AALTO UNIVERSITY

School of Science and Technology

Faculty of Information and Natural Sciences

Degree Programme of Computer Science and Engineering

Matti Tornio

Natural Gradient for Variational Bayesian Learning

Master’s Thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Technology.

Espoo, May 26, 2010

Supervisor: Professor Juha Karhunen
Instructor: Antti Honkela, D.Sc. (Tech.)

AALTO-YLIOPISTO DIPLOMITYON TIIVISTELMA
TEKNILLINEN KORKEAKOULU

Tekija: Matti Tornio

Tyo6n nimi: Luonnollinen gradientti variaatio-Bayes-oppimisessa
Piiviys: 26.5.2010

Tyon kieli: Englanti

Tiedekunta: Informaatio- ja luonnontieteiden tiedekunta
Tutkinto-ohjelma: Tietotekniikan tutkinto-ohjelma/koulutusohjelma
Professuurin koodi ja nimi: T-61 Informaatiotekniikka

Tyon valvoja: Prof. Juha Karhunen

Tyon ohjaaja: TkT Antti Honkela

Tiivistelmé:

Todennékoisyysmalleilla on hyvin tirked asema koneoppimisessa, ja ndiden mallien
tehokas oppiminen on térked ongelma. Valitettavasti ndiden mallien matemaattinen
késittely suoraan on usein mahdotonta, ja mallien oppimisessa joudutaankin turvau-
tumaan erilaisiin approksimaatioihin. Erds téllainen approksimaatio on variaatio-
Bayes-menetelmé, jossa todellista posteriorijakaumaa approksimoidaan toisella ja-
kaumalla ja n#iden kahden jakauman vélistd eroa pyritddn minimoimaan.

Variaatio-Bayes-oppimisessa voidaan kiyttda monia eri optimointialgoritmeja. Téassa
tyossé keskitytdan gradienttipohjaisiin algoritmeihin. N&illd algoritmeilla on kuiten-
kin tyypillisesti yksi heikkous. Yleensé ndmé menetelmét olettavat, ettd avaruus jossa
funktiota optimoidaan on geometrialtaan euklidinen. Tilastollisissa malleissa tdmé, ei
usein pidé paikkaansa, vaan avaruus on todellisuudessa Riemannin monisto. Luon-
nolliseen gradienttiin pohjautuvat optimointialgoritmit ottavat tdméan geometrisen
ominaisuuden huomioon ja ovat usein huomattavasti nopeampia kuin perinteiset op-
timointialgoritmit. Erds tehokas ja suhteellisen yksinkertainen menetelmi saadaan
yleistdmalld konjugaattigradienttialgoritmi Riemannin monistoille. Ndin saatua me-
netelmad kutsutaan Riemannin konjugaattigradientiksi.

Téassé tyossd esitellidn tehokas Riemannin konjugaattigradienttialgoritmi variaatio-
Bayes-menetelmii kiyttavien tilastollisten mallien oppimiseen. Esimerkkiongelmana
kiytetddn epilineaarisia tila-avaruusmalleja, joita kiytetddn sekd keinotekoisten etté
todellisten data-aineistojen oppimiseen. Naistd kokeista saadut tulokset osoittavat
ettd esitelty algoritmi on huomattavasti tehokkaampi kuin muut vertailussa kiytetyt
perinteisemmét algoritmit.

Sivumadra: 65 Avainsanat: koneoppiminen, luonnollinen gradientti,
Riemannin konjugaattigradientti, epéline-
aariset tila-avaruusmallit, variaatio-Bayes-
menetelma

AALTO UNIVERSITY ABSTRACT OF MASTER’S THESIS
SCHOOL OF SCIENCE AND TECHNOLOGY

Author: Matti Tornio

Title: Natural Gradient for Variational Bayesian Learning

Date: 26.5.2010

Language: English

Faculty: Faculty of Information and Natural Sciences

Degree Programme: Degree Programme of Computer Science and
Engineering

Professorship: T-61 Computer and Information Science

Supervisor: Prof. Juha Karhunen

Instructor: Antti Honkela, D.Sc. (Tech.)

Abstract:

Probabilistic models play a very important role in machine learning, and the effi-
cient learning of such models is a very important problem. Unfortunately, the exact
statistical treatment of probabilistic models is often impossible and therefore various
approximations have to be used. One such approximation is given by variational
Bayesian (VB) learning which uses another distribution to approximate the true
posterior distribution and tries to minimise the misfit between the two distributions.

Many different optimisation algorithms can be used for variational Bayesian learning.
This thesis concentrates on gradient based optimisation algorithms. Most of these
algorithms suffer from one significant shortcoming, however. Typically these methods
assume that the geometry of the problem space is flat, whereas in reality the space is
a curved Riemannian manifold. Natural-gradient-based optimisation algorithms take
this property into account, and can often result in significant speedups compared to
traditional optimisation methods. One particularly powerful and relatively simple
algorithm can be derived by extending conjugate gradient to Riemannian manifolds.
The resulting algorithm is known as Riemannian conjugate gradient.

This thesis presents an efficient Riemannian conjugate gradient algorithm for learning
probabilistic models where variational approximation is used. Nonlinear state-space
models are used as a case study, and results from experiments with both synthetic
and real-world data sets are presented. The results demonstrate that the proposed
algorithm provides significant performance gains over the other compared methods.

Number of pages: 65 Keywords: machine learning, natural gradient, Rieman-
nian conjugate gradient, nonlinear state-space
models, variational Bayes

Preface

This work has been done in the Laboratory of Computer and Information
Science at Helsinki University of Technology.

I thank professor Juha Karhunen for supervision. I also thank Dr. Antti
Honkela for guidance on the subject and technical help with Matlab and IXTEX.
Finally, I also wish to thank Tapani Raiko for creative discussion and help with
technical matters.

Otaniemi, October 15, 2007

Matti Tornio

Contents

List of Abbreviations

List of Symbols

1

Introduction

1.1 Problem Setting
1.2 Aimofthe Thesis
1.3 Structure and Contributions of the Thesis

Bayesian Inference

2.1 Introduction to Bayesian Inference
2.2 Entropy and Kullback-Leibler Divergence
2.3 Posterior Approximations
2.4 Variational Bayes oo
2.5 EM Algorithm

Information Geometry
3.1 Introduction to Information Geometry
3.2 Natural Gradient,

Conjugate Gradient Methods

4.1 Introduction to Conjugate Gradient Algorithm
4.2 Implementation
4.3 Riemannian Conjugate Gradient
4.4 Other Superlinear Algorithms

Nonlinear State-Space Models

5.1 Model Structure
5.2 Nonlinear Dynamic Factor Analysis
5.3 Riemannian Conjugate Gradient

10
11
13
15

16
16
22

28
28
31
32
34

6 Experiments

6.1 Synthetic Data
6.2 Inverted Pendulum System

6.3 Speech Data

7 Discussion

7.1 Other Applications L

7.2 Future Work

8 Conclusions

References

46
46
49
52

55
56
56

58

59

List of Abbreviations

CG
EM
FA
ICA
KL
MAP
MCMC
ML
MLP
NDFA
NG
NSSM
PCA
pdf
RBF
VB

Conjugate gradient

Expectation maximisation
Factor analysis

Independent component analysis
Kullback-Leibler (divergence)
Maximum a posteriori (solution)
Markov chain Monte Carlo
Maximum likelihood (solution)
Multi-layer perceptron (network)
Nonlinear dynamical factor analysis
Natural gradient

Nonlinear state-space model
Principal component analysis
Probability density function
Radial basis function
Variational Bayes

List of Symbols

D>

A.B.C,D
a,b,c,d
Dk r(qllp)

diag(x)

E{}

exp(x)

f.g

G = (gij)
v:[0,1] — S
VF(€)
VF(€)
N(x|p. %)

Mean of the parameter € in the approximating posterior
distribution ¢

Variance of the parameter 6 in the approximating posterior
distribution ¢

Linear dependence parameter of the parameter 6 in the
approximating posterior distribution ¢

The mixing matrices of the generative mappings

Bias terms of the nonlinear generative mappings

The Kullback—Leibler divergence between the distributions
q and p

A diagonal matrix with the elements of vector x on the
main diagonal

Expectation over a distribution

Exponential function applied component-wise to the vector
X

Nonlinear generative mappings

Riemannian metric tensor

A curve on the manifold S

Gradient of the scalar function F

Natural gradient of the scalar function F

Gaussian (or normal) distribution for variable x with mean
vector p and covariance matrix 3

The vector of all model parameters

Coordinate curves (or functions) of a Riemannian manifold
The activation function of a MLP network

The parameters defining the approximating distribution ¢
Probability density of A with condition B

Posterior density

Var {-}

Likelihood density

Prior density

Marginal likelihood

The parametric approximation of the posterior pdf
Parallely transported version of vector v on a Riemannian
manifold

The tangent space of the point p on a Riemannian manifold
The search direction of a conjugate gradient method at
iteration k

A state vector at time ¢

The set of all the states

An observed data vector at time ¢

The set of all the observed data

Variance over a distribution

Chapter 1

Introduction

1.1 Problem Setting

The typical goal in machine learning is to build a model for a given set of
data. Usually these models are specified by a set of parameters, values of
which are optimised until the model describes the data well enough. Many
different optimisation algorithms are used to learn these models, including
the EM-algorithm and various direct optimisation algorithms such as gradient
descent.

Most traditional optimisation algorithms assume that this parameter space is
flat. However, in many cases, especially in statistical problems, the actual
geometry of the problem space is not flat but a curved Riemannian mani-
fold. Taking this property into account can lead to more efficient optimisation
algorithms, the most popular example of which is the natural gradient algo-
rithm [3].

Variational Bayes [9, 35, 37, 11], also previously known as Bayesian ensemble
learning, is an efficient algorithm for approximate Bayesian inference and it is
often used for statistical learning of probabilistic models. One such class of
probabilistic models is nonlinear state-space model (NSSM).

1.2 Aim of the Thesis

The aim of this thesis has been to develop a more efficient learning algo-
rithm for variational Bayesian learning of NSSMs based on natural gradient

6

1.3. Structure and Contributions of the Thesis 7

learning. The particular NSSM used in this work is the nonlinear dynamical
factor analysis (NDFA) model developed by Dr. Harri Valpola and Prof. Juha
Karhunen [71].

The algorithm was implemented by extending the publicly available NDFA
package [70]. The performance of the algorithm was verified by using it to
model two different synthetic data sets and a real-world speech data set.

Even though state-space models are used as an example in this work, the
presented algorithm can be applied to almost any probabilistic model where
the parameter space is a Riemannian manifold.

1.3 Structure and Contributions of the Thesis

This thesis is organised as follows. Chapter 2 gives an introduction to Bayesian
learning in general and variational Bayes in particular. Information geometry
and natural gradient learning are discussed in Chapter 3. Conjugate gradient
method and its extension to Riemannian manifolds are studied in Chapter 4 as
more efficient alternatives to gradient descent learning. Chapter 5 introduces
nonlinear state-space models as a case study for the presented algorithm and
introduces the dynamical model used in the examples and experiments. This
chapter also includes an overview of implementation details.

Experimental results with two synthetic data sets and real world speech data
are presented and analysed in Chapter 6. The benefits and restrictions of
the proposed algorithm and potential future work are discussed in Chapter 7.
Finally, overview of the work and some conclusions are presented in Chapter 8.

The original idea to use methods based on natural gradient with nonlinear dy-
namical factor analysis (NDFA) package [70] arose from the observation of the
poor performance of the conjugate gradient method with NDFA. Discussion
between Dr. Antti Honkela, Tapani Raiko, and the author lead to an imple-
mentation of a natural gradient method based on a remark in [69]. The idea
to use Riemannian conjugate gradient to further improve the performance is
due to the author. The implementation of both the original natural gradient
method and the Riemannian conjugate gradient method for NDFA were also
done by the author. The code is based on the original nonlinear dynamical
factor analysis implementation by Dr. Harri Valpola and Dr. Antti Honkela
and its later extensions by Dr. Antti Honkela. All the experiments presented
in Chapter 6 were done by the author.

Chapter 2

Bayesian Inference

This chapter gives a brief introduction to Bayesian probability theory and in-
troduces the variational approximation of the posterior probability density.
More detailed description of the variational Bayesian learning (sometimes re-
ferred to as ensemble learning) can be found e.g. in |9, 69, 35, 33, 37, 11].

