-) and variance
Var {-}. With a suitable parametrisation, mean (-) and expected exponential
(exp -) are required from the input for prior variance. The output of a Gaussian
node can provide the mean (), variance Var{-} and expected exponential
(exp-) and can thus be used as an input to both the mean and variance of
another Gaussian node. The expectations required by the inputs and provided
by the outputs of different nodes are listed below:

| |) [Var{:} [{exp-) |

Output provides:

Gaussian + + +
Gaussian with nonlinearity | + +
addition + + +
multiplication + +

Prior for variable nodes requires:

mean of Gaussians + +

variance of Gaussians + +

The variables can be gathered to vectors and matrices in a straigthforward
manner. Other nodes that are compatible with the ones shown here can be
found in [66].

4.1. Gaussian Variables 33

4.1 Gaussian Variables

A Gaussian variable s has two inputs m and v and prior probability p(s|m,v) =
N (s;m, exp(—v)). The variance is parameterised this way because then the
mean and expected exponential of v suffice for computing the cost function.
In Appendix A, it is shown that when s, m and v are mutually independent,
i.e. q(s,m,v) = q(s)g(m)q(v), Cs,p = — (Inp(s|m, v)) yields

Csp= % {{expv) [(5— (m))? + Var {m} + 5] = (v) +In2n}. (4.1)

For observed variables this is the only term in the cost function but for latent
variables there is also C;,: the part resulting from (Ing(s)). The posterior
approximation ¢(s) is defined to be Gaussian with mean § and variance s:
q(s) = N(s;3,5). This yields

1 ~
Csq= ~3 In 27es (4.2)

which is the negative entropy of Gaussian variable with variance s. The pa-
rameters § and s are to be optimised during learning.

The output of a latent Gaussian node trivially provides expectation and vari-
ance: (s) =3 and Var {s} = 5. The expected exponential is

(exps) = /q(s)esds (4.3)

—(s —9)*

= /(27r§)1/2 exp [T + s] ds (4.4)
— /(27r§)_1/2 exp [_(8_2—?3)2 +35+ g} ds (4.5)
= exp(s+5/2). (4.6)

The outputs of observed nodes are scalar values instead of distributions and
thus (s) = s, Var{s} = 0 and (exp s) = exps.

4.1.1 Update Rule

The posterior distribution ¢(s) of a latent Gaussian node can be updated as
follows.

1. First, the gradients of C, w.r.t. (s), Var{s} and (exp s) are computed.

4.1. Gaussian Variables 34

2. Second, the terms in C, which depend on 5 and s are assumed to be
a3 + b[(S — Scurrent)* + 5] + ¢ {exp s) + d , where a = 9C, /03, b = 0C, /05
and ¢ = 0C/0 (exp s). This is shown to be true in Section 4.5.

3. Third, the minimum of C; = Cy, + C 4 is solved.

The cost function is written explicitely as the function of 5 and s:
Cs(3,3) = a13° + 95 + a33 + a4 In5 + cexp (5 + 5/2) + as, (4.7)

where a; > 0 and a4 < 0. First, s is kept constant and the optimal S is solved
using Newton’s iteration. Then the optimal s is solved using a stabilised fixed-
point iteration and keeping 5 constant.

In the special case ¢ = 0, the minimum of C;(5, 5)

_)
Sopt = —2—011 (48)

~ Qg

Sopt = (1,_3 (49)
can be found analytically. In this case, ¢(s) is optimal among all functions i.e.
the free-form approximation.

4.1.2 First Example

The purpose of this first example is to illustrate what is meant with the prop-
agation of expected values and derivatives. The model structure is shown in
Figure 4.2. The scalar observed data z(t) is a Gaussian variable with prior
mean m and prior variance exp(—v):

p(z(t) | m) = N (z(t); m, exp(-v)). (4.10)

The only two parameters in the model are latent Gaussian variables m and v:
p(m) =N (m; 0, exp(—(=5))) (4.11)

p(v) = N (v;0, exp(—(—5))) (4.12)

with fixed prior means and variances.

The model basically states that the data points are scattered with an unknown

mean and variance. They can be estimated from the data. An estimate of the
posterior distributions p(m | X, #) and p(v | X,H) are

a(m) = N (m; m, in) (4.13)

q(v) =N (v;7,9), (4.14)

4.1. Gaussian Variables 35

x(t)

Figure 4.2: Left: A very simple example structure: There are two Gaussian
variables m and v that generate the distribution of the data z(¢). Right:
The same structure is visualised using z(¢) to represent all observations ¢t =
1,2,...,T.

where T, m, U and v are the parameters controlling the posterior approxima-
tion.

The expected value and the variance are required from the prior mean m of
z(t). The expected value and the expected exponential are required from the
variable v that determines the prior variance of z(¢). The outputs of Gaussian
variables can provide all of these expected values.

The learning would start with some initial values, say m =0, m = 1,7 = 0
and v = 1. The cost concerning the observations z(t) from (4.1) is

C, = Z%{(expv) [(2(t) —) +] — 5+ In2r) (4.15)

t=1

and its partial derivatives with respect to m

aC, S
3 (m) = (expv) tEZI [m — z(t)] (4.16)
0C, _ T{expv)
Nar{m] — 2 (4.17)

are propagated upwards to the variable node m. There the C, is assumed to
be of the form C, = a (m) + b[({m) — (m))2 + Var {m}]| + ¢ (expm) + d,
which indeed is true.

current

The part of the cost function that concerns the variable m directly has two

4.2. Addition 36

parts simplified from Equations (4.1) and (4.2)

Cnp = 5 [{exp(~5) (7° +) — {~5) + In2r] (4.18)
Cmg = —%ln27re7%. (4.19)

The parameters m and m can now be updated so that the total affected cost
Cy + Cpp + Cpy g is minimised. The minimum can be obtained analytically in
this case and it is

o= Zthl (1)
T + exp(—5)/ (expv)
1

meo= T (expv) + exp(—5)" (4.21)

(4.20)

From the result we can see that the mean of m is close to the mean of the
observations. The prior in (4.11) pulls it slightly towards zero. The uncertainty
of the prior mean m does not directly depend on the actual data. When the
number of observations T increases, the uncertainty i.e. the posterior variance
m decreases towards zero.

The partial derivatives of C, defined in 4.15 with respect to v are

T

g(%) =) % [(z(t) —m)* + W] (4.22)
oC, _ T
Teny = 3 (4.23)

There are also the terms similar to (4.18) and (4.19). Therefore, when opti-
mising ¥ and v, one has to minimise a more complicated function of 7 and v.
It must be done iteratively.

The optimal solution for ¢(m) depends on ¢(v) and vice versa. This means
that to fully solve the problem, one could update ¢(m) and ¢(v) alternately.

4.2 Addition

Addition and multiplication nodes can be used e.g. for constructing affine
transformations between the variables. Denoting the inputs by s, the output

4.3. Multiplication 37

is), sk for an addition node. The mean, variance and expected exponential
of the addition node are

<81 —+ 82> = <51> + <52> (424)
Var{s; +s9} = Var{s;} + Var{sy} (4.25)
(exp(s1 + s2)) = (exps1) (exp sq) (4.26)

assuming that the variables s; are independent. The derivatives of the cost
function propagate to the inputs using the chain rule applied to each of the
Equations (4.24), (4.25) and (4.26). They are

oc_ _ oC O{sit+s) 0C
d(s1) O(si+s2) 0(s1) 9(s1+s2) (4.27)
oC _ ocC OVar {s1 +s2} oC (428)
OVar {s;} OVar{s, +s,} 0OVar{s;} 0OVar{s; +sy} =
oC . oC 0 <exp(31 + 32»
0(exps)) O{exp(s; +s2)) O {exp(sy)) (4.29)
= (exp s2) oC

D {exp(s1 + s2))

The equations for larger sums are obtained by induction, e.g. s; + so + s3 =
(81 + 82) + 3.

4.3 Multiplication

Multiplication node has inputs s, and the output is their product [], sx. The
excepted exponential of the output cannot be evaluated without knowing the
exact distribution of the inputs. Assuming independence between s;, the mean
and the variance of the output are

(s159) = (s1)(s2) (4.30)
Var {s1s2} = <s%s§> — (8182>2
<s%> <s§> — (51)% (55)? (4.31)
= ((s1)" + Var {s1})((s2)” + Var {s5}) — (1)" ()"
= (s1)*Var{s,} + Var {s;} ((52>2 + Var {s,}) . (4.32)

4.4. Gaussian Variable with Nonlinearity 38

The propagated derivatives are obtained like with addition and they are

S = Do 00 sy o) 4
= <52)%+2VM{52}#€;182}(81>
e T e ey e e ey D
= ()" + Var () e

The equations for larger products are again obtained by induction, e.g. s;s953 =
(8182)83.

4.4 Gaussian Variable with Nonlinearity

A nonlinear computation node can be used for constructing nonlinear map-
pings between the variable nodes. The output of the nonlinearity is a fixed
nonlinear function of the input. The nonlinearity is always used immediately
after a Gaussian variable. This modifies the way the variable is handled.

4.4.1 Nonlinearities

Figure 4.3 shows some possible transfer functions. A good nonlinearity should
have an area that is close to linear and another that is saturated. Linear
part guarantees the possibility to use the unit as a linear one. Saturated area
makes sparse representation possible as was seen in Section 2.3. When the
input fluctuates inside the the saturated area, the output does not effectively
vary. Thus, the input does not always need to be precisely determined for
the output to be precise. A nonlinearity with two flat parts can be used as a
binary unit that has two typical output values and almost nothing in between.

