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Chapter 1Introdu
tion
1.1 Problem SettingThe typi
al goal in ma
hine learning is to build a model for a given set ofdata. Usually these models are spe
i�ed by a set of parameters, values ofwhi
h are optimised until the model des
ribes the data well enough. Manydi�erent optimisation algorithms are used to learn these models, in
ludingthe EM-algorithm and various dire
t optimisation algorithms su
h as gradientdes
ent.Most traditional optimisation algorithms assume that this parameter spa
e is�at. However, in many 
ases, espe
ially in statisti
al problems, the a
tualgeometry of the problem spa
e is not �at but a 
urved Riemannian mani-fold. Taking this property into a

ount 
an lead to more e�
ient optimisationalgorithms, the most popular example of whi
h is the natural gradient algo-rithm [3℄.Variational Bayes [9, 35, 37, 11℄, also previously known as Bayesian ensemblelearning, is an e�
ient algorithm for approximate Bayesian inferen
e and it isoften used for statisti
al learning of probabilisti
 models. One su
h 
lass ofprobabilisti
 models is nonlinear state-spa
e model (NSSM).1.2 Aim of the ThesisThe aim of this thesis has been to develop a more e�
ient learning algo-rithm for variational Bayesian learning of NSSMs based on natural gradient6



1.3. Stru
ture and Contributions of the Thesis 7learning. The parti
ular NSSM used in this work is the nonlinear dynami
alfa
tor analysis (NDFA) model developed by Dr. Harri Valpola and Prof. JuhaKarhunen [71℄.The algorithm was implemented by extending the publi
ly available NDFApa
kage [70℄. The performan
e of the algorithm was veri�ed by using it tomodel two di�erent syntheti
 data sets and a real-world spee
h data set.Even though state-spa
e models are used as an example in this work, thepresented algorithm 
an be applied to almost any probabilisti
 model wherethe parameter spa
e is a Riemannian manifold.1.3 Stru
ture and Contributions of the ThesisThis thesis is organised as follows. Chapter 2 gives an introdu
tion to Bayesianlearning in general and variational Bayes in parti
ular. Information geometryand natural gradient learning are dis
ussed in Chapter 3. Conjugate gradientmethod and its extension to Riemannian manifolds are studied in Chapter 4 asmore e�
ient alternatives to gradient des
ent learning. Chapter 5 introdu
esnonlinear state-spa
e models as a 
ase study for the presented algorithm andintrodu
es the dynami
al model used in the examples and experiments. This
hapter also in
ludes an overview of implementation details.Experimental results with two syntheti
 data sets and real world spee
h dataare presented and analysed in Chapter 6. The bene�ts and restri
tions ofthe proposed algorithm and potential future work are dis
ussed in Chapter 7.Finally, overview of the work and some 
on
lusions are presented in Chapter 8.The original idea to use methods based on natural gradient with nonlinear dy-nami
al fa
tor analysis (NDFA) pa
kage [70℄ arose from the observation of thepoor performan
e of the 
onjugate gradient method with NDFA. Dis
ussionbetween Dr. Antti Honkela, Tapani Raiko, and the author lead to an imple-mentation of a natural gradient method based on a remark in [69℄. The ideato use Riemannian 
onjugate gradient to further improve the performan
e isdue to the author. The implementation of both the original natural gradientmethod and the Riemannian 
onjugate gradient method for NDFA were alsodone by the author. The 
ode is based on the original nonlinear dynami
alfa
tor analysis implementation by Dr. Harri Valpola and Dr. Antti Honkelaand its later extensions by Dr. Antti Honkela. All the experiments presentedin Chapter 6 were done by the author.