A brief introduction to Bayesian statistics is given in Section 2.1. The im-
portant concept of Kullback-Leibler divergence is introduced in Section 2.2.
Different methods of approximating the typically intractable posterior prob-
ability distribution are discussed in Section 2.3. The variational Bayesian
approximation is discussed in more detail in Section 2.4. Finally, the popular
EM-algorithm is introduced in Section 2.5.

2.1 Introduction to Bayesian Inference

In the Bayesian approach to probability theory, probability is a subjective
measure of degree of belief of an uncertain event. In a contrast to frequentist
approach, any kinds of events can be assigned probabilities, even if the event
itself is completely deterministic.

It has been shown [14] that from some very general assumptions and compat-
ibility with common sense these degrees of beliefs must satisfy

p(B|A) +p(=B|A) =1 (2.1)

and
p(C, B|A) = p(C|B, A)p(B|A), (2.2)

2.1. Introduction to Bayesian Inference 9

where A, B, and C' are propositions and —B is the negation of B. The two
rules are known as the sum rule and the product rule, respectively. From
these rules it is relatively straightforward to derive the basic laws of Bayesian
probability, namely the Bayes’ rule and the marginalisation principle.

2.1.1 Bayes’ Rule

The Bayes’ rule

p(B|C, A)p(ClA)
p(BlA)

directly follows from the product rule (2.2). Bayes’ rule determines how a
learning system should update its prior beliefs A after receiving new informa-
tion (observation) B. Under the usual naming conventions, C' is known as the
proposition of interest, p(B|C, A) is known as the likelihood and p(C|A) is the
prior probability. The scaled product p(C|B, A) of the prior probability and
the likelihood is known as the posterior probability [27].

p(C|B,A) = (2.3)

2.1.2 Marginalisation Principle

In addition to Bayes’ rule, we can also derive the marginalisation principle
from Equations (2.1) and (2.2). Given a set of mutually exclusive propositions
{C)} which satisfy

ZP(CAA) =1 (2.4)

the marginalisation principle can be written as

p(BJA) = ZP(B7C¢|A) =Y n(B|Ci, A)p(Ci| A) (2:5)

i=1
for the discrete case and
p(BIA) = [p(B.o10)8 = [p(BIo, A)p(ol.0)d8 (2.6)
0 9

for the continuous case. Whereas Bayes’ rule is used to update the beliefs of
the system, the marginalisation principle can be used to make predictions and
generalisations.

2.2. Entropy and Kullback-Leibler Divergence 10

2.1.3 Model Comparison

While building a model for a set of observations, too simple models tend to
represent the observations poorly. This problem is known as underfitting. On
the other hand, while very complex models can represent the observations
accurately, they often generalise poorly. This is known as overfitting. This
can be used to justify the principle known as Occam’s Razor: the simplest
explanation that adequately describes the observations is usually the best.

Occam’s Razor has a straightforward intepretation in statistics. Given a set
of observations X and assuming a constant prior, different models H;, Ho, ...
can be directly compared by their marginal likelihood

pXH) = [

[(X o11t)00 / p(X|0. H)p(OH)dO. (2.7)

0

2.1.4 Conjugate Priors

An important way to simplify Bayesian inference is provided by conjugate
priors. Given a class of likelihood function p(X|@,H), the priors p(@|H) are
called conjugate if the posteriors p(8|X,H) belong to the same distribution
class P as the priors.

If the class P has a common functional form, conjugate priors will greatly
simplify inference. Conjugate priors exist for many important distribution
families. For example, all distributions in the exponential family have conju-
gate priors [19].

2.2 Entropy and Kullback-Leibler Divergence

The information content of a discrete random variable z is given by the entropy
of the distribution p(z)

H(z) = - Zp(ﬂfi) log p(z:), (2.8)

where the summation is done over all the possible values of ;. The discrete en-
tropy H (z) is always non-negative and it gives the lower bound to the number
of bits needed on average to encode the information contained in = [37, 24, 13].

2.3. Posterior Approximations 11

It is also possible to generalise the concept of entropy to the continuous vari-
ables. If the variable x is continous, summation is replaced by integration and
the differential entropy is given by

h(x) :/Rp(a:) log p(z)dz. (2.9)

In contrast to discrete entropy, differential entropy has no lower bound and it
is typically affected by reparametrisation. In the space of probability distri-
butions, the discrete entropy is maximised by the uniform distribution. For
the particular case of fixed covariance, differential entropy is maximised by the
Gaussian distribution [62, 13, 37].

2.2.1 Kullback-Leibler Divergence

The information difference between two different distributions p(x) and ¢(x)
is measured by the relative entropy or Kullback-Leibler divergence

Dratlle) = £, {tow 20 = [goyo 8800 (210)

p(z) p(z)

Kullback-Leibler divergence is non-negative and it is invariant under invertible
reparameterisations. Even though Kullback-Leibler can be seen as a measure
of distance between two distributions, it is not an actual metric since it is
neither symmetric nor satisfies the triangle inequality [27, 13].

2.3 Posterior Approximations

From the theoretical point of view, Bayesian statistics provide the tools for
performing optimal inference. All the required information is contained in the
posterior distribution, which can in theory be computed using the relatively
simple tools of Bayesian statistics. Unfortunately, in practice the exact compu-
tation of the posterior probability distribution is not feasible except for some
simple special cases. Typical solutions to overcome this problem include ap-
proximating the exact posterior with point estimates, sampling, or parametric
approximations.

2.3. Posterior Approximations 12

2.3.1 Point Estimates

Examples of point estimates include maximum a posteriori (MAP) estimation
and the related maximum likelihood (ML) estimation, which aim to maximise
the posterior density and the likelihood, respectively. Point estimates are easy
to compute, but unfortunately they are often prone to overfitting. Especially
in higher dimensions MAP estimates suffer from the fact that high probability
density does not guarantee the presence of high probability mass. Narrow
spikes with high probability density may actually have very little probability
mass as seen in Figure 2.1 [69].

2R RN
BIRRIRIIN
0"7"“\“?:‘?\}

Figure 2.1: Example of probability density in a two dimensional case. The
spike on the right has the highest probability density even though most of the
probability mass is elsewhere.

2.3.2 Sampling Methods

Sampling methods are based on drawing samples from the true posterior distri-
bution, which is usually accomplished by constructing a Markov chain for the
model parameters 8 and using the posterior distribution as the stationary dis-
tribution of the Markov chain. These samples can then be used to approximate

2.4. Variational Bayes 13

computations such as integration over the true posterior.

The resulting method is known as Markov Chain Monte Carlo (MCMC) and
the most important such algorithms are the Metropolis-Hastings algorithm
and Gibbs sampler. Sampling methods can be applied to a very wide range of
different problems and with enough samples the results are very accurate and
robust against overfitting. Unfortunately, sampling methods scale poorly to
high dimemsional problems as the number of samples needed grows extremely
large and in some problems it is also hard to determine when the algorithm
has converged [46, 37].

2.3.3 Parametric Approximations

Parametric approximations strike a balance between the point estimates and
sampling methods; they can be computed quite efficiently and yet they are
typically robust against overfitting. This work concentrates on the variational
approximation, which is presented in the next section.

2.4 Variational Bayes

There exists numerous different parametric approximations, the one consid-
ered in this work is the variational approximation, which leads to variational
Bayesian learning. Variational Bayes [37, 11, 35, 9] is a way to approximate the
posterior density. For a model with parameters 8 and observed data X, vari-
ational Bayes tries to maximise a lower bound on the marginal log-likelihood

(X, 0)
q(0])

where & are the parameters of the approximating distribution. This optimisa-
tion problem is equivalent to minimising the misfit between the exact poste-
rior pdf p(0]|X) and its parametric approximation ¢(0|€) characterised by the
Kullback-Leibler divergence Dkp(q||p) between p and ¢ [20, 72].

B(q(08)) = <10g > = log p(X) — Dk (¢(01€)[Ip(0]X)), (2.11)

The variational approximation has several desirable properties. First of all,
the approximation is very robust against overfitting and the density estimates
are relatively fast to evaluate compared to e.g. sampling methods. In addi-
tion, variational approximation provides a cost function for comparing differ-
ent models. From the point of view of this work, it is also important to note

2.4. Variational Bayes 14

that variational approximation has a straightforward geometric interpretation
on curved manifolds as discussed in Section 3.1.3.

Unfortunately, variational Bayes also has some shortcomings. First of all, even
though the estimates are fast to evaluate compared to sampling methods, the
approximation is in many cases much slower to evaluate than a point estimate.
Additionally, variational Bayes has a tendency to underestimate the variance of
the true posterior distribution, which can lead to problems in some cases. An
important alternative to variational Bayes is given by expectation propagation
(EP) algorithm [41], which can solve some of the problems of the variational
Bayes method. Unfortunately, exceptation propagation algorithms are more
difficult to implement than variational Bayesian alternatives, and the lack of
a simple cost function in exceptation propagation also means that it is hard
to guarantee the convergence of the algorithm.

2.4.1 Factorisation

In many problems where the posterior dependencies are relatively weak, it
is beneficial to assume that the different model parameters are independent.
Under this assumption the posterior approximations can be written as

a(0) =] [a0, (2.12)

This factorisation will greatly simplify the computation of the bound B as the
equation can be written as a sum of simple terms and the integrals over the
posterior approximation become independent.

Experiments by Miskin and MacKay [42] with variational Bayes indicate that
in the case of blind source separation the difference in model quality between
full covariance and factorial approximation is small while the difference in
computational complexity is significant. However, experiments by Ilin and
and Valpola [32] suggest that using fully factorised posterior approximation
can lead to very poor results in some cases, and care must be taken while
choosing the level of factorisation.

Therefore in problems where the posterior dependencies are significant, the
full factorial approximation cannot be used. In many such problems it is still
sufficient to model only some of dependencies, and the full covariance may
not be needed. Example of such partial factorial approximation is modeling
only the dependencies between subsequent samples of the same variable in a
dynamical model, which is used in nonlinear dynamical factor analysis (NDFA)
model presented in Section 5.2.

2.5. EM Algorithm 15

2.5 EM Algorithm

Traditionally, the expectation maximisation (EM) algorithm [15] and more re-
cently its variational Bayesian extension [47] have been used to solve a wide
variety of machine learning problems. This work concentrates on direct opti-
misation algorithms such as the conjugate gradient method, but for the sake
of completeness, the EM algorithm is shortly introduced as well.

The EM algorithm alternates between the E-step, where the posterior distri-
bution of the states S is computed using the current estimate of parameters
0, :

@ (S) = p(SIX. 6,1, M), (2.13)

and the M-step, where the expected log-likelihood is maximised with respect
to the parameters 6:

0, = argmaxy E,(log p(S, X0, H)). (2.14)

The EM algorithm can be applied to a wide variety of different problems and it
is guaranteed to converge to a local optimum apart from some special cases [15,
47]. Unfortunately, in certain problems the EM algorithm can converge very
slowly. There exists a number of ways to speed up the convergence of EM
algorithm. One simple way is to use pattern search methods [30, 29]. Another
solution is given by adaptive overrelaxation [58]. These methods are easy to
implement, but typically they increase performance only by a small constant
factor while retaining the linear convergence of EM algorithm.

Another more complex approach is proposed in [59]. Based on the fact that
the perfomance of the EM algorithm is related to the amount of missing in-
formation, an algorithm is derived which approximates this ratio of missing
information, and based on this information, updates the parameters using ei-
ther the EM algorithm or a conjugate gradient based optimization method, in
this case expectation-conjugate-gradient (ECQ) [59].

Chapter 3

Information Geometry

Applying differential geometry to families of probability distributions is known
as information geometry. This chapter provides only a brief introduction to
many important concepts of information geometry, and is mostly restricted to
concepts relevant to this work. More detailed and comprehensive introductions
can be found e.g. in [44, 1, 5].

The basic concepts of information geometry are presented in Section 3.1. In
Section 3.2 the natural gradient is presented, and its exact form is also derived
for some example distribution families.

3.1 Introduction to Information Geometry

For the purposes of this work, we restrict ourselves to manifolds for which
global coordinate systems exist. Under this assumption, we can informally
define a manifold as follows. The set S is a (C*° differentiable) n-dimensional
manifold, if there exists a set of coordinate systems A for S which satisfies [5]

i) Each element ¢ of A is a one-to-one mappin from S to some open subset
g
of R™.

(ii) For all ¢y € A, given any one-to-one mapping ¢ from S to R", the
following holds:

pe A= ¢! isa C™ diffeomorphism, (3.1)

where C'*° diffeomorphism means an invertible function from one mani-
fold to another manifold, such that both the function and its inverse are

16

3.1. Introduction to Information Geometry 17

smooth (infinitely many times differentiable).