Some expected values after the nonlinearity can be evaluated for Gaussian
input [20]. Therefore we restrict the nonlinearity to follow immediately after
a Gaussian variable node. Now the mean, variance and the expected expo-
nential of the output of a nonlinearity have integral expressions. For most
nonlinear functions it is impossible to compute them analytically, but for the
function f(s) = exp(—s?) the mean and variance do have analytical expres-
sions. Therefore it is used in this work. The required expectations of the

4.4. Gaussian Variable with Nonlinearity 39

Figure 4.3: Transfer functions are scaled such that zeros of the second deriva-
tives coincide. A) linear f(s) = s, B) error function f(s) = [°_ exp(—r?)dr,
C) sigmoid or the logistic function f(s) = (1 + e¢~*)~', D) Gaussian f(s) =
exp(—s?). The Gaussian lies between the other two nonlinear functions in the
left part.

outputs are

(f(s)) = exp (—2;+1)(2'§+ 1)~z (4.35)
(f(5)?) = exp <—48~2—i> (45+1) 2. (4.36)

The variance is obtained by Var {f(s)} = (f2(s)) — (f(s)).

Gaussian radial basis functions (RBF) [24] use the same nonlinearity but the
input is the distance from a certain point in the source space rather than one of
the sources directly. Ghahramani and Roweis [20] used Gaussian RBF approxi-
mators with EM algorithm to model nonlinear dynamical systems. They found
that using the Gaussian nonlinearity the integrals become tractable. Another
potential possibility would be to use the error function f(s) = [°_ exp(—r?)dr,
since the mean can be evaluated analytically and the variance can be approx-
imated from above [15]. This is useful, since increasing the variance increases
also the cost function and minimising an upper bound for the cost guarantees
it to be low. Murphy [50] used the logistic function approximated iteratively
with a Gaussian. Valpola [62] approximated the same function with a trun-
cated Taylor series.

Hornik [26] and Funahashi [17] have independently shown that MLP networks
are universal approximators, that is, given enough hidden units the mapping
from inputs to outputs can approximate any measurable function to any de-

4.5. Form of the Cost Function 40

sired degree of accuracy. This result was proven for any non-decreasing non-
linearity f(s) that has the limits lim;, o f(s) = 0 and lim, f(s) = 1.
Unfortunately, that is not true for the function f(s) = exp(—s?). Future work
might include a comparison with other nonlinearities and perhaps the property
of universal approximation could be proven at least for a finite interval.

4.4.2 Update Rule

The update of a Gaussian node followed by the nonlinearity is similar to the
plain Gaussian node. The source is updated to minimise the terms of the cost
function defined in (3.8), that are affected. Other parts of the network are
considered constant during the update.

In addition to the terms arising from the variable itself defined in (4.1) and
(4.2), the terms corresponding to the variables that the output is propagated to
are affected. The gradients of C, w.r.t. (f(s)) and Var {f(s)} are assumed to
arise from a quadratic term a (f(s))+b[({f(s))—(f(s)) 24+ Var {f(s)}]+d.
This assumption is shown to be true in Section 4.5.

current)

The update is done by repeating the following steps until they are shorter than
some very small constant value.

1. First, the cost function and the gradients of it w.r.t. § and s are com-
puted.

2. Second, update candidates for s and 5 are found using is a fixed point
iteration and an approximate Newton’s method accordingly.

3. Third, the candidates are tested by computing the cost function again
and the step size is halved as long as the cost function is about to increase.

The formulas and the proof that the cost decreases or it has converged, can be
found in Appendix B.

4.5 Form of the Cost Function

The form of the part of the cost function that an output of a neuron affects is
shown to be of the form a (-) +b[({-) = () cyrrent)> + Var {-}] + ¢ (exp -) + d. If the
output is connected directly to another variable, this can be seen directly from

4.5. Form of the Cost Function 41

Equation (4.1). When the output is connected to multiple variables, the sum
of the affected costs is of the same form. Now one has to prove that the form
stays the same when the signals are fed through addition and multiplication
nodes.

If the cost function has the predefined form for s; + s, it has the same form
for s;, when regarding s, constant. This can be shown using (4.24) and (4.25):

C = a <81 + 82> +b [((81 + 82> — <81 + S2>current)2 + Var {81 =+ 82}]
+c{exp(s; + $2)) +d (4.37)

= a <81> +0 [(<$1> - <81>(:urrent)2 + Var {81}}
+(c (exp s2)) (exp s1) + (d + a (s2) + bVar {s2}) .

It can also be seen from (4.37) that when ¢ = 0 for the sum s; + s9, it is zero for
the addend s;. This means that the outputs of product and nonlinear nodes
can be fed through addition nodes.

If the cost function is of the predefined form with ¢ = 0 for the product s;s,,
it is similar for s;, when regarding s, constant. This can be shown using (4.30,
4.32)

C = a(si52) +b[({s182) — <5182)Cumnt)2 + Var {s1s2}] +d (4.38)
= (a(s2) +2bVar {sa2} (51) current) (51)
+ [0 ((s2)” + Var {s2})] [({(s1) = (51)eurrent)” + Var {si}]
+ (d — bVar {s} (s1)?).

current

When one calculates the partial derivatives of a cost of this form
Cp = a5 + b[(3 — Seurrens)” + 3] + ¢ (exp s) + d, (4.39)

one finds out that they are simply

% - (4.40)
S

< _ o
o0 _ . (4.42)

0 (exp s)

Chapter 5

Hierarchical Nonlinear Factor
Analysis with Variance

Modelling

This chapter describes a model called hierarchical nonlinear factor analysis
with variance modelling (HNFA+VM). It is built hierarchically from the build-
ing blocks described in Chapter 4. In addition to analysing nonlinear factors
it can model variance dependencies of them. HNFA+VM is thus related to
e.g. topographical ICA [30] that has been applied to analysing natural images
with success.

The building blocks can be connected together rather freely but there are the
following restrictions:

1. The resulting network has to be a directed acyclic graph so that the
probability distributions would be normalisable [51].

2. Nonlinearity is always immediately after a Gaussian latent variable since
the expectations are solved analytically only with a Gaussian input.

3. Outputs of multiplication or nonlinearity cannot propagate to a variance
prior because the expected exponential cannot be evaluated.

4. There should be only one computational path from a latent variable to
a variable. This assumption is used e.g. in (4.1), (4.25), (4.26), (4.30)
and (4.31). If there are multiple paths, ensemble learning becomes more
complicated [43] and the situation is out of the scope of this thesis.

42

5.1. Variance Neurons 43

The model introduced in this chapter has no model for dynamics. The time
dependent variables are connected only to those time dependent variables that
have the same time index. This means that dependencies in time are ignored
and nothing would change, if the time indices were permutated. Time de-
pendencies are an important direction for future work as will be discussed in
Chapter 9.

Section 2.2.5 described nonlinear factor analysis (NFA) [43, 64]. The basic idea
behind HNFA is to replace the deterministic hidden units or computational
units of an MLP-like network in NFA by stochastic latent variables. The
computational complexity of NFA is quadratic w.r.t. the number of nodes due
to the different paths between sources and observations. In case of HNFA, the
dependencies are broken off at the latent variables of the middle layer. This
results in a linear computational complexity which is important for scalability.
Different paths are now considered independent which means that the posterior
approximation is less accurate. Not taking the dependencies into account
increases the cost. The noise model in the hidden nodes in HNFA means that
the reconstructions of the data do not have to be decided precisely at the
uppermost layer in HNFA. Instead, the uppermost layers can just guide the
lower ones which decide the actual reconstructions.

5.1 Variance Neurons

In most currently used models, the means of Gaussian nodes have hierarchical
or dynamical models. In many real cases the variance is not constant either
but it is more difficult to model it (see Section 3.3.2). A variance neuron shown
in Figure 5.1 is designed for that. It can convert a prediction of mean into a
prediction of variance and thus allows to build hierarchical or dynamical models
for the variance. In general, the variance neuron results in a heavy-tailed
super-Gaussian model for the Gaussian node it is attached to as described
in Section 2.3. This can be useful for instance in modelling outliers in the
observations.

In many cases, the amount of noise depends on the amplitude of a signal. To
model that, one would like to connect the same variable to both the mean
and variance priors of a neuron. Unfortunately, this is not allowed because of
the fourth restriction concerning the independence assumptions. Instead, one
can attach the variable to the mean inputs of a neuron s(¢) and its variance
neuron u(t). This effectively results in a correlation between the mean and the
variance of s(t). The addition of the variance neuron in between restores the

5.2. Formulation of the Model Structure 44

m Vv m

\Y w

EC "0 s

Figure 5.1: Left: Source s(t) has a time independent prior variance v. Right:
A variance neuron is included to give a time dependent prior variance u(t) for
the source s(t).

formal independency at the expense of increased cost.

5.2 Formulation of the Model Structure

The nonlinear factor analysis described in Section 2.2.5 can in theory model
any kind of probability density in the data space. If the hidden units or com-
putational nodes of this MLLP-like network are replaced by latent variables, one
gets a hierarchical presentation, where the number of layers is not restricted.
The learning or the adjustments can be done layer by layer in linear compu-
tational complexity. Between two adjacent layers the mapping can be quite
simple and therefore easy to learn. Still, the total mapping through all the
layers can be strongly nonlinear.

The visual cortex of mammals seems to have a hierarchical structure [27],
which can perhaps be modelled with a similar hierarchical structure. Simple
cells in the primary visual cortex (V1) show rectangular antagonistic on/off
zones responding to bars of a particular orientation. Complex cells respond
either to an edge, a bar or a slit stimulus of a particular orientation falling
anywhere in its receptive field. The exact location of the stimulus within the
receptive field is not as critical. The cells in the third category are called
hypercomplex.