Chapter 2Bayesian Inferen
e
This 
hapter gives a brief introdu
tion to Bayesian probability theory and in-trodu
es the variational approximation of the posterior probability density.More detailed des
ription of the variational Bayesian learning (sometimes re-ferred to as ensemble learning) 
an be found e.g. in [9, 69, 35, 33, 37, 11℄.A brief introdu
tion to Bayesian statisti
s is given in Se
tion 2.1. The im-portant 
on
ept of Kullba
k-Leibler divergen
e is introdu
ed in Se
tion 2.2.Di�erent methods of approximating the typi
ally intra
table posterior prob-ability distribution are dis
ussed in Se
tion 2.3. The variational Bayesianapproximation is dis
ussed in more detail in Se
tion 2.4. Finally, the popularEM-algorithm is introdu
ed in Se
tion 2.5.2.1 Introdu
tion to Bayesian Inferen
eIn the Bayesian approa
h to probability theory, probability is a subje
tivemeasure of degree of belief of an un
ertain event. In a 
ontrast to frequentistapproa
h, any kinds of events 
an be assigned probabilities, even if the eventitself is 
ompletely deterministi
.It has been shown [14℄ that from some very general assumptions and 
ompat-ibility with 
ommon sense these degrees of beliefs must satisfy

p(B|A) + p(¬B|A) = 1 (2.1)and
p(C,B|A) = p(C|B,A)p(B|A), (2.2)8



2.1. Introdu
tion to Bayesian Inferen
e 9where A, B, and C are propositions and ¬B is the negation of B. The tworules are known as the sum rule and the produ
t rule, respe
tively. Fromthese rules it is relatively straightforward to derive the basi
 laws of Bayesianprobability, namely the Bayes' rule and the marginalisation prin
iple.2.1.1 Bayes' RuleThe Bayes' rule
p(C|B,A) =

p(B|C,A)p(C|A)

p(B|A)
. (2.3)dire
tly follows from the produ
t rule (2.2). Bayes' rule determines how alearning system should update its prior beliefs A after re
eiving new informa-tion (observation) B. Under the usual naming 
onventions, C is known as theproposition of interest, p(B|C,A) is known as the likelihood and p(C|A) is theprior probability. The s
aled produ
t p(C|B,A) of the prior probability andthe likelihood is known as the posterior probability [27℄.2.1.2 Marginalisation Prin
ipleIn addition to Bayes' rule, we 
an also derive the marginalisation prin
iplefrom Equations (2.1) and (2.2). Given a set of mutually ex
lusive propositions

{Ck} whi
h satisfy
n∑

i=1

p(Ci|A) = 1, (2.4)the marginalisation prin
iple 
an be written as
p(B|A) =

n∑

i=1

p(B,Ci|A) =

n∑

i=1

p(B|Ci, A)p(Ci|A) (2.5)for the dis
rete 
ase and
p(B|A) =

∫

θ

p(B, θ|A)dθ =

∫

θ

p(B|θ, A)p(θ|A)dθ (2.6)for the 
ontinuous 
ase. Whereas Bayes' rule is used to update the beliefs ofthe system, the marginalisation prin
iple 
an be used to make predi
tions andgeneralisations.



2.2. Entropy and Kullba
k-Leibler Divergen
e 102.1.3 Model ComparisonWhile building a model for a set of observations, too simple models tend torepresent the observations poorly. This problem is known as under�tting. Onthe other hand, while very 
omplex models 
an represent the observationsa

urately, they often generalise poorly. This is known as over�tting. This
an be used to justify the prin
iple known as O

am's Razor: the simplestexplanation that adequately des
ribes the observations is usually the best.O

am's Razor has a straightforward intepretation in statisti
s. Given a setof observations X and assuming a 
onstant prior, di�erent models H1, H2, . . .
an be dire
tly 
ompared by their marginal likelihood
p(X|Hi) =