Let S be a manifold with a smoothly varying inner product <, >, defined at
each point p € S for every vector pair at that point. The mapping g : p —<, >,
is called the Riemannian metric tensor and the manifold S with such a metric
is a called a Riemannian manifold. The exact form of this inner product is
given later in this section in Equation (3.7).

For the space of probability distributions ¢(0|£), the most popular Riemannian
metric tensor is given by the Fisher information [56, 1]

dlnq(0]€) dnq(6l¢)| 9*1Inq(61€)
o€, ¢ }_E{_ 0&0¢; } 82)

where the last equality is valid given certain regularity conditions [44]. Tt is also
possible to define many other Riemannian metrics for the space of probability
distributions, e.g. metrics based on the concept of observed information, called
yokes [10]. However, Fisher information is a unique metric for probability dis-
tributions in the sense that it is the only metric which is both invariant under
transformations of the random variables and covariant under reparametrisa-
tions [12, 5].

15(€) = g1,(6) = E {

Finally, it should be noted that information geometry is closely related to the
geometries used in the general theory of relativity, where the space-time is
modelled as a four-dimensional manifold with Lorentzian metric and many of
the concepts presented in this chapter such as metric connections are used,
albeit the terminology in general relativity is different [44].

3.1.1 Tangent Spaces and Vector Fields

The straightforward intepretation of vectors as straight lines connecting two
different points in Euclidian space does not make sense on Riemannian mani-
folds. The curvature of the space means there is no global notion of straight-
ness. Because of this, vectors on Riemannian manifolds are defined as tangent
vectors, local entities that are free of the global coordinate system [1].

The tangent vector v at a point p € S to a curve ~y(t) for which v(0) = p is
defined by

dy

E t=0-
The tangent space T, ~ R" at point p € S is the vector space obtained by
combining the tangent vectors (i.e. local linearisations) of all the smooth curves

(3.3)

VvV =

3.1. Introduction to Information Geometry 18

passing through the point. For each coordinate system ¢ there exists a special
set of curves {¢;} along which only one coordinate changes. Such curves are
known as coordinate curves and the corresponding functions are known as the
coordinate functions. The tangent vectors of coordinate curves at any given
point p form the natural basis of the tangent space 7},, and any tangent vector
v € T, can be written as a linear combination of the basis vectors [1]. The
concept of a tangent space and coordinate curves on Riemannian manifolds is
illustrated in Figure 3.1.

Figure 3.1: Visual presentation of a two dimensional Riemannian manifold.
Displayed in the figure are the manifold S, tangent space T}, of the point p,
coordinate curves ¢; and ¢ at point p and a curve v and it is tangent v.

In an Euclidian space S = {w € R"} with orthonormal coordinate system the
squared length (also known as the Euclidean norm) of a vector v is given by

|v]]? = va =vlv. (3.4)
i
In the case of curved manifold there exists no orthonormal linear coordinates,

and (Equation 3.4) is no longer valid. In Riemannian space the squared length
of a tangent vector v € T}, at point p € S is given by the quadratic form

[v]* = Zgij'vi'vj =v'Gv, (3.5)
,J

where G = (g;;) is the Riemannian metric tensor at point p [44].

3.1. Introduction to Information Geometry 19

In addition to the norm of a tangent vector, we can also define an inner product
between two vectors v € T, and u € 7,,. In Euclidean orthonormal space the
inner product is given by

<v,u>=v-u= Zviui = v, (3.6)
i
which is independent of the point p. In the general case of Riemannian geom-
etry the inner product is given by

<Vv,u>,=v-u= Zgzjviui = vIGu, (3.7)
i,
which unlike the Euclidian equivalent also depends on the point p. In the
Euclidian orthonormal case G = I and Equations 3.5 and 3.7 simplify to
the Equations 3.4 and 3.6, as should be expected [1]. Since inner product is
conjugate symmetric, v-u = u - v for real-valued vectors also in Riemannian
space.

In addition to single vectors on manifolds, it also useful to define vector fields,
i.e. vector valued functions. Formally, a vector field A(p) € T, is a mapping
from the manifold S to T,, which assigns a vector A(p) € T, to each point
peSs.

3.1.2 Connections and Parallel Transport

Given a curve 7 : [0,1] — S, its length d is given by

i7j

where ¢; are the coordinate functions. The minimiser of this distance over all
curves connecting two points

i = min / at | gy dcbi(dz(t))dcbjfivt(t))_ (3.9)

2%
is the (Riemannian) distance between the two points, and the corresponding

curve v is a metric connection, as discussed later in this section [44].

In addition to the simple concept of length, it is often useful to measure the
rate of change in vector fields along a curve. There is one major complica-
tion, however. In Riemannian space it is meaningless to directly compare two

3.1. Introduction to Information Geometry 20

tangent vectors v, and v, if the points p and p’ are different, as the basis
vectors for the two points are normally not the same. However, it is possible
to derive a linear mapping ® that allows the comparison of two tangent vectors
from different tangent spaces. Let {7,} be the set of curves passing through
point p € S and e, the tangent vector of curve v, at point p. Furthermore,
let {p'} be the points near p which satisfy p’ = ~,(dt) for some curve ~, and
small 0t > 0. Now we can define CDZ,& as the linear mappings from p’ to p
which reduce to identity as ¢t — 0. Because of linearity, these mappings are
determined by their actions on coordinate vectors in points p and p’

D5 eg’ét — CI)Z,&(eﬁ";t)e,,, (3.10)

for each v = 1...n where {ef;"st} and {e,} are the coordinate basis vectors
at points p’ and p, respectively, and P} 5 is the vth component of the linear
mapping. Because of the property that these mappings reduce to identity as
0t — 0, we can also write for small 6t

O, 5 (el™) — e, = 61T e, (3.11)

where the constants I', are known as the Christoffel symbols or the coefficients
of the affine connection [44, 1].

Analogous to a scalar derivative, we can now define the covariant derivatives [1]
of e, as

PP o (erdh) —e,
V,e, = lim — A
a ot—0 ot
For a scalar function f, the covariant derivative is simply the ordinary deriva-
tive

=1"¢,. (3.12)

v,uf = 8uf (3.13)

After some manipulation, the covariant derivative of a vector field A is given
by
VA= (0,47 + T8 A")e,. (3.14)

Using the definition of covariant derivative, we can now define a process known
as parallel transport along a curve, which can be used to compare vectors from
different tangent spaces along a curve. Formally, a vector field A(p) € T, is
said to be parallelly transported along a curve v with tangent vector field B(p)
if

VA =0. (3.15)
A curve v which parallelly transports tangent vector field to itself is called an
affine geodesic. Formally, curve ~ is an affine geodesic if

VA =0, (3.16)

3.1. Introduction to Information Geometry 21

for some parametrisation of the curve for all the points along the curve [1].

The process of parallel transport is illustrated in Figure 3.2. In this work a
parallelly transported version of vector v is denoted by 7v, where the two
tangent spaces are assumed to be defined by the context.

Figure 3.2: The concept of parallel transport. Vector v is translated from
point p to point ¢ along a curve v on a two-dimensional Riemannian manifold.

Parallel transport has several important and quite intuitive properties, which
make it useful for generalising many algorithms and concepts to Riemannian
manifolds. First of all, tangent vectors of the geodesic curve remain tangent
vectors under parallel transport, as the entire tangent vector space is trans-
lated. Moreover, inner product of vectors is invariant under parallel transport
for metric connections, which also means that the length of a vector does not
change when it is transported parallelly [1].

A curve is a geodesic if it locally minimises the distance between the points of
its path. A geodesic is said to be metric if it also gives the shortest distance
between two points in the sense of the Equation (3.8). There is a subclass of
metric geodesics that are also affine geodesics, these geodesics are known as
metric connections. Metric connections that are in addition symmetric have a
very important role in differential geometry and they are known as Riemannian
connections or Levi-Civita connections [1, 44]. In the case of Fisher metric,
Amari’s & = 0-connections are also Riemannian [5|. The important property of
metric connections is the fact that they directly impose a metric. The distance
between two points in Riemannian space is given by the length of the shortest
path between them, and this path is equal to the metric connection [44, 1].

In addition to Riemannian (metric) connections, there are two more classes of
connections that have special importance. These are the e-connection (the ex-
ponential connection or the & = 1-connection of Amari) and the m-connection
(mixture connection or o« = —1-connection of Amari). The importance of

3.2. Natural Gradient 22

these connections derives from the fact that the canonical parametrisations of
exponential family and mixture family distributions are flat with respect to e-
and m-connection, respectively [5].

3.1.3 Variational Approximation as a Geometric Projec-
tion

The variational approximation has a natural interpretation in information ge-
ometry. The approximation of the posterior distribution with another tractable
distribution corresponds to finding an approximation of the true posterior
p € S in a submanifold Sy C S. Optimal approximation is the projection
of p on Sy. In Riemannian space there are multiple such projections, the most
important are the e-projection

4:(61€) = argmin Dic1 ((61€)|Ip(61X)) (3.17)
and the m-projection
4m(61€) = arg min Dic (p(61X)[[¢(81€)), (3.18)

which are defined by the e- and m-connections, respectively. Both of these pro-
jections correspond to minimising the Kullback-Leibler divergence, but with
the order of the distributions reversed. The m-projection is the unbiased maxi-
mum likelihood estimator, but unfortunately its computation involves integra-
tion over the posterior and it is therefore intractable in most cases. Variational
approximation uses the biased e-projection instead [67, 27].

3.2 Natural Gradient

The problem of optimising a scalar function arises in many different fields.
In the case of variational Bayes, the goal is to maximise the lower bound on
marginal log-likelihood (or alternatively, minimise the Kullback-Leibler diver-
gence). A simple solution to this problem is given by the method of steepest
descent. Let F(&) be a scalar function defined on the manifold S = {£ € R"}.
The direction of steepest descent is defined to be the vector w which minimises
F (& + w) under the constraint |w|? = €2 for sufficiently small constant e.

In the case of Euclidian space, the direction of steepest descent is equal to
negative gradient, and the method of steepest descent can be written as follows

£, =& —uVF(E, 1) (3.19)

3.2. Natural Gradient 23

where VF(€,,) is the current gradient and i is the step size, which can be com-
puted with line search or adaptively adjusted. The iteration is repeated until
satisfactory convergence has been reached. However, in the case of Rieman-
nian geometry, negative gradient is no longer the direction of steepest descent;
it is replaced by natural gradient [3]

VF(&) =G (§VF(E), (3.20)

where G is the Riemannian metric tensor and VF () is the normal gradient.
Therefore, natural gradient descent algorithm is given by

£, =&,_1— uVF(E,). (3.21)

In theory, there are some additional details that should be taken into account.
Most importantly, if line search is used, it should use the geodesics of the
Riemannian manifold instead of the Euclidian straight lines as discussed in
Section 4.3 where Riemannian conjugate gradient method is presented. How-
ever, many of the implementations and much of the theoretical work on natural
gradient ignores these complications since the derivation of the geodesics can
be a very difficult problem.

Natural gradient descent typically converges much faster than normal gradient
descent in non-Euclidian spaces. In particular, natural gradient algorithm
is able to avoid many of the plateau phases encountered in normal gradient
descent. It has also been shown that online natural gradient learning is Fisher-
efficient [3, 57, 36].

3.2.1 Efficient Implementation

The computation of the full G matrix is a very involved process, and in the
case of nonlinear state-space models where the dimensionality of the problem
space can be very high, even the inversion of the full matrix required for
the computation of the natural gradient can be prohibitively costly. Luckily
with parametric distributions, parameters associated with different variables
are often assumed independent, which results in a block diagonal G. Such a
matrix can be inverted efficiently as long as the block sizes remain relatively
small.

Additionally, it is possible to simply ignore some of the dependencies between
different parameters while computing the matrix G. This results in an ap-
proximation of G, but in many cases even this approximation can result in
significant speedups compared to gradient descent with very small computa-
tional overhead.