Dependencies between certain variances have been found [67] from image data.
This could be taken into account in the model using variance neurons. Sev-
eral higher-order statistical properties of natural images and signals can be
explained by a stochastic model which simply varies scale of an otherwise
stationary Gaussian process [55]. The independent components of images re-

5.2. Formulation of the Model Structure 45

semble features that simple cells respond to. In the independent subspace
analysis, phase shift invariant features emerged [29], which corresponds to be-
haviour of complex cells. The difference to ICA is the correlation of variances
of the features. Also there have been good results in using topographical ICA
[30] on image data. It is also based on modelling correlations of variances of
‘independent’ components.

5.2.1 Main Structure

Figure 5.2 shows the structure for hierarchical nonlinear factor analysis with
variance modelling (HNFA+VM). It utilises variance neurons and nonlineari-
ties in building a hierarchical model for both the means and variances. Without
the variance neurons the model would correspond to a multi-layer perceptron
with latent variables as hidden neurons. Note that computational nodes as
hidden neurons would result in multiple paths from upper layer latent vari-
ables to the observations. This type of structure was used in [43] and it has a
quadratic as opposed to linear computational complexity.

The exact formulation of HNFA+VM is as follows. The observed data matrix
X has T observations of n; dimensions. X is named s;(¢) for notational
simplicity

X =[s1(1),81(2),...,81(T7)], (5.1)
where ¢t € {1,2,...,T} corresponds to different observations and the subscript
1 corresponds to the first layer.

On each layer 7, there are n; sources assembled to a vector s;. The dimensions
of the vectors are marked with s;x, £ € {1,2,...,n;}. The sources on upper
layers ¢ > 1 are mapped through a Gaussian nonlinearity

exp(—si,1(t)?)
exp(—si2(t)?)

f(si(t) = 3 . (5.2)

exp(—sin; (£)*)

The connection downwards after the nonlinearity is done using the affine map-
pings

s i iti=n

e
oy i ifi=n

5.2. Formulation of the Model Structure 46

L) /
u(t) Sz('[) B, /[:
f

/| "4 s
B,/ /| |[/|A e

1
Cur© g

X(t) [

ut) % (0) f i
uy(t)

x(t)

AL

Figure 5.2: HNFA+VM model can be built up in stages. Left: A variance
neuron is attached to each Gaussian observation node. The nodes represent
vectors. Middle: A layer of sources with variance neurons attached to them
is added. The nodes next to the weight matrices A; and B; represent affine
transformations including a bias term. Right: Another layer is added. The
size of the layers may vary. More layers can be added in the same manner.
Note that some parameters are left out of the picture for clarity.

where n is the number of layers.

Each source s; has a corresponding variance neurons ;. The signals m$(t)
and mY(¢) are used as prior means for them

P(sin(t) | sip1(t), uin(®),...) = N (six(t);m,(t), exp(—uik(t))) (5.5)
P(uik(t) | sixa(t),-..) = N (uig(t);miy(t), exp(—=ouir)) - (5.6)
The prior variance of source vector s;(t) is the corresponding variance source

vector u; ;x(t) and the prior variance of variance sources is a parameter vector
O'u,i .

5.2. Formulation of the Model Structure 47

5.2.2 Hierarchical Prior for the Weights

The priors for weights A and B have zero mean and common variance to each
dimension k, which corresponds to incoming weights of a source s; :

where A, ; is the element of A; that connects s;;1; to s;. Parameters for
B are similar and are not shown here. The variance parameter has the prior
parameters that are common to dimensions j

p(vy | my* vPh) = N (v mi?, exp(—vP?)) . (5.8)

? 7 1,77

The hyperparameters m?4 and v?4 have priors of the form
p(vA ‘ m! vA’,U:mJA) N (m vA, mva exp(va)) . (59)

The priors for these priors m™4, m?*4 v™4 and v}

k of the hyperparameters
are very flat and defined as constants in the model structure. They are of the

form

vwA

p(m™4) =N (m™*;0,1007) . (5.10)

7

5.2.3 Hierarchical Prior for the Sources

The hierarchical structure of the parameters concerning the sources s and u is
somewhat similar to that of the weights. The parameters are

p(uszk\mzk,vl’f) = N (psik; zk,exp(””)) (5.11)
p(auzk\mk,vi’%) = N (0w Zk,exp(”“))- (5.13)

The hyperparameters have priors that are common to different components &
of a parameter vector

p(miy | mmms,vzmms) = N (myy; mi"™, exp(—v;"™)) (5.14)
and similarly for o7, m{7y*, v/, m?% and v}, The priors for the hyperparam-
eters are again flat and fixed

p(m"™) =N (m["™*;0,100%) (5.15)
p(v]"™) = N (v]"™*;0,100%) (5.16)

and so forth. The scale of the data should be made small enough as a prepro-
cessing step.

5.3. Simple Example 48

5.2.4 Comparison of the Notation

The more theoretical notation of Chapter 3 can be fit to the notation in this
chapter. The model structure H corresponds to the definitions, the number of
layers, sizes of the layers and the uppermost fixed variances 1002. The data
X does not differ since it can be found in equation (5.1). The parameters 0
correspond to the sources and the parameters marked with s,u, A, B, u, o, m
and v.

5.3 Simple Example

A simple example illustrates the long definition of HNFA+VM. Even though
the learning algorithm is not yet presented, the resulting model taught with two
dimensional toy data is discussed here. As is typical for nonlinear problems,
the algorithm can only find a local optimum that depends on the initialisation.
A local optimum of a good model is usually better than a global optimum of a
bad one. In this case, the found network is not optimal but perhaps instructive.
It is explained from bottom up.

HNFA+VM with three layers is taught with the two-dimensional data shown
by dots in Figure 5.3. The data points correspond to different time indices .
The second layer, like the first one, has two dimensions: the first corresponds
to the direction left and the second to the up right from the bias p, ; marked
with a circle. The single neuron in the third layer affects the neurons on the
second layer and through them the data reconstructions. Possible values of
the source s3; form a curve in the data space.

Figure 5.4 illustrates the effects of the neuron in the third layer in more detail.
At one end of its spectrum, it activates the first neuron in the second layer
and at the other end, the second neuron. In the middle, both neurons are
affected and the curvature of the data, is modelled. Most of the weights B to
the variance neurons are close to zero, but the connection B, 5, from the first
dimension of the second layer to the vertical dimension of the data plane is
very different. The effect can be seen in the lower part of the same figure.

Each data point is connected to the mean of its reconstruction mj in Figure 5.5.
The reconstructions are near the actual data points, except in the far left. In
that region, the vertical variance neuron is activated. This explains why the
reconstructions are allowed to be vertically inaccurate there.

The third layer has one source s3; and the corresponding variance neuron us ;.

5.3. Simple Example 49

Figure 5.3: The data points s;(¢) of the simple example are marked with dots.
The curve corresponding to different signals s3; is shown. The bias p,; is
marked with a circle.

The prior sdistribution of the source s3; is depicted in Figure 5.6. The dis-
tribution is very close to a Gaussian, since the corresponding variance neuron
happens to be inactive. Otherwise it would have been symmetric but super-
Gaussian as explained in Section 2.3. The nonlinearity distorts the distribution
such that the other end has a longer tail.

The behaviour of the model can be compared to that of a multilayer perceptron
(MLP) network. In the MLP network, the sources of the second layer would
have been computational hidden units and therefore their signals would have
been functions of the third layer signal. In the HNFA+VM case the difference
of input and output signals of the middle layer can be seen in Figure 5.7. The
values are somewhat close to the diagonal line which means that the second
layer behaves somewhat like a computational layer. The variation from the
diagonal corresponds to the fact that the reconstructions in Figure 5.5 are not
exactly on the curve. The variance neurons have no counterparts in the MLP
framework.

With another initialisation the presumably globally optimal solution shown in
Figure 5.8, was found. A third source in the second layer took care of the left
part and all the reconstructions became relatively accurate. Variance neurons

5.3. Simple Example 50

0.8

f(s;) against f(s31)

u; against f(ss,1)

0 0.2 0.4 0.6 0.8 1

Figure 5.4: The effects of the neuron in the third layer. Top: The signals
f(s2,1) (solid line) and f(s22) (dash line) of the neurons in the second layer
as the function of the signal f(ss;) of the neuron in the third layer. Bottom:
The neuron affects also the variance neurons in the first layer. The vertical
variance signal u; ; (solid line) and the horizontal variance signal u; o (dash
line) are plotted against f(ss1).

were of no use in this solution. The existence of local optimum in a simple
problem like this suggests that it is far from trivial to design a good learning
procedure and therefore the entire Chapter 6 is dedicated to it.

5.3. Simple Example 51

0.4 -

0.3} oy
0.2} T

0.1f oE]

-0.5 0 0.5

Figure 5.5: The data points s;(¢) marked with dots are connected to their
reconstructions mj(t) with a line. The bias p, ; is marked with a circle.

s3,1(1) f(s3.1(t))
8000 T T T - - 5000 - - .
4000
6000
3000
4000
2000
2000 1000
0 0
-2.5 -2 -1.5 -1 -0.5 0 0.5 0 0.2 0.4 0.6 0.8 1

Figure 5.6: Left: The prior distribution of the neuron on the third layer. Right:
The same distribution after the nonlinearity.

5.3. Simple Example 52

82,1 against mg,l S92 against mgg
-0.5 0]
-0.5 .y
-1 -1 *
-1.5
-1.5
:,. _2
"‘A 2.5
0 =2.
-2 .:“',
> -3
¢
-25 -35
-2.5 -2 -1.5 -1 -0.5 -3 -2 -1 0

Figure 5.7: The posterior signals of source s, are plotted against their prior
signals mj given by the upper layer. If the plots were exactly diagonal, the
upper layer would define the signals in the second layer precisely.

Figure 5.8: The presumably global optimum is visualised as in Figure 5.3.