∫

θ

p(X, θ|Hi)dθ =

∫

θ

p(X|θ,Hi)p(θ|Hi)dθ. (2.7)2.1.4 Conjugate PriorsAn important way to simplify Bayesian inferen
e is provided by 
onjugatepriors. Given a 
lass of likelihood fun
tion p(X|θ,H), the priors p(θ|H) are
alled 
onjugate if the posteriors p(θ|X,H) belong to the same distribution
lass P as the priors.If the 
lass P has a 
ommon fun
tional form, 
onjugate priors will greatlysimplify inferen
e. Conjugate priors exist for many important distributionfamilies. For example, all distributions in the exponential family have 
onju-gate priors [19℄.2.2 Entropy and Kullba
k-Leibler Divergen
eThe information 
ontent of a dis
rete random variable x is given by the entropyof the distribution p(x)
H(x) = −

∑

i

p(xi) log p(xi), (2.8)where the summation is done over all the possible values of xi. The dis
rete en-tropy H(x) is always non-negative and it gives the lower bound to the numberof bits needed on average to en
ode the information 
ontained in x [37, 24, 13℄.



2.3. Posterior Approximations 11It is also possible to generalise the 
on
ept of entropy to the 
ontinuous vari-ables. If the variable x is 
ontinous, summation is repla
ed by integration andthe di�erential entropy is given by
h(x) =

∫

R

p(x) log p(x)dx. (2.9)In 
ontrast to dis
rete entropy, di�erential entropy has no lower bound and itis typi
ally a�e
ted by reparametrisation. In the spa
e of probability distri-butions, the dis
rete entropy is maximised by the uniform distribution. Forthe parti
ular 
ase of �xed 
ovarian
e, di�erential entropy is maximised by theGaussian distribution [62, 13, 37℄.2.2.1 Kullba
k-Leibler Divergen
eThe information di�eren
e between two di�erent distributions p(x) and q(x)is measured by the relative entropy or Kullba
k-Leibler divergen
e
DKL(q||p) = Eq

{
log

q(x)

p(x)

}
=

∫

R

q(x) log
q(x)

p(x)
dx. (2.10)Kullba
k-Leibler divergen
e is non-negative and it is invariant under invertiblereparameterisations. Even though Kullba
k-Leibler 
an be seen as a measureof distan
e between two distributions, it is not an a
tual metri
 sin
e it isneither symmetri
 nor satis�es the triangle inequality [27, 13℄.2.3 Posterior ApproximationsFrom the theoreti
al point of view, Bayesian statisti
s provide the tools forperforming optimal inferen
e. All the required information is 
ontained in theposterior distribution, whi
h 
an in theory be 
omputed using the relativelysimple tools of Bayesian statisti
s. Unfortunately, in pra
ti
e the exa
t 
ompu-tation of the posterior probability distribution is not feasible ex
ept for somesimple spe
ial 
ases. Typi
al solutions to over
ome this problem in
lude ap-proximating the exa
t posterior with point estimates, sampling, or parametri
approximations.



2.3. Posterior Approximations 122.3.1 Point EstimatesExamples of point estimates in
lude maximum a posteriori (MAP) estimationand the related maximum likelihood (ML) estimation, whi
h aim to maximisethe posterior density and the likelihood, respe
tively. Point estimates are easyto 
ompute, but unfortunately they are often prone to over�tting. Espe
iallyin higher dimensions MAP estimates su�er from the fa
t that high probabilitydensity does not guarantee the presen
e of high probability mass. Narrowspikes with high probability density may a
tually have very little probabilitymass as seen in Figure 2.1 [69℄.

Figure 2.1: Example of probability density in a two dimensional 
ase. Thespike on the right has the highest probability density even though most of theprobability mass is elsewhere.2.3.2 Sampling MethodsSampling methods are based on drawing samples from the true posterior distri-bution, whi
h is usually a

omplished by 
onstru
ting a Markov 
hain for themodel parameters θ and using the posterior distribution as the stationary dis-tribution of the Markov 
hain. These samples 
an then be used to approximate