3.2. Natural Gradient 24

3.2.2 Normal Family

As an example, we derive some basic properties of the univariate normal distri-
bution in Riemannian geometry. The canonical parametrisation of the normal
distribution is given by

p(@l, 02) = exp(:p201 -+ ZL‘QQ - K(@l, 02)), (322)
where 6, = 5, 6 = 4 and K(6,,6,) = Llog(5%) — 2. Even though the
canonical coordinates imposed by this parametrisation have some important

geometric properties [44|, we concentrate on the more traditional parametri-
sation of the normal distribution

(@l v) = ¢217T—U exp (L‘“)z) | (3.23)

For this parametrisation N[z, i, v], we have

In p(z|p, v) = —%(z) - %ln(v) - %ln(27r). (3.24)
Further, 2
E{——a lngg“’”)} - B {%} - % (3.25)
E{_%W}:E{mv_f}:o, (3.26)
and E{_ﬁzlnp(xm,v)} :E{M B L} _ 1 (3.27)
8’02 ’U3 2U2 2’027 '

where identity E {(z — p)?} = v is used.

The resulting Fisher information matrix is diagonal and its inverse is given
simply by
-1 _ v 0
G = (0 202) . (3.28)

Another important parametrisation is given by parametrising variance on log-
scale. For the repametrisation N[z, m,exp(2v)], we have

Inp(z|lm,v) = —%(:c —m)?exp(—2v) — v — %1n(27r). (3.29)

3.2. Natural Gradient 25

© 7 : (@)

Figure 3.3: The amount of change in mean in figures (a) and (b) and the
amount of change in variance in figures (c) and (d) is the same. However, the
relative effect is much larger when the variance is small as in figures (a) and
(c) compared to the case when variance is high as in figures (b) and (d) [69]

and
E {_6 lr;;igl::’ U>} = F{exp(—2v)} = exp(—2v), (3.30)
E {_0 lnﬁlz;(;lnm’ v)} = E{2(z —m)exp(—2v)} =0, (3.31)

and
B {_W} = E{2(x —m)*exp(—20)} = 2. (3.32)

For normal distribution with log-scale variance the Fisher information matrix
is again diagonal and its inverse is given by

G = (eXp(O_zv) (2)) . (3.33)

Intuitively, these results can be interpreted as follows. When the variance of
a Gaussian distribution is large, the relative effect of a change in the mean is
smaller than when the variance is small as shown in Figure 3.3 [69]. Likewise,
when the variance of the Gaussian distribution is large, the relative effect of
the change in the variance is much smaller than when the variance is small.

3.2. Natural Gradient 26

In addition to the Riemannian metric tensor, some other important results
can also be derived for the normal distribution. Only the results are given
here, for detailed derivation see e.g. [64]. For a normal distribution N[z, i, 02|
the Riemannian distance d(6;,6,) between two distributions 6; = (u1, 0}) and
0y = (9, 03) is given by

d(6y,05) = V2 cosh™ (11 — p2)? + 2(02 4 02)) /40103). (3.34)

The geodesic curve connecting the two distributions is given by

() = 1 + 2cy tanh(t/v/2 + ¢3)
o(t) = v2¢y cosh ™ (t/V2 + c3) (3.35)

when p; # pa, where {¢;} are constants that satisfy u(0) = p; and o(0) =
01(0) = o1 and that for some value of the geodesic length ¢ u(t) = uo and
o(t) = o9. Likewise when u; = ps = p, the geodesic is given by

pu(t) =
o(t) = exp(t/V2 + ¢), (3.36)

where ¢ is a constant that satisfies the same conditions [1].

These results can also be extended to multivariate Gaussian distributions,
detailed results and derivations can be found in e.g. [64]. The presence of
geodesics in simple analytic form is important for practical implementation of
optimisation algorithms. One such example is explored in Section 4.3, where
the Riemannian conjugate gradient is introduced.

3.2.3 Related Work

Natural gradient learning has been applied to a wide variety of problems such
as independent component analysis (ICA) [4, 3] and MLP networks [3] as
well as to analyze the properties of general EM [2]|, mean-field variational
learning [67], and online variational Bayesian EM [60]. Riemannian conjugate
gradient has also been applied to a variety of different problems, in particular
different eigen-like problems [17, 16]. However, in all these works the geometry
is based on the true posterior p(0|X) whereas this work uses the geometry of
the approximation of the posterior ¢(€|£), which can often result in greatly
simplified computations.

Another alternative to the traditional EM algorithm is expectation-conjugate-
gradient (ECG) algorithm [59]. It is rather interesting that ECG algorithm has

3.2. Natural Gradient 27

several similarities with the Riemannian conjugate gradient method presented
in Section 4.3, even though the theoretical background of the two algorithms
is quite different.

Chapter 4

Conjugate Gradient Methods

Natural gradient algorithm presented in Section 3.2 typically converges much
faster than the normal gradient descent algorithm. Unfortunately, in high di-
mensional problems both algorithms tend to take multiple consecutive steps in
almost the same direction. Natural gradient algorithm alleviates this problem
to some extent, but much better solution to the problem is given by conjugate
gradient method. The seminal paper on nonlinear conjugate gradient is [18],
and textbook introductions to conjugate gradient method include [61, 22]. A
more intuitive description of the algorithm can be found in [63].

This chapter starts by reviewing the concepts of conjugate directions and the
conjugate gradient method in Section 4.1. Some important implementation
details are discussed in Section 4.2. In Section 4.3 conjugate gradient method
is extended to Riemannian space resulting in the natural conjugate gradient
method, also known as the Riemannian conjugate gradient method. Finally,
some alternative algorithms with superlinear convergence are presented in Sec-
tion 4.4.

4.1 Introduction to Conjugate Gradient Algo-
rithm

Even though the gradient descent and natural gradient descent algorithms
presented in Section 3.2 can find a local minimum for almost any optimisation
problem, they have some shortcomings that make them impractical for many
real world optimisation problems. First of all, they only make use of the first
order information of the function f(z), and their convergence is therefore quite

28

4.1. Introduction to Conjugate Gradient Algorithm 29

slow compared to more advanced methods, especially near the local minimum.
Additionally, gradient descent algorithms often tend to take multiple steps
in almost the same direction, slowing down the convergence. The conjugate
gradient and the Riemannian conjugate gradient methods try to solve both
these problems.

The conjugate gradient algorithm [25, 22] is the standard tool in numerical
optimisation for solving high dimensional systems of linear equations of the
form

Ax =b, (4.1)

where b is a known vector, A is a known square, symmetric, positive-definite
matrix, and x is the unknown vector to be solved. For a symmetric posi-
tive definitive matrix, this problem is equal to the problem of minimising the
quadratic form

f(x)= %XTAX —b'x. (4.2)

The conjugate gradient method can also be generalised to nonlinear problems
where f(x) is no longer quadratic [18], but the performance of nonlinear gra-
dient methods is typically best when f(x) is close to quadratic.

4.1.1 Conjugate Directions

Given a matrix A, two vectors u and v are said to be A-orthogonal or conjugate
(with respect to A) if
u'Av=0. (4.3)

It should be noted that this notion of conjugacy has no connection to complex
conjugates. Before proceeding to conjugate gradient method itself, the method
of conjugate directions is explored. Even though there is no way to efficiently
compute a sequence of orthogonal search directions and step sizes, it is possible
to generate a sequence of A-orthogonal search directions by a process known
as Gram-Schmidt conjugation.

Given a sequence of n conjugate directions {py}, the solution to the Equa-
tion (4.1) is simply given by

X = iaipi, (44)
i=1

where r,
b;
p; Ap; (4:5)

4.1. Introduction to Conjugate Gradient Algorithm 30

4.1.2 Conjugate Gradient Method

The conjugate gradient method uses a clever way to construct a sequence of
conjugate directions. The current search direction is generated by conjugation
of the residuals. With this choice the search directions form a Krylov subspace
and only the previous search direction and the current gradient are required for
the conjugation process, greatly reducing both the time and space complexity
of the algorithm [48].

The conjugate gradient method starts out by searching in the direction of
the negative gradient during the first iteration. The optimum in the search
direction is determined by line search. On subsequent iterations the search
direction py is determined by

Pr = —8k + BPk-1, (4.6)

where g = Vf(&,) is the current gradient and py_; is the search direction
from the previous iteration. For nonlinear conjugate gradient method, there
are several different ways, however, to choose the multiplier 3;. These include
the Fletcher-Reeves formula [18]

gL - 8k

Py = —————
k-1 8k—1

(4.7)
and the Polak-Ribiére formula [50]

(gk - gkq) - 8k
8r-1" 8k 7

Br = (4.8)

where g;. is the current gradient and g;_; is the gradient from the previous
iteration. In most problems the performance with Polak-Ribiére formula is
superior to Fletcher-Reeves formula [48], and it is also exclusively used in all
the experiments in this work. There is however a minor complication with
Polak-Ribiére formula. (3, may become negative and thus the algorithm is not
guaranteed to converge. Luckily, there is a simple solution to this problem.
The global convergence of the algorithm to a local minimum can be guar-
anteed by setting G, = max(f,0), which effectively means that the search
direction is reverted back to the negative gradient whenever a non-positive
value of fj is encountered. Another way to ensure the global convergence of
the Polak-Ribiére conjugate method is to use a line search algorithm that sat-
isfies stronger conditions than the usual Wolfe conditions [23], the conditions
typically used to ensure the efficient convergence of line search subroutines.

4.2. Implementation 31

4.2 Implementation

Some care must be taken while implementing a nonlinear conjugate gradient
algorithm. This section discusses some potential problems and their solutions.
In particular, the search directions tend to lose conjugacy after too many itera-
tions, which can significantly slow down the convergence rate of the algorithm.

4.2.1 Resetting the Search Direction

When applied to a linear problem and assuming infinite precision floating point
arithmetic, conjugate gradient algorithm will converge in at most n steps,
where n is the number of dimensions of the problem [63]. Unfortunately this
property no longer holds when the problem is nonlinear or numeric errors
caused by finite floating point precision are taken into account. In practice
the algorithm may have to be iterated many more than n times. Over time
the search directions tend to lose conjugacy and it is therefore recommended
to periodically reset the search direction to the negative of the gradient to
improve convergence. This can done at fixed intervals, values of n or y/n are
typically suggested in literature [63] depending on the size of the problem.

Another solution is to monitor the orthogonality of the subsequent gradients
and adaptively decide when the search direction should be reset. This solution
is known as Powell-Beale restarts [51| and one such possible restart condition
is given by

g1 - gxl > 0.2]|gll?, (4.9)

where g is the current gradient and g;_; the gradient from the previous
iteration.

4.2.2 Complex Models

For complex models such as high dimensional nonlinear state-space models, it
is often beneficial to update the different types of parameters separately from
each other, as this is easier to implement and may even speed up convergence
in some cases. Unfortunately, the conjugate gradient method relies on infor-
mation from the previous iteration. Unless all the parameters are updated in
a single conjugate gradient step, this information is no longer valid, as there
have been changes to the model between conjugate gradient iterations.

The simple solution of updating all the model parameters in a single conjugate

4.3. Riemannian Conjugate Gradient 32

gradient iteration can be somewhat problematic however. First of all, this
approach can even lead to slower overall convergence caused by scaling issues
between different parameters. Finally, it may be useful to use more simple or
even exact update formulas for some types of parameters in the model, further
discouraging the use of a single conjugate gradient update step. Additionally,
if the Riemannian conjugate gradient algorithm presented in Section 4.3 is
used, it can be a rather involved process to compute the natural gradients of
all the model parameters.

4.3 Riemannian Conjugate Gradient

Up to this point, natural gradient learning and conjugate gradient method have
been studied separately. Natural gradient learning works quite well on its own,
avoiding most of the shortcomings of the normal gradient descent. However,
when only approximations of the natural gradient can be computed, it can
be quite beneficial to combine natural gradient and the conjugate gradient
methods, as is later shown experimentally. The resulting “natural conjugate
gradient” algorithm is known as the Riemannian conjugate gradient [65].

The Riemannian conjugate gradient uses a similar iteration as the conven-
tional conjugate gradient. There are few key differences, however. First of
all, the gradient V f(w) must be replaced by the natural gradient Vf(w) =
G~ 'V f(w). In addition, the vector norms and inner products in Equations (4.8)
and (4.9) must be replaced by their generalised counterparts in Riemannian
space. Finally, line search must be performed along geodesic curves, which is
discussed in more detail in the next section. Many of the formulas used in con-
jugate gradient method involve vectors from tangent spaces at different points
in Riemannian space. To evaluate these formulas, parallel transport must be
used to transform the vectors to the same tangent space [65].