Chapter 6

Learning Algorithm

This chapter describes the learning algorithm for the HNFA+VM model. The
most important part of it, the adjustments of posterior approximations of
single variables, is already described in Chapter 4, but as we already saw with
the simple example in Section 5.3, there are many local minima in which the
learning can get stuck. This makes the initialisation and tricks to avoid those
minimax important.

The model structure defined in Chapter 5 is so rich that it can be used in
various manners. It is possible that the sources on the uppermost layer define
the reconstructions of the data quite exactly, that is, the neurons in middle
layers are used like computational units. The second case would be that the
an upper layer just activates the middle layer and the actual value is defined
in the middle layer. The difference can be measured by separating the terms
of the cost function to each layer. The first layer containing the observations
can not be compared though, since it differs by not including the C;, term
defined in (4.2).

The initialisation in the first case should be quite different from the one used
for the latter. If the reconstructions are defined already in the upper layer,
it is unreasonable to initialise the model layer by layer. Instead, one could
use the initialisation from [43]. The uppermost sources are initialised using
PCA and the weights randomly. These sources are fixed for some period for
the algorithm to find a meaningful representation of the data. It would be
interesting to make such experiments with HNFA in the future.

The experiments in this thesis fall into the second category. The most im-
portant function of the upper layer is to activate some neurons in the middle
layer and the actual reconstructions of the data are defined only in the middle

93

6.1. Initialisation 54

layer. In this case, the weight matrices are initialised with vector quantisation
or independent component analysis and fixed for some time to find meaningful
values for sources.

6.1 Initialisation

The network is initialised as a single layer, that is n = 1. This means that
there are only variance neurons connected to the observations. A new layer
1 > 1 can be added during the learning. The means of matrixes A;_; and
B;_; are initialised by applying vector quantisation [1] to the whitened mean
of concatenated vectors s;_1(¢) and u;_1(¢)

i () = (si-1(?)) (6.1)

u;—1 (t)

The whitened vector x5 (%) of x;(¢) is obtained from singular value decomposi-
tion
x9(t) = D2V, (1), (6.2)

where V contains the orthonormal eigenvectors of the covariance matrix of
x;(t) and D is the diagonal matrix of its eigenvalues. Each x3(t) is matched
to one of the normalised model vectors M,

W (t) = arg max M7 x5 (t) (6.3)
and the model vector is moved to the mean of the vectors x,(t) that are

matched to it
=k X2(t)

M, =) (6.4)
Et\W(t):k 1
Finally the initial values for A;_; and B,_; are
(Aiy > = AVIDY/2M. (6.5)
B

The scaling factor 5 should be selected such that the corresponding sources
would operate in an appropriate range. Here the value § = 2 was used. It
means that f(s;) = 1 corresponds to twice the length of a model vector. The
selection is further discussed in Chapter 9.

The posterior means of sources s;(t) were initialised to —2 and the means of
u;(t) were initialised to —1. These very simple initial values of the sources
are not harmful, because of a special state explained in Section 6.4.2. The
posterior variances of s;(t), u;(t), A;_; and B,;_; are initialised to small values.

6.2. Adjustment 95

Figure 6.1: The posterior probability density of a simple problem: z =
s180 +n,2 =1,p(s,) = N (sx;0,k),p(n) = N (n;0,0.02). The density forms a
ridge and the ascent for finding an MAP solution is not very effective, if the
parametrisised distributions of s; and sy are updated alternately.

6.2 Adjustment

An essential part of the method is the iterative adjustment of the posterior
approximation. Learning takes place when adjusting the network part by part
using the update rules defined in Chapter 4. There are two implementations
of the algorithm that differ at this point. In the Matlab version, vectors s;
and u;, matrices A; and B; and parameter vectors like p; are updated one
at a time keeping all other parts constant. In the C++-version every node
is updated by itself keeping all other nodes constant. Updating many nodes
at one time requires some further considerations [44]. The actual experiments
were run using the Matlab version.

Alternating updating is the method that is used in this thesis, but it is not the
only option. Figure 6.1 shows a simple example, where it is not very effective,
since it leads to a zig-zag path. One option could be to sweep through many
updates once and then optimise the length of the step in the direction of the
whole sweep. This is further discussed in Chapter 9.

The alternating adjustment can be compared to the expectation maximisation
(EM) algorithm [13]. The EM algorithm alternates between two types of

6.3. Learning the Structure o6

adjustment steps in which the other part is kept constant.

6.2.1 Linear Computational Complexity

These updates consume most of the computing time of the algorithm. There-
fore the computational complexity is of interest. As seen in Section 3.2, the
cost function can be split up in a sum of simple terms. If each of them can
be computed in constant time, the overall computational complexity is linear
with respect to the number of connections.

In general, the computation time is constant if the parents are independent
according to ¢(0). The independence is violated if any variable receives inputs
from a latent variable through multiple paths or from two latent variables
which are dependent according to ¢(8).

6.3 Learning the Structure

One of the reasons to use ensemble learning is the possibility to use the cost
function for model selection or learning the structure (see Section 3.2.4). Mod-
ifications can be made to the structure and the cost function can be used
directly to determine whether it was useful or not.

6.3.1 Pruning

Restricting the posterior approximation to have a factorial form effectively
means neglecting the posterior dependences of variables. Taking into ac-
count posterior dependences usually increases computational complexity sig-
nificantly. Often the computer time would be better used in a larger model
with a simple posterior approximation. Moreover, often the latent variable
models exhibit rotational and other invariances which ensemble learning can
use by choosing a solution where the factorial approximation is most accurate
(see [63] for an example).

Factorial posterior approximation often leads to pruning of some of the con-
nections in the model. When there is not enough data to estimate all the
parameters, some directions are ill-determined. This causes the posterior dis-
tribution along those directions to be roughly equal to the prior distribution. In
ensemble learning with a factorial posterior approximation, the ill-determined

6.4. Avoiding Nonglobal Minima o7

directions tend to get aligned with the axes of the parameter space because
then the factorial approximation is most accurate.

The pruning tendency makes it easy to use for instance sparsely connected
models because the learning algorithm automatically selects a small amount
of well-determined parameters. In the early phases of learning, pruning can
be harmful, however, because large parts of the model can get pruned away
before a sensible representation has emerged. This corresponds to a local
minimum of the algorithm. There are far less local minima with a posterior
approximation taking into account the posterior dependences, but that would
sacrifice computational efficiency. It seems that linear time learning algorithms
cannot avoid local minima in general, but suitable choices of model structure
and learning scheme can ameliorate the problem considerably.

If a neuron is effectively pruned away, it will not become useful again. In
other words, is a local minimum with respect to the cost function for a neuron
to be dead. If the neuron does not model anything, the output should be
dampened off. If outputs are dampened off, it is not worthwhile to try to model
anything. In practice, when a neuron is not useful, the weights that multiply
its outputs diminish towards zero. For efficiency reasons these “dead” neurons
are removed. They can be identified by estimating the cost function with and
without them.

6.3.2 Regeneration

Neurons can also be added to an existing layer ¢ > 1. Initialisation is similar to
the case of a new layer except that the vector quantisation (or another method)
is now applied to the reconstruction errors s;_;(t) —m?_, (¢) concatenated with
u;_1(t) — m¥ ,(¢). The procedure of removing dead neurons and adding some
new ones is called “regeneration”. New neurons are in greater danger to be
pruned away but Section 6.4.2 introduces ways to protect them.

6.4 Avoiding Nonglobal Minima

6.4.1 Rebooting

Some local minima can be avoided by sometimes resetting the neuron activities.
It is called “rebooting”. Time independent parameters and weights are left as

6.4. Avoiding Nonglobal Minima o8

they were but sources s and u are set to their means:

N~
B
|

Vi, k,t . Ei,k,new(t) = i,k(T) (66)

ﬂ
Il
—

N
[~
Rl
S
—
=
~
—
D
-~
~

Vi, k,t : gi,k,new(t) =

ﬂ
Il
—

and similarly for u.

If there is lots of data from the same data set available, this is a good oppor-
tunity to change the data. It can be better to iterate more with less data than
the other way around. Switching the data samples from time to time can still
preserve some of the benefits of the larger data set. A network that performs
well with new data, has a good generalisation capability by definition.

6.4.2 Special States

There are some special states in the learning algorithm. The states are layer-
specific and can be active together. For example after rebooting, only the
sources are updated for a while by keeping the weights constant. When learn-
ing an MLP-like network, the uppermost sources can be kept constant while
updating the rest of the network. After adding a new layer to the network,
the old parts can be kept constant and just learn the new part.

New neurons can be “kept alive” encouraging new neurons to be used instead
of dampened off. This is achieved by modifying the propagated derivatives
of the cost function in the multiplication node. The last term of derivate in
equation (4.33),

oC

OVar {s1s9} (1)

is ignored. It effectively means that the mean of s; is adjusted as if Var {s»}
were zero, in other words as if there were no uncertainty about sy. In this way
the cost function may increase at first due to overoptimistic adjustments, but
it may pay off later on by escaping early pruning.

2Var {so} (6.8)

Chapter 7

Bars Problem

The first experimental problem studied with HNFA+VM was to apply it to
artificial data that is an extension of the bars problem [12]. The data set
consists of 1000 image patches of size 6 x 6 pixels. They have horizontal and
vertical bars. In addition to the regular bars, the problem was extended to
include horizontal and vertical variance bars that are manifested by increased
variance. Samples of the image patches are shown in Figure 7.1.

Data was generated by first choosing whether vertical and/or horizontal ori-
entations are active, each with probability 1/2 independently. When an ori-
entation is active, there is a probability 1/3 for each bar to be active. For
both orientations, there are 6 regular bars, one for each row or column, and
3 variance bars that are 2 rows or columns wide. The intensities are drawn
from normalised positive exponential distribution. Regular bars are additive
and variance bars produce additive Gaussian noise with standard deviation of
its intensity. Finally, Gaussian noise with standard deviation 0.1 is added to
each pixel.