2.4. Variational Bayes 13
omputations su
h as integration over the true posterior.The resulting method is known as Markov Chain Monte Carlo (MCMC) andthe most important su
h algorithms are the Metropolis-Hastings algorithmand Gibbs sampler. Sampling methods 
an be applied to a very wide range ofdi�erent problems and with enough samples the results are very a

urate androbust against over�tting. Unfortunately, sampling methods s
ale poorly tohigh dimemsional problems as the number of samples needed grows extremelylarge and in some problems it is also hard to determine when the algorithmhas 
onverged [46, 37℄.2.3.3 Parametri
 ApproximationsParametri
 approximations strike a balan
e between the point estimates andsampling methods; they 
an be 
omputed quite e�
iently and yet they aretypi
ally robust against over�tting. This work 
on
entrates on the variationalapproximation, whi
h is presented in the next se
tion.2.4 Variational BayesThere exists numerous di�erent parametri
 approximations, the one 
onsid-ered in this work is the variational approximation, whi
h leads to variationalBayesian learning. Variational Bayes [37, 11, 35, 9℄ is a way to approximate theposterior density. For a model with parameters θ and observed data X, vari-ational Bayes tries to maximise a lower bound on the marginal log-likelihood
B(q(θ|ξ)) =

〈
log

p(X, θ)

q(θ|ξ)

〉
= log p(X) −DKL(q(θ|ξ)||p(θ|X)), (2.11)where ξ are the parameters of the approximating distribution. This optimisa-tion problem is equivalent to minimising the mis�t between the exa
t poste-rior pdf p(θ|X) and its parametri
 approximation q(θ|ξ) 
hara
terised by theKullba
k-Leibler divergen
e DKL(q||p) between p and q [20, 72℄.The variational approximation has several desirable properties. First of all,the approximation is very robust against over�tting and the density estimatesare relatively fast to evaluate 
ompared to e.g. sampling methods. In addi-tion, variational approximation provides a 
ost fun
tion for 
omparing di�er-ent models. From the point of view of this work, it is also important to note



2.4. Variational Bayes 14that variational approximation has a straightforward geometri
 interpretationon 
urved manifolds as dis
ussed in Se
tion 3.1.3.Unfortunately, variational Bayes also has some short
omings. First of all, eventhough the estimates are fast to evaluate 
ompared to sampling methods, theapproximation is in many 
ases mu
h slower to evaluate than a point estimate.Additionally, variational Bayes has a tenden
y to underestimate the varian
e ofthe true posterior distribution, whi
h 
an lead to problems in some 
ases. Animportant alternative to variational Bayes is given by expe
tation propagation(EP) algorithm [41℄, whi
h 
an solve some of the problems of the variationalBayes method. Unfortunately, ex
eptation propagation algorithms are moredi�
ult to implement than variational Bayesian alternatives, and the la
k ofa simple 
ost fun
tion in ex
eptation propagation also means that it is hardto guarantee the 
onvergen
e of the algorithm.2.4.1 Fa
torisationIn many problems where the posterior dependen
ies are relatively weak, itis bene�
ial to assume that the di�erent model parameters are independent.Under this assumption the posterior approximations 
an be written as
q(θ) =

∏

i

q(θi). (2.12)This fa
torisation will greatly simplify the 
omputation of the bound B as theequation 
an be written as a sum of simple terms and the integrals over theposterior approximation be
ome independent.Experiments by Miskin and Ma
Kay [42℄ with variational Bayes indi
ate thatin the 
ase of blind sour
e separation the di�eren
e in model quality betweenfull 
ovarian
e and fa
torial approximation is small while the di�eren
e in
omputational 
omplexity is signi�
ant. However, experiments by Ilin andand Valpola [32℄ suggest that using fully fa
torised posterior approximation
an lead to very poor results in some 
ases, and 
are must be taken while
hoosing the level of fa
torisation.Therefore in problems where the posterior dependen
ies are signi�
ant, thefull fa
torial approximation 
annot be used. In many su
h problems it is stillsu�
ient to model only some of dependen
ies, and the full 
ovarian
e maynot be needed. Example of su
h partial fa
torial approximation is modelingonly the dependen
ies between subsequent samples of the same variable in adynami
al model, whi
h is used in nonlinear dynami
al fa
tor analysis (NDFA)model presented in Se
tion 5.2.