In conclusion, the Equations (4.6), (4.8), and (4.9) must be rewritten as follows.
The search direction p; for Riemannian conjugate gradient method is therefore
given by

Pr = —8k + BTPr-1, (4.10)

where g, = Vf(£,) is the natural gradient and 3 in the case of Polak-Ribiére
formula is given by
By = (& _~7'gk—1~) ' gk’ (4.11)
T8k—1 " 8k

4.3. Riemannian Conjugate Gradient 33

and the Powell-Beale restart condition by

IT8k—1 - & > 0.2]|8x°, (4.12)

In all these three equations 7 denotes parallel transport of the vector from
the previous search point to the current search point along the geodesic curve.
Additionally, all inner products are taken based on the Riemannian norm. An
illustration of the operation of the Riemannian conjugate gradient algorithm
can be seen in Figure 4.1 [16, 65].

TPk-1

€k71

Figure 4.1: Riemannian conjugate gradient algorithm on a curved manifold.
Geodesics from two successive iterations and the current gradient gy, previous
search direction (translated using parallel transport) 7py_; and the current
search direction pj are displayed [16, 65]

4.3.1 Line Search Along Geodesics

For an exact Riemannian conjugate gradient algorithm, the line search sub-
routine also requires certain changes. Even though traditional line search is
used in the experiments of this work, the process is reviewed for the sake
of completeness. As mentioned earlier, the line search in Riemannian conju-
gate gradient algorithm is performed along a geodesic curve, the analogue of
a straight line in Riemannian space. As long as the geometry of the problem
space is such that geodesics can be derived in analytic form, this simply means
that the points used in line search subroutine are taken along the geodesic [65].

Unfortunately, even though using geodesics for line search is simple in theory,
in practice geodesics and parallel transport may be hard to compute efficiently
for many problem spaces. In certain special cases such as normal distribution

4.4. Other Superlinear Algorithms 34

with suitable parametrisation there exists relatively simple formulas for both
geodesics and parallel transport in closed form. However, for more general
distributions this is often not the case and various approximations have to be
used for implementation.

4.3.2 Limitations

Riemannian conjugate gradient method assumes that the Fisher information
matrix, geodesic curves and parallel transport can be computed for the Rie-
mannian manifold of the problem space. Unfortunately, for some problems
these may be very time-consuming to derive and compute.

Additionally, the superlinear convergence of Riemannian conjugate gradient
algorithm is only guaranteed when exact line search is used. In most cases this
is not practical, since in general using exact line search may require infinite
computation time. Inexact line search typically leads to good results as well,
but such algorithm may converge slowly in certain special cases [65].

4.4 Other Superlinear Algorithms

Conjugate gradient methods have been very successful in solving a large variety
of different problems and they are widely used to solve large scale real world
problems. However, there are also many other superlinear algorithms that
are better suited to certain problems. This chapter gives an overview of some
competing superlinear algorithms and compares their strengths and weaknesses
with the conjugate gradient method. It is also interesting to note that many
of the algorithms presented in this section have a relatively straightforward
extension to Riemannian manifolds.

An overview of the different algorithms discussed in this chapter is presented
in Table 4.1. It is important to note that many of the superlinear optimisation
algorithms require specific conditions to reach their stated convergence rate,
and may exhibit linear convergence or fail to converge entirely when these
conditions are not met. The listed time and space complexities are only for each
step of the algorithm itself, in some cases the computation of the gradients and
Hessians can exceed these limits. Finally, when the algorithms are extended
to Riemannian space, additional computation is required. This overhead is
heavily dependant on the geometry of problem space.

4.4. Other Superlinear Algorithms 35

Table 4.1: Optimisation algorithm summary

Method Convergence Time complexity Space complexity
Gradient descent O(n) O(n) O(n)
Conjugate gradient O(n?) O(n) O(n)
Memory-gradient O(n?) O(n) O(n)
Scaled conjugate gradient, O(n?) O(n) O(n)
Quasi-Newton O(n?) O(n?) O(n?)
Newton O(n?) O(n?) O(n?)

4.4.1 Scaled Conjugate Gradient

The traditional conjugate gradient algorithm offers fast convergence, but if the
computation of the cost function requires significant time, the line search can
be quite time consuming. An alternative way to determine the step size is to
use a so-called trust region or Levenberg-Marquardt approach. Such variant
of the conjugate gradient method is known as the scaled conjugate gradient
method. The algorithm itself is rather complex and introduces some new
parameters, full details can be found in [43].

The Levenberg-Marquardt approach introduces a new scale term A which
forces the approximation of the Hessian to remain positive definite. After
the update the quality of the approximation is evaluated, and the parameter
is adjusted accordingly. When the \; is zero, the algorithm is equal to the
traditional Conjugate Gradient method.

The main benefit of the Scaled Conjugate Gradient method is the fact that it
requires only constant number of cost function and gradient evaluations per
iteration. In the optimal case, the line search in the traditional Conjugate
Gradient method requires similar run time as the Scaled Conjugate Gradi-
ent method. In practice, standard conjugate gradient method with good line
search subroutine requires two to three times more cost function and gradient
evaluations compared to the Scaled Conjugate Gradient method.

There are some issues with the Scaled Conjugate Gradient method, however.
First of all, some scaled conjugate gradient iterations are spent adjusting the
scale parameter without any reduction in the cost function even though full
gradient and cost function evaluations are required for these iterations as well.
In addition, the step sizes are less optimal than with line search, which leads to

4.4. Other Superlinear Algorithms 36

faster loss of conjugacy of the search directions. Finally, whereas a conjugate
gradient algorithm is easy to implement, the scaled-conjugate gradient algo-
rithm is relatively complex and relies on certain parameter values that must
be chosen during the implementation.

4.4.2 Memory Gradient

Conjugate gradient algorithm uses information from two iterations to approx-
imate the Hessian matrix. It is also possible to store and utilise gradient and
search direction information from more than two iterations to better approxi-
mate the higher order information of the optimised function.

Based on this idea, a class of algorithms has been developed that try to improve
the performance of gradient based algorithms without significantly increasing
the computational complexity. These algorithms include memory gradient [40]
and the three-term-recurrence algorithm [45], both of which take into account
search direction information from several past iterations.

Compared to conjugate gradient methods, these algorithms require more mem-
ory overhead, and are more difficult to implement than the simple conjugate
gradient. Even though they provide some performance advantages over con-
jugate gradient, neither has been studied as widely nor enjoys the same pop-
ularity as conjugate gradient method.

4.4.3 Newton’s Method

The algorithms presented so far in this chapter do not directly use the higher
order information of the function. There also exists a wide class of algorithms
that directly use this higher order information, however. The most popu-
lar of these algorithms are Newton’s method and its various approximations,
known as quasi-Newton algorithms. All these algorithms provide superlinear
convergence near the local minimum. Unfortunately, these algorithms often
have rather limited region of convergence, and typically other methods such
as gradient descent are used to initialise the iteration. Another alternative is
the Levenberg-Marquardt method, a robust algorithm that combines Newton’s
method and gradient descent [38].

Newton’s method has also been generalised to Riemannian manifolds [65, 66,
73]. Newton-like algorithms have one typical problem while solving high-
dimensional problems, however. They require matrix operations with n x n

4.4. Other Superlinear Algorithms 37

matrices, where n is the dimension of the problem space. In many high-
dimensional problems, this is not computationally feasible, as for example the
problem space of a NSSM may well have dimensionality of n > 10000. Matrix
operations during each optimisation step with matrices of this size are typically
not feasible even with state-of-the-art algorithms and hardware.

When the dimensionality of the problem space is slightly smaller, Newton-
based algorithms can provide a viable alternative to conjugate gradient meth-
ods. Of particular interest are limited memory Newton algorithms [48], which
have partially replaced conjugate gradient methods in problems with slightly
lower dimensionality. Conjugate gradient methods, however, are still the best
choice for very high dimensional problems because of their modest computation
and memory demands. Conjugate gradient methods are also relatively easy to
implement and more suitable to parallel computation than many competing
algorithms.

Chapter 5

Nonlinear State-Space Models

Nonlinear state-space models (NSSM) are one particularly important class of
probabilistic models. In this chapter NSSMs are presented as a case study for
natural gradient learning, and in particular the NSSM from [71] is discussed
in more detail.

General NSSM structure and the building blocks of the model are discussed in
Section 5.1. The NDFA model from [71] is presented as an example of an NSSM
in Section 5.2. Finally, implementation details of the conjugate gradient and
Riemannian conjugate gradient methods for the NDFA model are discussed in
Section 5.3.

5.1 Model Structure

State-space models are one popular way to model dynamical systems. Instead
of modelling the dynamics of the observed time-series X = {x(t)} directly,
state-space models use a set of hidden states S = {s(¢) } to model the dynamics.
Furthermore, the mapping that maps the states back to the actual observations
is modelled. The states form a so-called state-space, hence the name of the
model.

38

5.1. Model Structure 39

5.1.1 Linear State-space Model

The simplest state-space model is the linear state-space model

x(t) = As(t)+n(t), (5.1)
s(t) = Bs(t—1)+m(t),

where x(t) are the observations and s(¢) are the hidden internal states of the
system. The vectors m(t) and n(t) are the process and observation noise,
respectively. A and B define the linear observation and dynamic mappings.
The observations X and the states S are assumed to be real-valued and the
time ¢ is discrete.

In practice, linear model for the dynamics is too restrictive. The behaviour of
a linear dynamical system is defined by the eigenvalues of the matrix A, and
there is only a very restricted set of possible outcomes. This is insufficient for
modelling any but the most basic real-world systems [7].

5.1.2 Nonlinear models

In principle, it is relatively straightforward to extend a linear state-space model
into a nonlinear one. It is simply enough to replace the linear mappings by
generic nonlinear mappings, resulting in the model

x(t) = f£(s(t),0¢)+ n(t)
s(t) = g(s(t—1),0,) +m(t),

3)
4)

where 8¢ and 6, are the vectors containing the model parameters which define
the mappings f and g, respectively. The dependence of the mappings f and g
on the model parameters @ is assumed for the rest of this text, even though
it is not explicitly shown for reasons of clarity. Only the observations x(t)
are known beforehand, and both the states s and the mappings f and g are
learned from the data.

(5.
(5.

Assuming that the mappings f and g are modelled in a generic enough way,
nonlinear state-space models are generic enough to model any time-series. The
addition of nonlinearity can also give rise to chaotic effects. Over long time
periods, even small changes in the states can lead to complitely different out-
comes.

5.1. Model Structure 40

5.1.3 Modelling Nonlinearities

One major problem while implementing a nonlinear model is the representation
of the nonlinearities. Whereas linear mappings can simply be represented by
matrices, there is no such easy solution for generic nonlinear functions. Luckily,
there exist different function approximators that can approximate any function
to a desired accuracy given enough parameters. The most well-known of these
are the various series decompositions including polynomial approximations and
trigonometric series. Unfortunately, trigonometric series can only be used to
model periodic functions and polynomic approximations can be sensitive to
very small parameter changes, which makes them a poor choice for learning
purposes. In addition, high order polynomic approximations tend to generalise
very poorly. Some of these problems can be solved by using splines instead of
higher order polynomials [24].

In the field of neural networks, two different function approximations are widely
used. These are the radial-basis function (RBF) and multilayer perceptron
(MLP) network. Both of them are universal function approximators; given
enough parameters (i.e. neurons), they can at least in theory model any func-
tion to a desired accuracy [31, 24]. Since the NDFA model described in Sec-
tion 5.2 and used in the experiments uses MLP networks, the next section
describes them in greater detail.

5.1.4 Multilayer Perceptron

A MLP network consists of several simple neurons known as perceptrons. A
perceptron is a very simple computation unit that computes a single output
from multiple inputs by applying a nonlinear activation function to a linear
combination of the inputs. A perceptron can be presented mathematically by
the equation

Y= gp(z w;x; +b) = p(wix +b), (5.5)
i=1
where w = [w; wy ... w,]T is the weight vector, x are the inputs, b is the bias

and ¢ is the activation function [24].

In neural networks research, the most common activation functions are the
logistic sigmoid 1/(1 + e~*) and the hyperbolic tangent tanh(z). These two
are closely related and they share the useful property that they exhibit nearly
linear behaviour near the origin but become saturated quickly farther away
from the origin. This property makes them well suited for modelling both

5.1. Model Structure 41

strongly and mildly nonlinear functions [24].

A single perceptron can only represent very limited linearly separable map-
pings. Therefore large networks of perceptrons are used, as seen in Figure 5.1.
MLP networks are usually arranged in several layers with at least one so called
hidden layer between the input and the output layers [24].

Figure 5.1: MLP network with one hidden layer.