7.1 Learning Procedure

The network was built up in stages shown in Figure 5.2. It was initialised with
only a single layer. The second layer was created at sweep 20 and the third at
100. After creating a layer only its sources were updated for 10 sweeps and it
was “kept alive” for 50 sweeps. The system was “regenerated” at sweeps 300
and 400 and after that only the sources were updated for 5 sweeps and the
system was “kept alive” for 50 sweeps. The network was “rebooted” at sweeps

99

7.2. Results 60

Figure 7.1: Samples from the 1000 image patches used in the bars problem.

500, 600 and 700 and only the sources were updated for the next 40 sweeps.
Each sweep corresponds to going through all the data vectors and updating
each latent variable node once.

The size of the first layer n; is equal to the size of the data vector, that
is 36. The second layer was created with 30 neurons and additional 3 in
each regeneration. The third layer layer was created with 5 dimensions and
additional 2 in regeneration. Dead neurons were removed every 20 sweeps.

This learning procedure was designed for this problem. Future work includes
the complete automation of the learning process including the selection of the
number of sweeps.

7.2 Results

The initial weights of the first layer can be seen in Figure 7.2. Some regular bars
are visible, but there are multiple bars in the same patch. Variance bars are
even less clear. There are a few sources that diminish variance, which means
that they are active when neither of the orientations were in the generation
process.

Figure 7.3 shows the weights after adding another layer. Regular bars are
quite well formed in A;. Two sources represent the same rightmost vertical
bar, though. The upper horizontal variance bar and the right vertical variance
bar are somewhat mixed up in B;. The leftmost source on the second row
clearly diminishes variance. The weights A, and B, of the upper layer seem
to be quite useless at this stage.

7.2. Results 61

A (36 x 30) B, (36 x 30)

!!IIIII IUII”"I
EEREED NS R
THREESHE DMELER
LSRG T =W
ERNEENE BT ANEE

Figure 7.2: Posterior means of the weight matrices after 20 sweeps. The second
layer has just been initialised. The matrices are organised in patches and dark
shades represent positive values.

AQ 28)(5 BQ 28)(5

A (36 x 28) B; (36 x 28)

Figure 7.3: Posterior means of the weight matrices after 100 sweeps. The third
layer has just been initialised. The five patches in Ay and By correspond to
the five sources on the third layer. The pixels of A, and B, correspond to the
18 sources on the second layer and thus to the patches of A; and B;.

7.2. Results 62

A, (18 x 2) B, (18 x 2)

A, (36 x 18) B, (36 x 18)

Figure 7.4: Final results: Posterior means of the weight matrices after 1200
sweeps. The sources of the second layer are ordered for visualisation purposes
according to the weights A, and B, using self-organising map.

Figure 7.4 demonstrates that the algorithm finds a generative model, that is
quite similar to the generation process. The two sources on the third layer
correspond to the horizontal and vertical orientations and the 18 sources on
the second layer correspond to the bars. Regular bars, present in A;, are
reconstructed accurately but the variance bars in B; exhibit some noise. The
distinction between horizontal and vertical orientations is clearly visible in A,.

Figure 7.5 shows the mixing matrices from principal component analysis (PCA)
and independent component analysis (ICA) with the same data. It should
be noted that in PCA and in ICA, there is a symmetry between dark and
light shades and it is irrelevant, which one is shown. These models are not
rich enough to find variance bars. The regular bars, however, are found to a
degree. In PCA, the bars are mixed up especially with other bars of the same
orientation. There should be 12 bar patches, but the last ones are crippled
with noise. ICA does not mix the bars with each other so much. There are no

7.2. Results 63

PCA ICA
= S I
et
HFEMHNN EEN-.
u EEETE |
[—m
ERSEEEN NS

Figure 7.5: The mixing matrices found by PCA and ICA algorithms.

mixtures of horizontal and vertical bars. Only ten patches show bars which
means that some must be missing. Results with vector quantisation (VQ)
are practically the ones used in the initialisation shown in Figure 7.2. Some
bars are found well, but some are missing and some patches are mixtures of
horizontal and vertical bars.

Chapter 8

Experiments with Image Data

HNFA+VM, presented in Chapter 5, was tested with a number of natural
gray-scale images as a data set. Gaussian noise with standard deviation 0.1
was added to the images to avoid artefacts caused by the discrete gray levels
from 0 to 255. The intensities were scaled to variance one.

10 times 10 image patches were taken randomly from the images to be used
as data vectors. There was a total of 10000 data vectors. The data matrix
X is thus 100 by 10000. The mean of each patch was subtracted from the
patch and the data was whitened to a degree o = 0.8 and rotated back to the
original space:

Xpew = VID 9PVX, (8.1)

where V contains the orthonormal eigenvectors of the covariance matrix of the
data and D is the diagonal matrix of its eigenvalues. Regular whitening corre-
sponds to @ = 1 and whitening to a degree 0 would leave the data unchanged.
The partly whitened version of the data was rotated back to the original space
by multiplying with V7 from the left so that the dimensions of the data would
still correspond to the pixels. Whitening is used, because the dominating fea-
ture of the images is the positive correlation between nearby pixels and the
model could otherwise spend a layer just to model that. Regular whitening is
typically used as a preprocessing for ICA.

Figure 8.1 shows the matrix V or the principal components of the data. There
are only 99 components, since the removal of the mean in each image removes
also one of the intrinsic dimensions. There is a great resemblance to the
discrete cosine transform (DCT), which is widely used in image compression
[21]. Compression and ensemble learning have much in common as was seen
in Subsection 3.2.3. Taking into account that there are efficient algorithms for

64

8.1. Learning Procedure 65

PCA DCT

e
=S
=EEEEEaaEn
S=EEEEEEnnn

Figure 8.1: Left: The mixing matrix resulting from applying Principal Com-
ponent Analysis (PCA) to the same data set. Right: the basis of the Discrete
Cosine Transform (DCT) that is used in image compression.

calculating the DCT, it is clearly a good choice for compression. None of the
patches are localised in either PCA or DCT.

8.1 Learning Procedure

The phases of the learning procedure are explained in Chapter 6. The initialisa-
tion of A; was done with FastICA algorithm [28]. The initialisation procedure
is quite similar to the one with VQ. The results with ICA are presented here,
since they were somewhat better than the ones using VQ. Future work should
include a more careful comparison of different initialisation methods. As ICA
is symmetric with respect to positive and negative values, the mixing matrix
was doubled to include the negative version as can be seen in Figure 8.2. The
sources were updated for 100 sweeps. Then the reconstruction error was fed
to ICA again, now including also the variance sources as described in Subsec-
tion 6.3.2. It results in some more neurons on the second layer which can be
seen in Figure 8.4.

The sources were updated for one hundred sweeps and the least useful ones
were removed. Now the second layer had 210 neurons. The sources were
updated until sweep 500 when the sources s, and variance sources u, of the

8.1. Learning Procedure 66

A, from ICA (100 x 140)

HENNN=E" A
ENIEE (R AT
E IT=EmNaNeN
[
MUETLICEYNG
" A A e 0 B
0 L e I e D
RUESYREANLEE
A SO ENR
ENEENSEAEIES
NN e
MEZVESRS

Figure 8.2: 70 independent components and the same as negative versions are
used as the initialisation of A;. B; is initialised to zero.

second layer were fed to ICA once again to get initial values for A, and B, in
Figure 8.5. The new sources on the third layer were updated for 200 sweeps
and during that the second layer sources were updated every fifth sweep.

The sources on the second layer are ordered for visualisation purposes based
on the connections from the third layer. Each dimension of the means of the
weights A, and By are scaled to zero mean and unit variance and fed to the
self-organising map (SOM) [39]. The patches are then organised close to their
best matching unit in the SOM.

Next, also the weights were released to be updated. The second layer was
“kept alive” for 1500 sweeps. Figure 8.6 shows the situation at sweep 1000.
The algorithm has simplified the model by killing neurons. The “dead” neurons
are removed and everything is updated without using the special states until
finally at sweep 6000 the final results are shown in Figure 8.7.

8.2. Results 67

A, from VQ (100 x 200)

5 i 0 O N L B 1 2 W
IHE“HIW‘!HHHM!H
|CEl SNFARy
Vo ARSI RPN

e

=N
2y
i
1R
=
—
-

AEERdAE=ENA

2
.
=
o
1A= A | PR

Figure 8.3: The vector quantisation (VQ) initialisation with 200 model vectors
is shown for comparison. There are more vectors that use the whole area since
VQ yields a maximally sparse representation. VQ does not have the symmetry
between light and dark and light features are clearly dominating.

8.2 Results

The resulting weights are shown in Figure 8.7. The neurons in the upper right
corner of A are specialised to just a few data samples. Two neurons in the
lower left corner have connection in the B; matrix thus adding only noise to
the reconstruction and three others in both A; and B;. Other B connections
are close to zero. Reading from upper left corner in A, the first neuron of
the third layer activates the specialised neurons and inhibits the neurons that
add noise. Second and fourth neuron activate noise neurons and inhibits the
low frequency neurons in the lower right of A;. The third neuron activates
neurons with diagonal features from upper left to lower right corner and the
fifth neuron activates the horizontal features.

The initialisation seems to affect the results considerably. This was already
noticed with the simple example in Section 5.3. The algorithm can get stuck in

8.2. Results 68

A; (100 x 268)

] ™ R 52 T A R
ATEEDELIE IT=E0N
I LY 5 [N e St T
B N N 1P L A
ESIEARTAMBNL NS
" L LA W TV) s e
RV.EEENEE BRIEE
S dAESiERIESET
T ™ 0 s e [V LT S
NEAFAEE T8 haNE
N 5 S O S P I O
EENECT FREREE
. 5 7 T
0 U 3 S N R e X
ERENE GESE DN SR
A==k Rl = T

B, (100 x 268)

EEESEENNNEREE EEE

Figure 8.4: After 100 sweeps through the data. The reconstruction error of
s; and u; are us@ as data for another run on ICA to get more basis vectors.
Now the matrix B; has nonzero entries, too.