2.5. EM Algorithm 152.5 EM AlgorithmTraditionally, the expe
tation maximisation (EM) algorithm [15℄ and more re-
ently its variational Bayesian extension [47℄ have been used to solve a widevariety of ma
hine learning problems. This work 
on
entrates on dire
t opti-misation algorithms su
h as the 
onjugate gradient method, but for the sakeof 
ompleteness, the EM algorithm is shortly introdu
ed as well.The EM algorithm alternates between the E-step, where the posterior distri-bution of the states S is 
omputed using the 
urrent estimate of parameters
θt−1:

qt(S) = p(S|X, θt−1,H), (2.13)and the M-step, where the expe
ted log-likelihood is maximised with respe
tto the parameters θ:
θt = argmaxθEq(log p(S,X|θ,H)). (2.14)The EM algorithm 
an be applied to a wide variety of di�erent problems and itis guaranteed to 
onverge to a lo
al optimum apart from some spe
ial 
ases [15,47℄. Unfortunately, in 
ertain problems the EM algorithm 
an 
onverge veryslowly. There exists a number of ways to speed up the 
onvergen
e of EMalgorithm. One simple way is to use pattern sear
h methods [30, 29℄. Anothersolution is given by adaptive overrelaxation [58℄. These methods are easy toimplement, but typi
ally they in
rease performan
e only by a small 
onstantfa
tor while retaining the linear 
onvergen
e of EM algorithm.Another more 
omplex approa
h is proposed in [59℄. Based on the fa
t thatthe perfoman
e of the EM algorithm is related to the amount of missing in-formation, an algorithm is derived whi
h approximates this ratio of missinginformation, and based on this information, updates the parameters using ei-ther the EM algorithm or a 
onjugate gradient based optimization method, inthis 
ase expe
tation-
onjugate-gradient (ECQ) [59℄.



Chapter 3Information Geometry
Applying di�erential geometry to families of probability distributions is knownas information geometry. This 
hapter provides only a brief introdu
tion tomany important 
on
epts of information geometry, and is mostly restri
ted to
on
epts relevant to this work. More detailed and 
omprehensive introdu
tions
an be found e.g. in [44, 1, 5℄.The basi
 
on
epts of information geometry are presented in Se
tion 3.1. InSe
tion 3.2 the natural gradient is presented, and its exa
t form is also derivedfor some example distribution families.3.1 Introdu
tion to Information GeometryFor the purposes of this work, we restri
t ourselves to manifolds for whi
hglobal 
oordinate systems exist. Under this assumption, we 
an informallyde�ne a manifold as follows. The set S is a (C∞ di�erentiable) n-dimensionalmanifold, if there exists a set of 
oordinate systems A for S whi
h satis�es [5℄(i) Ea
h element φ of A is a one-to-one mapping from S to some open subsetof R

n.(ii) For all ψ ∈ A, given any one-to-one mapping φ from S to R
n, thefollowing holds:

φ ∈ A⇐⇒ φ · ψ−1 is a C∞ di�eomorphism, (3.1)where C∞ di�eomorphism means an invertible fun
tion from one mani-fold to another manifold, su
h that both the fun
tion and its inverse are16



3.1. Introdu
tion to Information Geometry 17smooth (in�nitely many times di�erentiable).Let S be a manifold with a smoothly varying inner produ
t <,>p de�ned atea
h point p ∈ S for every ve
tor pair at that point. The mapping g : p 7→<,>pis 
alled the Riemannian metri
 tensor and the manifold S with su
h a metri
is a 
alled a Riemannian manifold. The exa
t form of this inner produ
t isgiven later in this se
tion in Equation (3.7).For the spa
e of probability distributions q(θ|ξ), the most popular Riemannianmetri
 tensor is given by the Fisher information [56, 1℄
Iij(ξ) = gij(ξ) = E

{
∂ ln q(θ|ξ)

∂ξi

∂ ln q(θ|ξ)