The functional form of a nonlinear state-space model where nonlinearities are
modelled with MLP networks with one hidden layer is

f(s(t)) = Btanh[As(t) + a] + b (5.6)
g(s(t—1)) =s(t — 1)+ Dtanh[Cs(t — 1) + c] + d, (5.7)

where A and C are the weight matrices for hidden layers, B and D are the
weight matrices for output layers, and a, c, b, and d are the corresponding
biases [71].

MLP networks are most often used in supervised learning tasks, where the
most commonly used learning algorithm is the back-propagation algorithm
which iterates between backward and forward passes [24]. In addition, it is
possible to derive a nonlinear Kalman filter known as the Extended Kalman
Filter (EKF) [6, 24] which can be used to derive the hidden state-space if the
observations and the nonlinear mappings are known.

The complete learning of hidden state-space models requires more complex
algorithms and is usually much slower than in the case of supervised learning
tasks. One such unsupervised learning algorithm is given by Dr. Valpola [71].
In this work this algorithm is extended to take into account the non-Euclidian
nature of the space of probability distributions as described in Section 3.2.
The algorithm uses MLP networks to model the nonlinearities and is based on

5.2. Nonlinear Dynamic Factor Analysis 42

variational Bayesian learning, which is discussed in more detail in Section 2.4.
Other learning algorithms for nonlinear state-space models include the work
of Ghahramani and Roweis [21], which uses RBF networks and standard EM
algorithm where EKF is used for the E-step.

5.2 Nonlinear Dynamic Factor Analysis

As an example of a NSSM, nonlinear dynamic factor analysis (NDFA) [71]
is used. This particular NSSM uses multilayer perceptron networks with one
hidden layer and tanh nonlinearity to model the nonlinear mappings.

The weights of the MLP networks and the other model parameters are all
assumed to be independent and they are modelled with Gaussian distribu-
tions with diagonal covariance to limit the number of parameters and keep
the computation efficient. The state vectors s(t) are also assumed component-
wise independent. The subsequent state vectors are also assumed independent
with one exception: the dependence between the corresponding components
of s(t — 1) and s(t) is modeled with a linear dependence parameter §(¢,t — 1).
This correlation is a realistic minimal assumption for modelling a dynamic
system [71]. This simple assumption also makes the derivation of a natural
gradient algorithm straightforward.

This dynamic model for the parameters and the states leads to the approxi-
mation

q(S,0) = q(S)q(0) (5.8)
and

10) = [T (0. (5:9)

and finally

q(S) = HQz(Si(t)\Sz(t - 1)), (5.10)

where the approximate density g;(s;(t)|s;(t — 1)) is parametrised by its mean
5;(t), linear dependence $;(t,t — 1), and variance s;(t).

5.3 Riemannian Conjugate Gradient

The implementation of the Riemannian conjugate gradient algorithm is based
on the NDFA package |[70] presented in [71|. There are some key improve-

5.3. Riemannian Conjugate Gradient 43

ments, however. First of all, the Taylor approximation used for the nonlin-
earities in [71] can result in stability problems. This problem can be solved
by replacing the Taylor approximation by Gauss-Hermite quadratures as de-
scribed in [26, 28]. The replacement of Taylor approximations with the more
complex approximation roughly doubles the computational cost of the algo-
rithm. However, the resulting algorithm tends to converge faster and and it is
almost entirely free from the stability problems of the original implementation,
so this modification is quite justified.

Additionally, the heuristic update rules from [71] for the states and nonlinear
mappings tend to converge slowly. A significant speedup can be attained by
replacing these update rules with an efficient direct optimisation algorithm.
In this case, the means of the latent states and all the network weights are
updated simultaneously using the Riemannian conjugate algorithm with some
simplifying assumptions as described later in this section. The local optimum
in the search direction is found using a line search subroutine based on poly-
nomic interpolation. The formulas for the gradients of the parameters ¢(S) and
q(0) required in the computation of the natural gradient can be found in [71].
It is important to note that the natural gradient is computed based on the
geometry of the approximating distribution ¢, whereas tradiationally natural
gradient algorithms have been only used for the true posterior distribution.

5.3.1 Used Approximations

To simplify the implementation of the Riemannian conjugate gradient, certain
approximations were used. First of all, the component-wise dependency pa-
rameter § is updated separately from the means and variances to simplify the
geometry of the problem space. Typically this parameter can be updated in a
single step, so the extra computational cost is not significant.

Additionally, natural gradient learning is only used for the network weights
and the sources. The rest of the parameters and hyperparameters are updated
by the algorithms described in [71]. Tt is unlikely that using Riemannian
conjugate gradient for all the parameters would have resulted in a significant
speedup compared to the current implementation. Usually only the weights
and the sources require significant amount of iterations to converge, the other
parameters and hyperparameters typically converge relatively fast.

5.3. Riemannian Conjugate Gradient 44

5.3.2 Update Order

In the current implementation of the algorithm, the model parameters and
hyperparameters are updated first. This is done for two reasons. First of all,
parameter updates can be done separately from the feedforward and backward
passes of the sources. Additionally, this update order allows taking into ac-
count any external modifications (such as pruning away dead neurons) to the
model straight away.

The parameter updates are followed by feedforward and feedback passes, which
also include the computation of the cost function Cky,. The gradient informa-
tion from the backward pass is first used to update the variances of the network
weights and sources based on fixed point update rule. This is followed by up-
dating the means using a direct update algorithm, in the experiments in this
thesis either conjugate gradient or Riemannian conjugate gradient algorithm.
Even though variances and means can be updated in a single Riemannian con-
jugate gradient iteration, updating them separately resulted in a more stable
algorithm.

It should be noted that the gradient information is only computed once, even
though technically it should be recomputed after the variances have been up-
dated. A full feedforward and backward pass is quite expensive in terms of
computation time, and thus small loss of accuracy can be justified here. Intu-
itively, the change in the variance of a parameter has a smaller effect on the
gradient of the mean than vice versa. This was also verified experimentally,
thus justifying the chosen update order.

5.3.3 Line Search

Many optimisation algorithms alternate between finding a new search direc-
tion and finding the optimum in this direction. The procedure of finding the
optimum is known as line search. For linear problems exact line search is often
practical, but for nonlinear problems this is typically not the case and inexact
line search methods must be used. Therefore the minimum is bracketed either
by using a search procedure such as Fibonacci or golden section search or by
using polynomial interpolation and extrapolation. When the function to be
minimised is continuous, the performance of polynomial interpolation methods
is typically superior to other alternatives [52].

In quadratic interpolation a second order polynomial of the form p(a) = aa?®+
ba + c is fitted to the available data points. The extremum of the polynomial

5.3. Riemannian Conjugate Gradient 45

can be found at 52. Given three known data points f(z1), f(22), and f(z3)
this can be rewritten as

_ lﬁzsf@l) + B31f(z2) + Biaf(x3)

— 2 '723f(l‘1) + ’Yglf(l‘g) + 712]0(1‘3) ’ (511)

Tmin
where ;; = 27 — 27 and v = x; — 2;. To ensure that the extremum is a
minimum and that interpolation is performed instead of extrapolation, the
condition

fwa) < flan) A f(x2) < f(xs) (5.12)
must be satisfied [52].

Whenever gradient information or more than three function evaluations are
available, cubic interpolation can be used instead of quadratic interpolation.
In cubic interpolation a third order polynomial of the form p(a) = aa® + ba® +
ca + d is fitted to the available data. The local extremum of the polynomial
are the roots of the equation

3aa’® 4+ 2ba +c =0 (5.13)

and the local minimum is given by the root with 6ac + 2b > 0 [52].

Even higher order polynomial interpolation can be used to approximate the
function f(x) but the use of higher than third order polynomials often leads
to problems with numerical stability, increased computational complexity, and
may also result in Runge’s phenomenon, the oscillation of the interpolation
polynomial near the end points of the interpolation interval. This phenomenon
is closely related to Gibbs’ phenomenon, a similar problem with sinusoidal basis
functions [52].

Before the local minimum has been bracketed, the end points must be adjusted
so that the condition (5.12) holds. For a convex function this can be done in
a rather simple way by doubling ¢3 or halving ¢, and setting the other point
to the old value of the adjusted point until both parts of the condition are
satisfied.

To speed up this bracketing, a polynomic approximation can be used here
as well. Given the interpolated or extrapolated minimum ¢,,,, we can set
t3 = 2t when adjusting the points upwards and ty = t,,;, when adjusting
the points downwards. To make the extrapolation more robust, only quadratic
extrapolation is used. Additional safeguards are also used to limit the mini-
mum and maximum relative change in the line search points.

Chapter 6

Experiments

In this chapter, the conjugate gradient method and Riemannian conjugate
gradient method presented in Chapter 4 are applied to three different problems.
In each experiment, the nonlinear state-space model presented in Section 5.2
is used to learn a different data set.

In Section 6.1, the method is applied to a synthetic data set generated using
random MLPs. In Section 6.2 the method is used to learn the dynamics of
the inverted pendulum system, an important benchmark in control theory.
Finally, in Section 6.3 the method is applied to the challenging real world data
set, consisting of human speech.

6.1 Synthetic Data

To compare the performance of conjugate gradient and Riemannian conjugate
gradient under different noise levels, the algorithms were applied to multiple
randomly generated synthetic data sets.

6.1.1 Data Set

The data sets consisted of 500 samples, which were generated using the gener-
ative model defined in Equations (5.3) and (5.4). The mappings were modelled
by MLPs with 10 hidden nodes, and all the weights were randomly generated
from a Gaussian distribution. The state space was three dimensional, and the
generated data was four dimensional.

46

6.1. Synthetic Data 47

Two groups of data sets were generated using this method. For the first group,
the innovation (process noise) m(t) variance was kept constant o2, = 10~* and
the variance of the observation noise n(¢) was varied. For the second group,
the innovation process variance was varied while the observation noise variance
was constant o2 = 1074,

6.1.2 Learning

The NSSMs used in this experiment used the same parameters as the original
data: three dimensional state-space and MLP networks with 10 hidden nodes.

Initial values of the means of the MLP weights were drawn randomly from the
same distribution as the weights of the MLPs used to generate the data. NSSM
states were initialized to all zeros. For each different noise level three different
initialisations of the parameters were used and those iterations where different
algorithms converged to a different local optimum from the same initialisation
were ignored.

Iteration was assumed to have converged when |B — B~ < 10~ for 200
consecutive iterations, where B' is the bound on the marginal log-likelihood at
iteration .

6.1.3 Results

A comparison of the convergence speed of conjugate gradient and Riemannian
conjugate gradient is presented in the Figure 6.1. The heuristic algorithm
from [71] suffered from some stability problems with this data set and therefore
it was omitted from the results.

At low levels of observation noise n(¢) and process noise m(¢) the performance
of regular and Riemannian conjugate gradient algorithms is comparable. As
the noise levels increase, the Riemannian algorithm becomes significantly faster
while the regular conjugate gradient algorithm benefits less. Still, the effect
of the noise variance to convergence speed is sublinear, whereas in theory it
would be linear for the EM [49].

The speed difference in the methods in cases of high noise is caused by the fact
that there will be more uncertainty on the values of some parameter. Hence
there will be greater variation among the posterior variances that determine
the inverse Fisher information matrix of Equation (3.28), which will therefore

6.1. Synthetic Data 48

Riemannian CG

- — CG

Time (s)
Time (s)

10° -3 -2 -1 10° - -2 -1
10 10 10 10 10 10 10 10

Noise variance Innovation variance

Figure 6.1: The effects of variance on the convergence speed of conjugate
gradient (dash-dotted line) and Riemannian conjugate gradient (solid line).
The plots show convergence speed with different levels of observation noise
n(t) (left) and convergence speed with different levels of innovations m(t)
(process noise, right).

10 10
States
R L AR EERYe P o o ¢ ‘ —O—-finput
10] 10 g —x—foutput
_ 4 PR = O - ginput
- CO - - o
10 /./ e) 10 7 X+ g output
a _ - ~ -
- X . — - _
109 e -10 e
10 w7 X 10 X X
10_15 -3 -2 -1 0 10_15 -3 -2 -1 0
10 10 10 10 10 10 10 10
Noise variance Innovation variance

Figure 6.2: The variance of the posterior variances of the latent states and
different model parameters plotted against observation noise n(t) (left) and
innovation process m(t¢) (right). The variances are shown for the latent states
(solid line), input layer weights of the observation mapping f (dash-dotted line
with circles), output layer weights of f (dash-dotted line with crosses), input
layer weights of the dynamical mapping g (dotted line with circles), and output
layer weights of g (dotted line with crosses).

differ more from the form of constant times identity. This is illustrated in
the Figure 6.2, which shows a clear increase in the variance of the estimated
posterior variances in situations where regular conjugate gradient is performing
badly in comparison to the Riemannian variant.