8.2. Results 69

A, (210 x 10) B, (210 x 10)

A, (100 x 210) B, (100 x 210)
HEEEEEEN
HEEEEN

ENEEEEEN
FAGSIENISENEEEE EEEEEEEESEEEEEE
BN S JANNENEASEE EEEEEEEEEEEEEEE
NTHEEASIRNVENEEY EEGEEEENEENEENE

Figure 8.5: After 500 sweeps through the data. The least useful sources have
been pruned away. The sources of the second layer s; and uy are fed to ICA
to get initial values for Ay and B,. The sources have been ordered based on
A, and B,. The ten patches in Ay and B, correspond to the ten sources on
the third layer. The pixels of A, and B, correspond to the 210 sources on the
second layer and thus to the patches of A; and B;.

a local minimum of the cost function and even regeneration of the neurons does
not always help, since when there already is an adequate reconstruction of the
data, it is very hard for a new neuron to fit in. The asymmetric initialisation
with V(Q seems to result in more asymmetric features than the ones presented
here. Some more experiments need to be done to confirm that. I would like
to stress that a local optimum of a good model is usually better than a global

8.2. Results 70

A, (210 x 10) B, (210 x 10)

B, (100 x 210)
EEEEEEEE
HEEEEN

N N
HuREEN

ﬁ

Figure 8.6: At sweep 1000. After releasing the weights the algorithm has
started to simplify the model. Dead neurons can be seen in the lower left
corner of A;. The patches in B; are either clearly close to zero or clearly differ
from zero. The emphasis on the second layer has moved from Bs to As.

optimum of a bad one.

In the simple example in Section 5.3, the terms of the cost function corre-
sponding to the third layer were greater than the ones corresponding to the
second layer. This means that the reconstructions are effectively decided on
the third layer and just focused on the second layer or that the neurons on
the second layer are acting like computational units. But in this experiment
the proportion is one in the third layer against eight in the second layer. This
means that the reconstruction of the image is decided on the second layer and

8.2. Results

71

A, (93 x 5)

(100 x 93)

O N A B Y A A
P A e] e T e
e I T
ﬁﬂ

L ALET] =y
s AN RSN EE

'III!'IJ

B, (93 x 5)

(100 x 93)

Figure 8.7: Results at sweep 6000. “Dead” neurons have been removed.

the third layer only guides it.

At the end of the iteration process the cost function would have become smaller
by removing some neurons that were stuck in local minima. After the network
is rebooted and updated some more, the number of neurons alive still dimin-
ishes. As there are sources on the third layer that correspond to horizontal
and diagonal features in the second layer, there should also be sources corre-
sponding to the vertical and the other diagonal directions. There is work to

be done to improve the results.

The resulting patches in A; resemble the wavelets or features found by ICA.
They are more localised than features of the PCA but only the features that

8.2. Results 72

fill most of the patch seem to survive. They seem to follow the prior that is
set to them in Section 5.2.2. Each patch is either close to zero or active in
the whole patch or a large part of it. This would suggest that a sparse prior
for the weights could help to get more local features like the ones from ICA
algorithm in Figure 8.2. Preliminary experiments do support this assumption.
It would also help to keep more neurons alive and make the reconstructions
more accurate. Using a larger set of data would also help by making the
relative cost of describing the weights smaller.

Sparse connectivity would also help the upper layer. As the number of features
grows, there is a growing amount of cost to describe that a particular neuron
in the third layer does not affect activities of most of the neurons on the second
layer. With sparse connections the situation would be very different. It would
be useful to have a neuron on the third layer that states that just two of the
features are typically active together. When increasing the size of the image
patches, this locality would become increasingly important.

The assumptions made in the posterior approximation might explain why ei-
ther A or B describing the connections to a particular neuron and its variance
neuron tend to get turned off. Upper layer cannot be connected straigth to
the mean and variance prior of a neuron, because it would violate the indepen-
dency assumption. The addition of the variance neuron in between restores the
independency, but taking the dependency not into account increases the cost.
The increase is smallest, when the dependency is smallest. If the connections
A and B were similar to each other, not only would the wrong assumption of
the independence rise the cost function, but also the cost would include the
description of the weights, which are also assumed to be independent of each
other.

The experiments on image data using topographic ICA and independent sub-
space analysis [30, 29, 31| are perhaps closest to these ones. The features found
with these methods corresponding to A; are similar to those of the basic ICA.
The topography or the collection of subspaces correspond approximately to
a fixed, predetermined matrix By. In case of the topology, there would be a
Gaussian spot in each patch of Bsy. In case of independent subspace analysis,
each patch of B, would activate a distinct group of features or the independent
subspace. These methods do not have corresponding parts for B; and Ay. It
seems that ICA has not previously been used to learn all parts of hierarchical
models succesfully.

Chapter 9

Discussion

The aim of this work was to build a model which could be used to find out
statistical features in data in an unsupervised manner. Many of the previously
presented methods scale poorly with respect to the number of intrinsic dimen-
sions in the data or cannot take into account nonlinear effects. A model called
hierarchical nonlinear factor analysis with variance modelling (HNFA+VM) is
proposed.

The commonly used maximum likelihood (ML) and maximum a posteriori
(MAP) learning criteria suffer from overfitting and thus cannot be used with
nonlinear factor analysis models. A Bayesian approach based on sampling
would be too slow for large problems. Ensemble learning is a good compromise
between them and was therefore selected.

The complicated model is built from simple blocks which reduces the effort of
implementation and increases extensibility. All computations are local which
results in linear computational complexity. The idea for the structure of the
model originates from nonlinear factor analysis (NFA) [43]. The computational
or hidden units are replaced by latent variables. The same blocks can also be
used to model variances which has been found important for analysis of image
data [67, 30].

The proposed learning algorithm for HNFA+VM was shown to be able to
learn the structure of the underlying artificial but complicated process that
generated the data. The experiments with real world data are not yet very
convincing but it seems that introducing sparse connectivity could enhance
the results significantly.

The computational complexity of the learning algorithm for HNFA+VM is

73

9. Discussion 74

linear with respect to the number of connections, sample vectors and sweeps.
Still, the experiment with image data took more than a week to run with the
Matlab version. A more efficient C++ version of the algorithm has become
ready while writing this. It is also more flexible for example by allowing the
pruning of single connections instead of whole neurons.

A sparse prior for the weights is likely to prove useful in many cases. On the
first layer of the image experiments it would encourage local features to be
formed in a patch. On the upper layer it would encourage the formation of
complex-cell-like [30, 29] sources as each of them typically models the variance
of only a small number of the lower-level sources. The connections that are
practically zero can be pruned away to make the algorithm significantly more
efficient.

The number of time indices or observations is also crucial to the efficiency.
When looking at a picture or a view, the human eye focuses in places of
interests and not randomly. Perhaps a smaller set of data would suffice for
interesting results if the data set would be selected in the same manner. Also,
the rebooting and changing the data that is used should be studied more.
There might be ways to take into account that the data has been changed.
In case of online learning, one can use new data all the time. It is easy to
use online learning with Bayesian methods. Preliminaly results with it are
promising.

The learning with alternating adjustment is inefficient in cases where different
parts can compensate each other. For finding the best rotation matrix, one
should be able to adjust several parts of the model at once. To use a differ-
ent part of the nonlinear function to get a different curvature, one should be
able to compensate the affected scaling and bias terms at the same time. A
resulting zig-zag path illustrated in Figure 6.1 leads to the right direction but
very slowly. One could identify internally related groups of parameters whose
adjustments are steady between sweeps and then make a one-dimensional opti-
misation along the direction of these steady updates. This could dramatically
decrease the number of required sweeps. The system could also be made to
predict which kinds of updates are the most effective ones.

The building blocks discussed in this thesis together with two more blocks
presented in [66] can be used to build a wide variety of models. An important
future line of research will be the automated construction of the model. The
search through different model structures is facilitated by the ability of ensem-
ble learning to automatically shut down parts of the model. The cost function
can be used to determine wheather a modification of the structure is useful
or not. The rate of decrease of the cost can be used to estimate the utility of

9. Discussion 75

further sweeps.

The building blocks can be connected to other time instances thus modelling
the nonlinear dynamics of the sources. Valpola got good results [65, 63] using
nonlinear factor analysis with another nonlinear mapping from sources at time
t to sources at time ¢t + 1. With image data, this would mean that in an
animation the higher level sources would change slowly. This would encourage
them to represent features that are for example translationally more or less
invariant since an animation typically looks like a translation locally. This
is promising, since some of the higher level sources did activate for example
different horizontal edge features even with the static images.

Externally the variance neurons appear as any other Gaussian nodes. It is
therefore easy to build also dynamic models for the variance. These kinds of
models can be expected to be useful in many domains. For example volatility
in financial markets is known to have temporal auto-correlations.

The scope of this thesis was restricted to models with purely local computa-
tions. In some cases it may be necessary to use models where a group of simple
elements is treated as a single element whose external computations are local
but whose internal computations may be more complex. The practical con-

sequences of using a latent variable instead of a computational node in NFA
should be studied.

The benefits of the proposed method are as follows. First, the method is
unsupervised, that is, the learning does not require a teacher or human inter-
vention. Second, the proposed structure is quite rich. It is not restricted to
linear manifolds, it includes the modelling of the variance and the number of
layers in the hierarchy is not restricted. Third, the computational complexity
of the algorithm scales linearly with respect to the size of the problem, which
means that the scalability is very good. Fourth, the method avoids overfitting
which leads to good generalisation capability and requires no cross-validation.
Finally, different model structures can be compared simply by using the cost
function.