∂ξj

}
= E

{
−∂

2 ln q(θ|ξ)

∂ξi∂ξj

}
, (3.2)where the last equality is valid given 
ertain regularity 
onditions [44℄. It is alsopossible to de�ne many other Riemannian metri
s for the spa
e of probabilitydistributions, e.g. metri
s based on the 
on
ept of observed information, 
alledyokes [10℄. However, Fisher information is a unique metri
 for probability dis-tributions in the sense that it is the only metri
 whi
h is both invariant undertransformations of the random variables and 
ovariant under reparametrisa-tions [12, 5℄.Finally, it should be noted that information geometry is 
losely related to thegeometries used in the general theory of relativity, where the spa
e-time ismodelled as a four-dimensional manifold with Lorentzian metri
 and many ofthe 
on
epts presented in this 
hapter su
h as metri
 
onne
tions are used,albeit the terminology in general relativity is di�erent [44℄.3.1.1 Tangent Spa
es and Ve
tor FieldsThe straightforward intepretation of ve
tors as straight lines 
onne
ting twodi�erent points in Eu
lidian spa
e does not make sense on Riemannian mani-folds. The 
urvature of the spa
e means there is no global notion of straight-ness. Be
ause of this, ve
tors on Riemannian manifolds are de�ned as tangentve
tors, lo
al entities that are free of the global 
oordinate system [1℄.The tangent ve
tor v at a point p ∈ S to a 
urve γ(t) for whi
h γ(0) = p isde�ned by

v =
dγ

dt
|t=0. (3.3)The tangent spa
e Tp ∼ R

n at point p ∈ S is the ve
tor spa
e obtained by
ombining the tangent ve
tors (i.e. lo
al linearisations) of all the smooth 
urves



3.1. Introdu
tion to Information Geometry 18passing through the point. For ea
h 
oordinate system φ there exists a spe
ialset of 
urves {φi} along whi
h only one 
oordinate 
hanges. Su
h 
urves areknown as 
oordinate 
urves and the 
orresponding fun
tions are known as the
oordinate fun
tions. The tangent ve
tors of 
oordinate 
urves at any givenpoint p form the natural basis of the tangent spa
e Tp, and any tangent ve
tor
v ∈ Tp 
an be written as a linear 
ombination of the basis ve
tors [1℄. The
on
ept of a tangent spa
e and 
oordinate 
urves on Riemannian manifolds isillustrated in Figure 3.1.
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lidian spa
e S = {w ∈ R
n} with orthonormal 
oordinate system thesquared length (also known as the Eu
lidean norm) of a ve
tor v is given by

‖v‖2 =
∑

i

v2
i = vTv. (3.4)In the 
ase of 
urved manifold there exists no orthonormal linear 
oordinates,and (Equation 3.4) is no longer valid. In Riemannian spa
e the squared lengthof a tangent ve
tor v ∈ Tp at point p ∈ S is given by the quadrati
 form

‖v‖2 =
∑

i,j

gijvivj = vTGv, (3.5)where G = (gij) is the Riemannian metri
 tensor at point p [44℄.



3.1. Introdu
tion to Information Geometry 19In addition to the norm of a tangent ve
tor, we 
an also de�ne an inner produ
tbetween two ve
tors v ∈ Tp and u ∈ Tp. In Eu
lidean orthonormal spa
e theinner produ
t is given by
< v,u >= v · u =

∑

i

viui = vTu, (3.6)whi
h is independent of the point p. In the general 
ase of Riemannian geom-etry the inner produ
t is given by
< v,u >p= v · u =