6.2. Inverted Pendulum System 49

6.2 Inverted Pendulum System

One very important problem where nonlinear state-space models are used is
system identification in the field of control. Typically, observed data and ex-
ternal inputs are available, and the goal is to learn a model for the system from
this data. The learned state-space model can then be used in various different
control schemes, one popular example is the nonlinear model predictive control
(NMPC) method [39].

The state-space model described in Section 5.2 does not directly support con-
trol input. However, it is relatively simple to extend the model by augmenting
the state matrix S with the control signals and ensuring that the control states
remain constant during the learning process as described in [54, 68|.

6.2.1 Data Set

The inverted pendulum system [34], also known as the cart-pole system, is a
classic benchmark for nonlinear control and system identification. The system
consists of a pole (which acts as an inverted pendulum) attached to a cart
(Figure 6.3). The force applied to the cart can be controlled within certain
limits. Typical control task for this system is to swing the pole to an upward
position and stabilise it. This must be accomplished without the cart crashing
into the walls of the track.

The observed variables of the system are the position of the cart s, angle of
the pole measured from the upward position ¢, and their first derivatives s’
and ¢’. Control input is the force F' applied to the cart. The dynamics of the
system are described by the following differential equations [34]

. —F—mlf’? sin 0+ pcsgn(s’) ppb’
gst+cos€< m —

0" = 5 (6.1)
LG5 = i)
o F +ml(0?sinf — 0" cos 0) — ,ucsgn(:c’)’ (6.2)
M+m

where M = 1.0 kg is the mass of the cart, m = 0.1 kg is the mass of the pole,
[= 0.5 m is half the length of the pole, g = 9.8 m/s? is the acceleration of
gravity, and p. = 0.05 and g, = 0.01 are the coefficients of the friction of the
cart and the pole respectively.

In this experiment the dynamics of the system are assumed unknown, and a
NSSM describing the system is learnt from a set of training data. The data

6.2. Inverted Pendulum System 50

Figure 6.3: The cart-pole system

set was generated by simulating a discrete-time system with a time step of
At = 0.05 s. Both observation noise and process noise were Gaussian with
variance 0 = 0.001. The possible force was constrained between —10 N and
10 N, and the position between —3 m and 3 m.

The control signal used to generate the training data set was mostly random
with some hand-tuned sections to ensure that the entire state-space was suffi-
ciently represented in the training data set. Two different data sets were used,
a larger data set with 2500 samples and a smaller data set which contained
the first 500 samples of the full data set.

6.2.2 Learning

A six dimensional state-space model was used with the control signal as the
seventh state dimension. Both the observation and dynamical mapping were
modelled with MLP networks with 30 neurons. Embedding was used to ini-
tialise the sources to meaningful values as described in [71]. The sources were
initialised to the 6 first principal components of the concatenated data vector
x(t) = [xT(t) xT(t — 1) xT(t —2) xT(t —4) xT(t — 8) xI'(t — 16)]7, and this
24-dimensional embedded data vector was used for the 200 first iterations, at
which point the data vector and the observation mapping MLP were pruned.
These iterations are not displayed in the results of the next section.

Three different initialisations for the other model parameters including MLP
weights were used to avoid problems with local minima. The results in the
next section are from the initialisation that converged to the best value of the
cost function.

6.2. Inverted Pendulum System 51

6.2.3 Results

The performance of the Riemannian conjugate gradient, the conjugate gradient
and the heuristic algorithm from [71] is presented in Figure 6.4.

— — — Heuristic

Marginal log-likelihood
(IR

4000

2000

Marginal log-likelihood

-2000

10° 10° 10* 10° 10°

Figure 6.4: Comparison of the performance of the different algorithms with the
cart-pole data set using logarithmic scale for the computation time. Results
with the full data set are displayed in the top figure, results with the small
data set in the bottom figure. The compared algorithms are Riemannian con-
jugate gradient (solid line), the heuristic algorithm from [71] (dashed line) and
conjugate gradient (dash-dotted line).

With the large data set, none of the algorithms converged in reasonable time,
but the relative differences between the algorithms are rather large. Rieman-

6.3. Speech Data 52

nian conjugate gradient clearly outperformed the other algorithms in this ex-
periment, and conjugate gradient method in particular performed very poorly.
Both the model trained with Riemannian conjugate gradient and the model
trained with the heuristic algorithm have also been successfully used in a dif-
ficult control task with the simulated cart-pole system as reported in [54, 68].

For the smaller data set, the performance differences between the different
algorithms were slightly less pronounced. The performance of Riemannian
conjugate gradient remained clearly superior to the other methods, but the
performance of the conjugate gradient method and the heuristic algorithm
was quite similar in this experiment. Both Riemannian conjugate gradient
and conjugate gradient method converged to a similar local minimum with a
slightly different values of the cost function. However, it took conjugate gradi-
ent algorithm more than 10 times longer to converge. The heuristic algorithm
failed to converge in reasonable time in this experiment as well.

At least in this experiment, the smaller dimensionality of the data set reduces
the performance advantages of the Riemannian conjugate gradient. A possi-
ble explanation for the larger performance difference between the algorithms
when the amount of data increases is given by the intuitive intepretation of
natural gradient in the space of Gaussian distributions. With a larger data
set, the differences in the variances of the parameters will also likely be larger.
A gradient based learning algorithm which assumes flat geometry will try to
adjust the parameters with low variance too much compared to the variables
with high, and this can significantly slow down the overall convergence as all
the parameters must be updated in parallel. In contrast, an optimisation algo-
rithm that takes into account the Riemannian nature of the problem space will
correctly scale the step sizes so that conflicting updates are less of a problem.

6.3 Speech Data

As a final demonstration of the performance of the algorithm, the Riemannian
conjugate gradient method was used to learn a state-space model for high-
dimensional real-world data set with complex dynamics.

6.3.1 Data Set

The data set in this experiment consisted of 21 dimensional real world speech
data. The data consisted of mel-scaled log power speech spectra. A 2000 sam-

6.3. Speech Data 53

ple portion of the original data set was used, the sample contained continuous
human speech with no significant pauses. This sample size corresponds to
roughly 15 seconds of real time.

It should be noted that for any reasonable dynamical model of human speech,
a much larger data set should be used. However, even this relatively small
data set is useful for demonstrating the convergence speed of the different
algorithms.

6.3.2 Learning

In this problem a NSSM with seven sources was used. Both MLP networks of
the NSSM had 30 hidden nodes.

As with inverted pendulum system, the sources were initialised to the first
principal components of the embedded data vector x(¢). However, because of
the high dimensionality of the problem space, embedded data was not used
during the learning. It is likely that this made it more difficult to learn mean-
ingful dynamics for the data. However, since the main focus of this experiment
was to compare the convergence of the different algorithms, this should not
significantly alter the results.

6.3.3 Results

The performance of the original heuristic algorithm presented in [71] was com-
pared with conventional conjugate gradient learning and Riemannian conju-
gate gradient learning. Unfortunately a reasonable comparison with a varia-
tional EM algorithm was impossible due to the extended Kalman smoother [6]
being unstable and thus failing the E-step. The results and a part of the data
set can be seen in Figure 6.5. Five different initialisations were used to avoid
problems with poor local optima. The results presented in Figure 6.5 are from
the iterations that converged to the best local optimum.

The results with the speech data are quite similar to the inverted pendulum
system results. Riemannian conjugate gradient has a clear performance ad-
vantage over the two other algorithms. In particular, conventional conjugate
gradient learning converged very slowly in this problem and regardless of ini-
tialisation failed to reach a local optimum within reasonable time. Riemannian
conjugate gradient also outperformed the heuristic algorithm from [71]| by a
factor of more than 10.

6.3. Speech Data 54

Marginal log-likelihood

Time (s)

Figure 6.5: Top: Part of the speech spectrum data used in the experiments.
Bottom: Comparison of the performance of the different algorithms using loga-
rithmic scale for the computation time. The compared algorithms are Rieman-
nian conjugate gradient (solid line), the heuristic algorithm from [71] (dashed
line) and conjugate gradient (dash-dotted line).

Chapter 7

Discussion

It is important to note that the actual implementation of the Riemannian
conjugate gradient method is only an approximation of the exact algorithm
presented in Section 4.3. However, as the experiments in this thesis show,
even this approximation can lead to very significant performance gains.

Comparison of the presented algorithm with traditional optimisation algo-
rithms such as EM would provide valuable insight into the applicability of
the presented algorithm on realistic problems. Unfortunately, there is no ex-
act variational EM algorithm for the nonlinear state-space model used in this
work, which makes direct comparison difficult.

In theory, it is possible to use an EM-like algorithm where Kalman filter based
updates are used to infer the new states for each iteration. Unfortunately,
some initial testing indicated that iterated extended Kalman filter (IEKS) [6]
is quite unstable for at least this particular NSSM. In several simulations the
NSSM ended up in such a state that IEKS did not converge to any meaningful
states. One solution to this problem would be to use a filter that uses more sta-
ble methods to approximate the nonlinearity. One example of such advanced
filter is backward-smoothing extended Kalman filter [53]. However, because of
relatively complex implementation and concerns over increased computational
cost, no comparison with this method was made.

As mentioned earlier, the implementation of Riemannian conjugate gradient
makes use of several simplifying assumptions. Most importantly, geodesic
curves were not used for line search. For manifolds where geodesics are close
to linear, the effects of this approximation will likely be limited. It is also
worth noting that a large part of the earlier work with natural gradient makes
similar assumptions, for example many of the works of Amari [4, 3].

95

7.1. Other Applications 56

Further experiments are required to determine how much this approximation
affected the experimental results in Chapter 6. In the experiments Riemannian
conjugate converged very rapidly in the beginning. However, this convergence
rate tends to slow down, and it is possible that this was at least partially
caused by the approximations used in the implementation of the Riemannian
conjugate gradient.

It is also worth noting that superlinear convergence proofs for Riemannian
conjugate gradient involve the use of exact line search [65], which is not feasible
in practice except for some special cases. Therefore a realistic implementation
of the Riemannian conjugate gradient algorithm will already have to make use
of at least some approximations. In practice the restarting condition in the
conjugate gradient algorithm will ensure that the effects of the inexact line
search will not become too significant.

7.1 Other Applications

Even though nonlinear state-space models are used as a case study in this
thesis, the presented algorithms can be used for almost any probabistic model
where parametric approximations are used and a suitable cost function can be
derived.

In practice, there are some limitations of the applicability of the algorithm,
however. Most importantly, geometry of certain problem spaces can be so com-
plex that computation of the natural gradient is not feasible. In addition, even
if the natural gradient can be computed, the computation of the inverse Fisher
information matrix may be too time-consuming to make the implementation
useful in practice.

7.2 Future Work

The implementation of the Riemannian conjugate gradient method uses some
approximations such as using the flat geometry for line search subroutine,
which may slow down the convergence of the algorithm, especially in problems
where the geometry of the problem space is far from flat. Comparison of the
basic line search and line search along geodesics would provide valuable infor-
mation how much the geometry of the problem space affects the results. As
discussed earlier in this chapter, it is at least possible that this exact imple-

7.2. Future Work 57

mentation would provide further performance gains for the experiments in this
work as well.

Variational EM algorithms have been derived for many other parametric mod-
els, and one of these could be used to compare the performance of the algo-
rithms. One interesting test case would be mixture-of-Gaussian model, where
direct comparisons could be made with the EM-based variational Bayesian
mixture-of-Gaussians (VB-MOG) model [8].

In the experiments with the speech data in Section 6.3 the data set is so small,
that it is impossible to derive any kind of general model for speech. However,
with a much larger data set, it may be possible to find a reasonable state-
space representation for speech data. Such a model could then be used as a
preprocessing tool by using the state-space representation of speech data in
e.g. speech recognition tasks.

This kind of application requires a fast inference algorithm for quickly deriving
the state-space for a given data-set. One such algorithm is presented in [55].
Further study is also required to determine how the concept of total derivatives
presented in this paper works with natural gradient.

Chapter 8

Conclusions

In this thesis, a Riemannian conjugate gradient method for learning proba-
bilistic models was presented. Traditionally natural gradient based algorithms
have used the geometry of the true posterior distribution. In this thesis, how-
ever, the geometry of the variational approximations is used instead. This
makes the implementation simple as the space of the approximating distribu-
tions typically has less complex geometry than the space of the true posterior
distributions. It is also possible to apply the method to a wide range of differ-
ent models which use the same variational approximation.