The restrictions of the method at its current state include the requirement of
expertise in selecting preprocessing, initialisation, and the learning procedure
since it is prone to local minima. The algorithm is computationally intensive
compared to other simpler methods. A universal data analysis method should
also be able to use data in other forms than just continuous valued vectors
with constant number of dimensions. At least discrete values and relations
to other observations would be useful. For example, real medical databases
contain a mixture of measurements, natural language, images and relations to

9. Discussion 76

<
I L5 L
<
55 L5 L
<
I L5 L
<

Figure 9.1: A statistical model of natural images can be used to form a super-
resolution image. It can be done by considering the pixels marked with “M”
missing and reconstructed by the model.

hospitals, doctors and treatments.

The assumption that the data is continuous valued is seldom exactly true.
Even if the underlying phenomenon is continuous, the data might be more
or less discrete. Prices tend to be rounded. Ages are typically given in full
years. Digital images are typically discretised to for example 256 gray-scale
values. These artefacts can cause unwanted phenomena in learning. They
can be avoided by adding a small amount of random noise to the data set as
was done in the experiments here. It would also be possible to add the noise
implicitly by giving a virtual posterior variance for the observed samples. This
idea is left for further studies.

The proposed model can be used to statistical analysis of data. It can be used
to reconstruct missing values and thus to make predictions. The found sources
can be used as features for other machine learning methods. The method
can be further developed to be an artificial intelligence system. A concrete
example application with images is visualised in Figure 9.1. Superresolution
images can be obtained by adding extra pixels in between the original ones
and considering them as missing values. The model could then reconstruct
them in a manner explained in [57].

Real applications with image data require the use of images much larger than
10 x 10 pixels. Even if the algorithm scales linearly, it would be reasonable
to explicitly take into account the translational invariance in images. One
could start the learning process with smaller patches and use the results as an
initialisation for learning with larger patches. The computationally expensive
lowermost layers would be thus learned with smaller patches and the upper
layers could combine the local features of them later on.

9. Discussion 77

The effect of the initialisation on the final results should be studied. It seems
that different kinds of initialisations result in different kinds of models. There-
fore different methods for initialisation should be tested for different kinds of
data. One of the methods that could be good for initialisation, is the nonlinear
component analysis (NCA) [60], which would differ from the methods used so
far by being nonlinear.

Scaling of the model vectors in the initialisation requires some more attention.
By comparing the initial scales to the resulting model, one can find a more
appropriate scaling factor § which could later be used for a better initialisation
and thus faster convergence. Another option would be to project the data to a
model vector and compare the resulting distribution to one given by a nonlinear
unit. A good scaling factor would be one that matches the distributions best.

The C++-version of the algorithm allows the connections to be made more
freely. One could connect the upper layers directly to the lower layers in addi-
tion to using layers in between. This could decrease the effect of a particular
initialisation method.

Bibliography

[1] H. Abut, editor. Vector Quantization. IEEE Press, New York, 1990.

[2] H. Attias. ICA, graphical models and variational methods. In S. Roberts
and R. Everson, editors, Independent Component Analysis: Principles
and Practice, pages 95-112. Cambridge University Press, 2001.

[3] D. Barber and C. M. Bishop. Ensemble learning for multi-layer networks.
In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural
Information Processing Systems 10, NIPS*97, pages 395-401, Denver,
Colorado, USA, Dec. 1-6, 1997, 1998. The MIT Press.

[4] E. Beale and C. Mallows. Scale mixing of symmetric distributions with
zero means. In Annals of Mathematical Statistics, 1959.

[6] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, 1995.

[6] C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: The generative
topographic mapping. Neural Computation, 10(1):215-234, 1998.

[7] C. M. Bishop and J. M. Winn. Non-linear Bayesian image modelling. In
D. Vernon, editor, Proceedings of the 6th European Conference on Com-

puter Vision, Part I. Lecture Notes in Computer Science, pages 3-17,
Dublin, Ireland, 2000. Springer.

[8] J.-F. Cardoso. Multidimensional independent component analysis. In
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing,
ICASSP’98, pages 1941-1944, Seattle, Washington, USA, May 12-15,
1998.

[9] C. Chen, editor. Neural Networks For Pattern Recognition And Their
Applications. World Scientific, Singapore.

78

BIBLIOGRAPHY 79

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

R. Choudrey, W. Penny, and S. Roberts. An ensemble learning approach
to independent component analysis. In Proceedings of the IEEE workshop
on Neural Networks for Signal Processing, Sydney, Australia, 2000.

R. T. Cox. Probability, frequency and reasonable expectation. American
Journal of Physics, 14(1):1-13, 1946.

P. Dayan and R. S. Zemel. Competition and multiple cause models. Neural
Computation, 7(3):565-579, 1995.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society (Series B), 39:1-38, 1977.

P. Féldiak and M. P. Young. Sparse coding in the primate cortex. In The
Handbook of Brain Theory and Neural Networks, pages 895-898, Cam-
bridge, Massachusetts, 1995. The MIT Press.

B. Frey and G. E. Hinton. Variational learning in nonlinear Gaussian
belief networks. Neural Computation, 11(1):193-214, 1999.

B. Frey and N. Jojic. Estimating mixture models of images and inferring
spatial transformations using the EM algorithm. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
416-422, 1999.

K.-I. Funahashi. On the approximate realization of continuous mappings
by neural networks. In Neural Networks, vol. 2, pages 183-192, 1989.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data
Analysis. Chapman & Hall, New York, 1995.

7. Ghahramani and G. E. Hinton. Hierarchical non-linear factor analysis
and topographic maps. In M. I. Jordan, M. J. Kearns, and S. A. Solla,
editors, Advances in Neural Information Processing Systems 10, NIPS*97,
pages 486492, Denver, Colorado, USA, Dec. 1-6, 1997, 1998. The MIT
Press.

Z. Ghahramani and S. T. Roweis. Learning nonlinear dynamical systems
using an EM algorithm. In M. S. Kearns, S. A. Solla, and D. A. Cohn,
editors, Advances in Neural Information Processing Systems 11, NIPS*98,
pages 599-605, Denver, Colorado, USA, Nov. 30-Dec. 5, 1998, 1999. The
MIT Press.

BIBLIOGRAPHY 80

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]
[33]

R. C. Gonzales and R. E. Woods. Digital Image Processing. Addison-
Wesley, 3rd edition, 1992.

H. Harman. Modern Factor Analysis. University of Chicago Press, 2nd
edition, 1967.

T. Hastie and W. Stuetzle. Principal curves. Journal of the American
Statistical Association, 84:502-516, 1989.

S. Haykin. Neural Networks — A Comprehensive Foundation. Prentice
Hall, 2nd edition, 1998.

G. E. Hinton and D. van Camp. Keeping neural networks simple by
minimizing the description length of the weights. In Proceedings of the
Sixth Annual ACM Conference on Computational Learning Theory, pages
5-13, Santa Cruz, California, USA, July 26-28, 1993.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359-366, 1989.

D. Hubel and T. Wiesel. Receptive fields, binocular interaction and func-

tional architecture in the cat’s visual cortex. Journal of Physiology of
London, 160:106-154, 1962.

A. Hyviérinen. Fast and robust fixed-point algorithms for independent
component analysis. IEEE Transactions on Neural Networks, 10(3):626—
634, 1999.

A. Hyvarinen and P. O. Hoyer. Emergence of phase and shift invari-
ant features by decomposition of natural images into independent feature
subspaces. Neural Computation, 12(7):1705-1720, 2000.

A. Hyvarinen and P. O. Hoyer. Emergence of topography and complex
cell properties from natural images using extensions of ICA. In S. A. Solla,
T. K. Leen, and K.-R. Miiller, editors, Advances in Neural Information
Processing Systems 12, NIPS*99, pages 827-833, Denver, Colorado, USA,
Nov. 29 — Dec. 4, 1999, 2000. The MIT Press.

A. Hyvérinen, J. Karhunen, and E. Oja. Independent Component Analy-
sts. John Wiley & Sons, 2001.

I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

M. I. Jordan, editor. Learning in Graphical Models. The MIT Press,
Cambridge, Massachusetts, 1999.

BIBLIOGRAPHY 81

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. 1. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An in-
troduction to variational methods for graphical models. In Jordan [33],
pages 105-161.

C. Jutten and J. Herault. Blind separation of sources, part I: An adaptive
algorithm based on neuromimetic architecture. Signal Processing, 24:1—
10, 1991.

J. Karhunen, S. Malaroiu, and M. Ilmoniemi. Local linear independent
component analysis using clustering. International Journal of Neural Sys-
tems, 10(6):439-451, 2000.

R. E. Kass and L. Wasserman. Formal rules for selecting prior distri-
butions: A review and annotated bibliography. Technical Report #583,
Carnegie Mellon University, PA, 1994.

M. Kendall. Multivariate Analysis. Charles Griffin & Co., 1975.

T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 3rd, extended
edition, 2001.

T. Kohonen, S. Kaski, and H. Lappalainen. Self-organized formation of
various invariant-feature filters in the Adaptive-Subspace SOM. Neural
Computation, 9(6):1321-1344, 1997.

A. Krogh and J. A. Hertz. A simple weight decay can improve generaliza-
tion. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances
in Neural Information Processing Systems, volume 4, pages 950-957, San
Mateo, 1992. Morgan Kaufmann Publishers.

J. Lampinen and A. Vehtari. Bayesian approach for neural networks -
review and case studies. Neural Networks, 14(3):7-24, 2001.

H. Lappalainen and A. Honkela. Bayesian nonlinear independent com-
ponent analysis by multi-layer perceptrons. In M. Girolami, editor,
Advances in Independent Component Analysis, pages 93—121. Springer-
Verlag, Berlin, 2000.