∑

i,j

gijviui = vTGu, (3.7)whi
h unlike the Eu
lidian equivalent also depends on the point p. In theEu
lidian orthonormal 
ase G = I and Equations 3.5 and 3.7 simplify tothe Equations 3.4 and 3.6, as should be expe
ted [1℄. Sin
e inner produ
t is
onjugate symmetri
, v · u = u · v for real-valued ve
tors also in Riemannianspa
e.In addition to single ve
tors on manifolds, it also useful to de�ne ve
tor �elds,i.e. ve
tor valued fun
tions. Formally, a ve
tor �eld A(p) ∈ Tp is a mappingfrom the manifold S to Tp, whi
h assigns a ve
tor A(p) ∈ Tp to ea
h point
p ∈ S.3.1.2 Conne
tions and Parallel TransportGiven a 
urve γ : [0, 1] 7→ S, its length d is given by

d =

∫
dt

√√√√
∑

i,j

gij

dφi(γ(t))

dt

dφj(γ(t))

dt
, (3.8)where φi are the 
oordinate fun
tions. The minimiser of this distan
e over all
urves 
onne
ting two points

dmin = min
γ

∫
dt

√√√√
∑

i,j

gij

dφi(γ(t))

dt

dφj(γ(t))

dt
. (3.9)is the (Riemannian) distan
e between the two points, and the 
orresponding
urve γ is a metri
 
onne
tion, as dis
ussed later in this se
tion [44℄.In addition to the simple 
on
ept of length, it is often useful to measure therate of 
hange in ve
tor �elds along a 
urve. There is one major 
ompli
a-tion, however. In Riemannian spa
e it is meaningless to dire
tly 
ompare two



3.1. Introdu
tion to Information Geometry 20tangent ve
tors vp and vp′ if the points p and p′ are di�erent, as the basisve
tors for the two points are normally not the same. However, it is possibleto derive a linear mapping Φ that allows the 
omparison of two tangent ve
torsfrom di�erent tangent spa
es. Let {γµ} be the set of 
urves passing throughpoint p ∈ S and eµ the tangent ve
tor of 
urve γµ at point p. Furthermore,let {p′} be the points near p whi
h satisfy p′ = γµ(δt) for some 
urve γµ andsmall δt > 0. Now we 
an de�ne Φp
µ,δt as the linear mappings from p′ to pwhi
h redu
e to identity as δt → 0. Be
ause of linearity, these mappings aredetermined by their a
tions on 
oordinate ve
tors in points p and p′

Φµ,δt : eµ,δt
ρ 7→ Φν

µ,δt(e
µ,δt
ρ )eν , (3.10)for ea
h ν = 1 . . . n where {eµ,δt

ρ } and {eν} are the 
oordinate basis ve
torsat points p′ and p, respe
tively, and Φν
µ,δt is the νth 
omponent of the linearmapping. Be
ause of the property that these mappings redu
e to identity as

δt→ 0, we 
an also write for small δt
Φµ,δt(e

µ,δt
ν ) − eν = δtΓρ

µνeρ, (3.11)where the 
onstants Γρ
µν are known as the Christo�el symbols or the 
oe�
ientsof the a�ne 
onne
tion [44, 1℄.Analogous to a s
alar derivative, we 
an now de�ne the 
ovariant derivatives [1℄of eν as

∇µeν = lim
δt→0

Φp
µ,δt(e

µ,δt
ν ) − eν

δt
= Γρ

µνeρ. (3.12)For a s
alar fun
tion f , the 
ovariant derivative is simply the ordinary deriva-tive
∇µf = ∂µf. (3.13)After some manipulation, the 
ovariant derivative of a ve
tor �eld A is givenby

∇µA = (∂µA
ρ + Γρ

µνA
ν)eρ. (3.14)Using the de�nition of 
ovariant derivative, we 
an now de�ne a pro
ess knownas parallel transport along a 
urve, whi
h 
an be used to 
ompare ve
tors fromdi�erent tangent spa
es along a 
urve. Formally, a ve
tor �eld A(p) ∈ Tp issaid to be parallelly transported along a 
urve γ with tangent ve
tor �eld B(p)if

∇BA = 0. (3.15)A 
urve γ whi
h parallelly transports tangent ve
tor �eld to itself is 
alled ana�ne geodesi
. Formally, 
urve γ is an a�ne geodesi
 if
∇AA = 0, (3.16)