As a case study, the algorithm was used to learn nonlinear state-space mod-
els with multiple different data sets. Riemannian conjugate gradient method
performed significantly better than other compared algorithms. Compared to
a standard conjugate gradient method, the Riemannian conjugate gradient
method was at least ten times faster with all the data sets.

o8

Bibliography

[1]

2]

3]

4]

[5]

[6]

7]

18]

[9]

S. Amari. Differential-Geometrical Methods in Statistics, volume 28 of
Lecture Notes in Statistics. Springer-Verlag, 1985.

S. Amari. Information geometry of the EM and em algorithms for neural
networks. Neural Networks, 8(9):1379-1408, 1995.

S. Amari. Natural gradient works efficiently in learning. Neural Compu-
tation, 10(2):251-276, 1998.

S. Amari, A. Cichocki, and H. Yang. A new learning algorithm for blind
signal separation. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo,
editors, Advances in Neural Information Processing Systems 8, pages 757—
763. MIT Press, Cambridge, MA, USA, 1996.

S. Amari and H. Nagaoka. Methods of Information Geometry. American
Mathematical Society and Oxford University Press, Providence, Rhode
Island, 2000.

B. Anderson and J. Moore. Optimal Filtering. Prentice-Hall, Englewood
Cliffs, NJ, 1979.

D. K. Arrowsmith and C. M. Place. An Introduction to Dynamical Sys-
tems. Cambridge University Press, Cambridge, 1990.

H. Attias. A variational Bayesian framework for graphical models. In
S. Solla, T. Leen, and K.-R. Miiller, editors, Advances in Neural Informa-
tion Processing Systems 12, pages 209-215. MIT Press, Cambridge, MA,
USA, 2000.

D. Barber and C. Bishop. Ensemble learning in Bayesian neural networks.
In C. Bishop, editor, Neural Networks and Machine Learning, pages 215—
237. Springer, Berlin, 1998.

29

BIBLIOGRAPHY 60

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

O. E. Barndorff-Nielsen. Likelihood and observed geometries. Ann.
Statist., 14:856-873, 1986.

C. Bishop. Pattern Recognition and Machince Learning. Springer, Cam-
bridge, 2006.

J. M. Corcuera and F. Giummolé. A characterization of monotone and
regular divergences. Annals of the Institute of Statistical Mathematics,
50(3):433-450, 1998.

T. M. Cover and J. A. Thomas. Elements of Information Theory. J. Wiley,
New York, 1991.

R. T. Cox. Probability, frequency and reasonable expectation. American
Journal of Physics, 14(1):1-13, 1946.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. J. of the Royal Statistical Society,
Series B (Methodological), 39(1):1-38, 1977.

A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms
with orthogonality constraints. SIAM Journal on Matriz Analysis and
Applications, 20(2):303-353, 1998.

A. Edelman and S. T. Smith. On conjugate gradient-like methods for
eigen-like problems. BIT Numerical Mathematics, 36(3):494-508, 1996.

R. Fletcher and C. M. Reeves. Function minimization by conjugate gra-
dients. The Computer Journal, 7:149-154, 1964.

A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis.
Chapman & Hall/CRC Press, Boca Raton, Florida, 1995.

Z. Ghahramani and M. Beal. Propagation algorithms for variational
Bayesian learning. In T. Leen, T. Dietterich, and V. Tresp, editors, Ad-
vances in Neural Information Processing Systems 13, pages 507-513. The
MIT Press, Cambridge, MA, USA, 2001.

7. Ghahramani and S. Roweis. Learning nonlinear dynamical systems
using an EM algorithm. In M. Kearns, S. Solla, and D. Cohn, editors,

Advances in Neural Information Processing Systems 11, pages 431-437.
The MIT Press, Cambridge, MA, USA, 1999.

G. H. Golub and C. F. V. Loan. [terative Methods for Linear Systems,
chapter 10. Johns Hopkins University Press, Baltimore, 3rd edition, 1996.

BIBLIOGRAPHY 61

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

33]

L. Grippo and S. Lucidi. A globally convergent version of the Polak-
Ribiére conjugate gradient method. Math. Programming, 78:375-391,
1997.

S. Haykin. Neural Networks — A Comprehensive Foundation, 2nd ed.
Prentice-Hall, 1999.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards,
49:409-436, 1952.

A. Honkela. Approximating nonlinear transformations of probability dis-
tributions for nonlinear independent component analysis. In Proc. 200/
IEEE Int. Joint Conf. on Neural Networks (IJCNN 2004), pages 2169—
2174, Budapest, Hungary, 2004.

A. Honkela. Advances in Variational Bayesian Nonlinear Blind Source
Separation. PhD thesis, Helsinki University of Technology, Espoo, Fin-
land, 2005.

A. Honkela and H. Valpola. Unsupervised variational Bayesian learning of
nonlinear models. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances
in Neural Information Processing Systems 17, pages 593-600. MIT Press,
Cambridge, MA, USA, 2005.

A. Honkela, H. Valpola, and J. Karhunen. Accelerating cyclic update al-
gorithms for parameter estimation by pattern searches. Neural Processing
Letters, 17(2):191-203, 2003.

R. Hooke and T. A. Jeeves. ‘Direct search’ solution of numerical and
statistical problems. J. of the ACM, 8(2):212-229, 1961.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359-366, 1989.

A. Ilin and H. Valpola. On the effect of the form of the posterior approx-
imation in variational learning of ICA models. Neural Processing Letters,
22(2):183-204, 2005.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to
variational methods for graphical models. In M. Jordan, editor, Learning
in Graphical Models, pages 105-161. The MIT Press, Cambridge, MA,
USA, 1999.

BIBLIOGRAPHY 62

[34] H. Kimura and S. Kobayashi. Efficient non-linear control by combining
Q-learning with local linear controllers. In Proc. ICML, pages 210-219,
1999.

[35] H. Lappalainen and J. Miskin. Ensemble learning. In M. Girolami, edi-
tor, Advances in Independent Component Analysis, pages 75—92. Springer-
Verlag, Berlin, 2000.

[36] S. Ma, C. Ji, and J. Farmer. An efficient EM-based training algorithm for
feedforward neural networks. Neural Computation, 10(2):243-256, 1997.

[37] D. J. C. MacKay. Information Theory, Inference, and Learning Algo-
rithms. Cambridge University Press, 2003.

[38] D. Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. SIAM Journal of Appl. Math., 11:431-441, 1963.

[39] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert. Constrained model pre-
dictive control: Stability and optimality. Automatica, 36:789-814, 2000.

[40] A. Miele and J. W. Cantrell. Study on memory gradient method for the
minimization of function. Journal of Optimization Theory and Applica-
tion, 3:459-470, 1969.

[41] T. Minka. Expectation propagation for approximate Bayesian inference.
In Proceedings of the 17th Conference in Uncertainty in Artificial Intelli-
gence, UAI 2001, pages 362-369, 2001.

[42] J. Miskin and D. J. C. MacKay. Ensemble learning for blind source sep-
aration. In S. Roberts and R. Everson, editors, Independent Component

Analysis: Principles and Practice, pages 209-233. Cambridge University
Press, 2001.

[43] M. F. Moller. A scaled conjugate gradient algorithm for fast supervised
learning. Newural Networks, 6:525-533, 1993.

[44] M. K. Murray and J. W. Rice. Differential Geometry and Statistics. Chap-
man & Hall, 1993.

[45] J. L. Nazareth. A conjugate direction algorithm for unconstrained mini-
mization without line searches. Journal of Optimization Theory and Ap-
plication, 23:373-387, 1977.

[46] R. M. Neal. Bayesian Learning for Neural Networks, Lecture Notes in
Statistics No. 118. Springer-Verlag, 1996.

BIBLIOGRAPHY 63

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In M. I. Jordan, editor, Learning
in Graphical Models, pages 355-368. The MIT Press, Cambridge, MA,
USA, 1999.

J. Nocedal. Theory of algorithms for unconstrained optimization. Acta
Numerica, 1:199-242, 1991.

K. B. Petersen, O. Winther, and L. K. Hansen. On the slow conver-
gence of EM and VBEM in low-noise linear models. Neural Computation,
17(9):1921-1926, 2005.

E. Polak and G. Ribiére. Note sur la convergence de méthodes de direc-
tions conjugées. Revue Francaise d’Informatique et de Recherche Opéra-
tionnelle, 16:35-43, 1969.

M. J. D. Powell. Restart procedures for the conjugate gradient method.
Mathematical Programming, 12:241-254, 1977.

M. J. D. Powell. Approzimation Theory and Method, chapter 4. Cam-
bridge University Press, Cambridge, 1981.

M. Psiaki. Backward-smoothing extended Kalman filter. Journal of Guid-
ance, Control, and Dynamics, 28(5), Sep—Oct 2005.

T. Raiko and M. Tornio. Learning nonlinear state-space models for con-
trol. In Proc. Int. Joint Conf. on Neural Networks (IJCNN’05), pages
815-820, Montreal, Canada, 2005.

T. Raiko, M. Tornio, A. Honkela, and J. Karhunen. State inference in
variational Bayesian nonlinear state-space models. In Proceedings of the
6th International Conference on Independent Component Analysis and
Blind Source Separation (ICA 2006), pages 222-229, Charleston, South
Carolina, USA, March 2006.

C. R. Rao. Information and accuracy attainable in the estimation of
statistical paramaters. Bulletin of Calcutta Mathematical Society, 37:81—
91, 1945.

M. Rattray and D. Saad. Transients and asymptotics of natural gradient
learning. In Proc. of the 8th International Conference on Artificial Neural
Networks (ICANN 98), pages 183-188, 1998.

BIBLIOGRAPHY 64

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

67]

[68]

[69]

R. Salakhutdinov and S. T. Roweis. Adaptive overrelaxed bound opti-
mization methods. In Proc. 20th International Conference on Machine
Learning (ICML 2003), pages 664—671, 2003.

R. Salakhutdinov, S. T. Roweis, and Z. Ghahramani. Optimization with
EM and expectation-conjugate-gradient. In Proc. 20th International Con-
ference on Machine Learning (ICML 2003), pages 672-679, 2003.

M. Sato. Online model selection based on the variational Bayes. Neural
Computation, 13(7):1649-1681, 2001.

L. E. Scales. Introduction to Non-Linear Optimization. Springer-Verlag,
New York, 1985.

C. E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27:379-423 and 623-656, 1948.

J. R. Shewchuk. An introduction to the conjugate gradient method with-
out the agonizing pain. Technical Report CMU-CS-94-125, School of Com-
puter Science, Carnegie Mellon University, 1994.

L. T. Skovgaard. A Riemannian geometry of the multivariate Gaussian
model. Scandinavian Journal of Statistics, 11(4):211-223, 1984.

S. T. Smith. Geometric Optimization Methods for Adaptive Filtering. PhD
thesis, Harvard University, Cambridge, Massachusetts, 1993.

S. T. Smith. Optimization techniques on Riemannian manifolds. Fields
Institute Communications, pages 113-146, 1994.

T. Tanaka. Information geometry of mean-field approximation. In M. Op-
per and D. Saad, editors, Advanced Mean Field Methods: Theory and
Practice, pages 259-273. The MIT Press, Cambridge, MA, USA, 2001.

M. Tornio and T. Raiko. Variational Bayesian approach for nonlinear
identification and control. In Proceedings of the IFAC Workshop on Non-
linear Model Predictive Control for Fast Systems, NMPC FS06, pages
41-46, Grenoble, France, 2006.

H. Valpola. Bayesian Ensemble Learning for Nonlinear Factor Analysis.
PhD thesis, Helsinki University of Technology, Espoo, Finland, 2000. Pub-
lished in Acta Polytechnica Scandinavica, Mathematics and Computing
Series No. 108.

BIBLIOGRAPHY 65

[70] H. Valpola, A. Honkela, and X. Giannakopoulos. Matlab codes for
the NFA and NDFA algorithms. http: //www. cis. hut. fi/projects/
bayes/ software/, 2002.

[71] H. Valpola and J. Karhunen. An unsupervised ensemble learning

method for nonlinear dynamic state-space models. Neural Computation,
14(11):2647-2692, 2002.

[72] J. Winn and C. M. Bishop. Variational message passing. Journal of
Machine Learning Research, 6:661-694, April 2005.

[73] Y. Yang. Optimization on Riemannian manifold. In Proc. of the 38th
Conference on Decision and Control, pages 888-893, 1999.