H. Lappalainen and J. W. Miskin. Ensemble learning. In M. Girolami, edi-
tor, Advances in Independent Component Analysis, pages 76-92. Springer-
Verlag, Berlin, 2000.

T. Lee and M. Lewicki. The generalized Gaussian mixture model using
ICA. In Proceedings of the 2nd International Workshop on Independent
Component Analysis and Blind Source Separation (ICA2000), pages 239—
244, Espoo, Finland, 2000.

BIBLIOGRAPHY 82

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

T. Lee, M. Lewicki, M. Girolami, and T. Sejnowski. Blind source sepa-
ration of more sources than mixtures using overcomplete representations.
IEEE Signal Processing Letters, 6:87-90, 1999.

J. C. Lemm. Prior information and generalized questions. Technical
Report A.I. Memo No. 1598, Massachusetts Institute of Technology, 1996.

D. J. C. MacKay. Ensemble learning for hidden Markov models. Available
from http://wol.ra.phy.cam.ac.uk/, 1997.

J. Miskin and D. MacKay. Ensemble Learning for blind source sepa-
ration. In S. Roberts and R. Everson, editors, Independent Component
Analysis: Principles and Practice, pages 209-233. Cambridge University
Press, 2001.

K. P. Murphy. A variational approximation for Bayesian networks with
discrete and continuous latent variables. In Proceedings of the Fifteenth
Annual Conference on Uncertainty in Artificial Intelligence (UAI-99),
pages 457-466, 1999.

R. M. Neal. Connectionist learning of belief networks. Artificial Intelli-
gence, 56(1):71-113, 1992.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Jordan [33], pages 355—368.

E. Oja. PCA, ICA and nonlinear Hebbian learning. In Proceedings of the
ICANN’95, pages 80-94, 1995.

E. Oja and J. Karhunen. Signal separation by nonlinear Hebbian learning.
In Proceedings of the IEEE International Conference on Neural Networks,
pages 83-87, 1995.

L. Parra, C. Spence, and P. Sajda. Higher-order statistical properties
arising from the non-stationarity of natural signals. In Advances in Neural
Information Processing Systems 13, Denver, 2000.

D.-T. Pham and J.-F. Cardoso. Blind separation of instantaneous mix-
tures of non stationary sources. In P. Pajunen and J. Karhunen, editors,
Proceedings of the Second International Workshop on Independent Com-
ponent Analysis and Blind Signal Separation, ICA 2000, pages 187-192,
Helsinki, Finland, June 19-22, 2000.

BIBLIOGRAPHY 83

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

T. Raiko and H. Valpola. Missing values in nonlinear factor analysis. In
L. Zhang and F. Gu, editors, Proceedings of the 8th International Confer-
ence on Neural Information Processing, ICONIP 2001, volume 2, pages
822-827, Shanghai, China, 2001. Fudan University Press.

S. Roberts and R. Everson. Introduction. In S. Roberts and R. Everson,
editors, Independent Component Analysis: Principles and Practice, pages
1-70. Cambridge University Press, 2001.

M. Schervish. Theory of Statistics. Springer, New York, 1995.

B. Scholkopf, A. Smola, and K. Miiller. Nonlinear component analysis as
a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.

H. Valpola. Bayesian Ensemble Learning for Nonlinear Factor Analysis.
PhD thesis, Helsinki University of Technology, Espoo, Finland, 2000. Pub-
lished in Acta Polytechnica Scandinavica, Mathematics and Computing
Series No. 108.

H. Valpola. Nonlinear independent component analysis using ensemble
learning: Theory. In P. Pajunen and J. Karhunen, editors, Proceedings of
the Second International Workshop on Independent Component Analysis
and Blind Signal Separation, ICA 2000, pages 251-256, Helsinki, Finland,
June 19-22, 2000.

H. Valpola. Unsupervised learning of nonlinear dynamic state-space mod-
els. Publications in Computer and Information Science A59, Helsinki
University of Technology, Espoo, Finland, 2000.

H. Valpola, A. Honkela, and J. Karhunen. Nonlinear static and dynamic
blind source separation using ensemble learning. In Proceedings of the
International Joint Conference on Neural Networks (IJCNN’01), Wash-
ington D.C., USA, 2001.

H. Valpola and J. Karhunen. An unsupervised ensemble learning method
for nonlinear dynamic state-space models. Neural Computation.

H. Valpola, T. Raiko, and J. Karhunen. Building blocks for hierarchical
latent variable models. In Proceedings of the 3rd International Conference
on Independent Component Analysis ans Blind Signal Separation, ICA
2001, San Diego, California, USA, December 9-12, 2001. In press.

M. Wainwright and E. Simoncelli. Scale mixtures of Gaussians and the
statistics of natural images. In Advances in Neural Information Processing
Systems 12, Cambridge, 2000.

BIBLIOGRAPHY 84

[68] H. Wechsler, P. Phillips, V. Bruce, F. Soulie, and T. Huang. Face recog-
nition: From theory to applications, 1998.

Appendix A

Cost Function of the Gaussian
Variable

A node called the Gaussian variable was presented in Section 4.1. The part of
the cost function C' defined in (3.8) that corresponds to the variable is derived
here. The posterior approximations of s, m and v are mutually independent

q(s,m,v) = q(s)g(m)q(v) (A1)
and they are of the form
q(s) =N(s;5,9). (A.2)
The first part C, defined in (3.10) is addressed first.
Csp, = —(lnp(s|m,v)) (A.3)
= —(InN(s;m,exp(—v))) (A.4)
= —{In|@2rexp(—v)) Y% ex M
= (i |erem(-o) e Joo) (A5)
= — <ln 27 exp(—v)]71/2> - <1n exp [—%(s —m)%exp v} > (A.6)
_ %m o — % (v) + % (s — m)?) {exp). (A7)

We still need to compute the expectation of (s — m)?

((s—=m)*) = (s —2sm+m?) (A.8)
= (s°) = 2(sm) + (m?) (A.9)
= F+5-25(m)+ (m)® + Var {m} (A.10)
= (53— (m))> +5+ Var{m}. (A.11)

85

A. Cost Function of the Gaussian Variable 86
Substituting ((s —m)?) in (A.7) by (A.11) yields (4.1):
1 ~
Csp= 3 {{expv) [(5— (m))? + Var {m} + $] — (v) +In2r}. (A.12)
The second part of the cost function C, defined in (3.9) is
Csa (Ing(s)) (A.13)
(InN (s;3,3)) (A.14)
(e _ T2
<ln {(27&)_1/2 exp %] > (A.15)
s
1o, ~, —{(s=9?%
—§1n27TS+T (A16)
1 -3
— 1275 4+ — Al
5 In27s + 5% (A.17)
—3 In 27es, (A.18)

which is the form used in Equation (4.2).

Appendix B

Update Rule of the Nonlinear
Node

The update rule for the nonlinear node is considered in Section 4.4. It is a
minimisation problem for the cost function Cy = Cy, + Cy,. Here is a proof
that each iteration decreases the cost function (or keeps it the same if the
partial derivatives vanish).

A different notation is used here. The quadratic term a (f(s)) + b[({f(s)) —
f(Scurrens))? + Var { f(s)}] + d is taken into account by first finding an optimal
expected value of f marked with f,,; and the variance a]% that corresponds to
how much difference will cost.

o7 = (207" (B.1)
fopt - f(scurrent) - O'?CL (BQ)
a(f(s)) +0[({f(s)) = f(scurrem))” + Var { f(s)}] + d (B.3)
_ <1 (/(5) = fon) > i, (B.4)

2 oy

Now all the affected terms of C' can be written as
Crp = 3 {lexpo) [(5— (m)* + Var {m} +3] - ()} (B5)

f = 2o U0+ U6

f

Crq = —% In(2ers) (B.6)

87

B. Update Rule of the Nonlinear Node 88

disregarding constants. The expectations (f(s)) and (f(s)?) are

=2

=
—~
o
N
~—

((s) = exp (— >(2§+1)

25+1

=
—~
o
0]
~—

U = e (-2) (45+1)
45+ 1
and they are used as abbreviations.

Now we have to find 5 and s such that Cy = Cy, + C}, is minimized. The
partial derivates of C; are

Yio = (expu) (5 (m) (B9
5 (2fop (f(5)) _ 2(f(5)*)
+a_§< 2%+1 45+1)
0Cr,
Tsf = 0 (B.10)
0Crp ({expu) (1 — 282 + 25) fopt (f(5))
2 gy (511
_ (1457 4+ 45) (£(s)°)
o2 (45 +1)
o, 1
8—,;', = % (B.12)

from which we get a fixed point iteration for the update candidate of s

oC; 1 0Cyy

05 25 05 (B.13)
N aCs,\ "

new — 2 - . B.14
; (68) (B.14)

This would mean that the s is adjusted such that if 9C,/0s would stay the
same, the whole partial derivative would become zero in one step. It is easy to
see, that if 0C;/05s is positive, the iteration decreases s and vice versa. This
means that the adjustments are always in the direction of the gradient descent.

It is worthwhile to note the connection derived from (4.1) and (4.2):

(B.15)

B. Update Rule of the Nonlinear Node 89

For 5, a gradient descent is used with the step length approximated from
Newton’s method. The approximation composed from (B.15)

Pc; 0%, .9C;, 1
PR R (B-16)
_ g

I B.1

is accurate, if the the true posterior is a Gaussian. Since the step direction is
derived directly from the derivative, it is always locally correct.

As was shown, these steps guarantee a direction, in which the cost function
decreases locally. If the derivatives are zero, the iterating has converged. To
guarantee also that the cost function does not increase because of a too long
step, the update candidates are verified. The step is halved as long as the cost
is about to rise.