3.1. Introdu
tion to Information Geometry 21for some parametrisation of the 
urve for all the points along the 
urve [1℄.The pro
ess of parallel transport is illustrated in Figure 3.2. In this work aparallelly transported version of ve
tor v is denoted by τv, where the twotangent spa
es are assumed to be de�ned by the 
ontext.PSfrag repla
ements
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Figure 3.2: The 
on
ept of parallel transport. Ve
tor v is translated frompoint p to point q along a 
urve γ on a two-dimensional Riemannian manifold.Parallel transport has several important and quite intuitive properties, whi
hmake it useful for generalising many algorithms and 
on
epts to Riemannianmanifolds. First of all, tangent ve
tors of the geodesi
 
urve remain tangentve
tors under parallel transport, as the entire tangent ve
tor spa
e is trans-lated. Moreover, inner produ
t of ve
tors is invariant under parallel transportfor metri
 
onne
tions, whi
h also means that the length of a ve
tor does not
hange when it is transported parallelly [1℄.A 
urve is a geodesi
 if it lo
ally minimises the distan
e between the points ofits path. A geodesi
 is said to be metri
 if it also gives the shortest distan
ebetween two points in the sense of the Equation (3.8). There is a sub
lass ofmetri
 geodesi
s that are also a�ne geodesi
s, these geodesi
s are known asmetri
 
onne
tions. Metri
 
onne
tions that are in addition symmetri
 have avery important role in di�erential geometry and they are known as Riemannian
onne
tions or Levi-Civita 
onne
tions [1, 44℄. In the 
ase of Fisher metri
,Amari's α = 0-
onne
tions are also Riemannian [5℄. The important property ofmetri
 
onne
tions is the fa
t that they dire
tly impose a metri
. The distan
ebetween two points in Riemannian spa
e is given by the length of the shortestpath between them, and this path is equal to the metri
 
onne
tion [44, 1℄.In addition to Riemannian (metri
) 
onne
tions, there are two more 
lasses of
onne
tions that have spe
ial importan
e. These are the e-
onne
tion (the ex-ponential 
onne
tion or the α = 1-
onne
tion of Amari) and the m-
onne
tion(mixture 
onne
tion or α = −1-
onne
tion of Amari). The importan
e of



3.2. Natural Gradient 22these 
onne
tions derives from the fa
t that the 
anoni
al parametrisations ofexponential family and mixture family distributions are �at with respe
t to e-and m-
onne
tion, respe
tively [5℄.3.1.3 Variational Approximation as a Geometri
 Proje
-tionThe variational approximation has a natural interpretation in information ge-ometry. The approximation of the posterior distribution with another tra
tabledistribution 
orresponds to �nding an approximation of the true posterior
p ∈ S in a submanifold S0 ⊂ S. Optimal approximation is the proje
tionof p on S0. In Riemannian spa
e there are multiple su
h proje
tions, the mostimportant are the e-proje
tion

qe(θ|ξ) = arg min
q∈S0

DKL(q(θ|ξ)||p(θ|X)) (3.17)and the m-proje
tion
qm(θ|ξ) = arg min

q∈S0

DKL(p(θ|X)||q(θ|ξ)), (3.18)whi
h are de�ned by the e- andm-
onne
tions, respe
tively. Both of these pro-je
tions 
orrespond to minimising the Kullba
k-Leibler divergen
e, but withthe order of the distributions reversed. The m-proje
tion is the unbiased maxi-mum likelihood estimator, but unfortunately its 
omputation involves integra-tion over the posterior and it is therefore intra
table in most 
ases. Variationalapproximation uses the biased e-proje
tion instead [67, 27℄.3.2 Natural GradientThe problem of optimising a s
alar fun
tion arises in many di�erent �elds.In the 
ase of variational Bayes, the goal is to maximise the lower bound onmarginal log-likelihood (or alternatively, minimise the Kullba
k-Leibler diver-gen
e). A simple solution to this problem is given by the method of steepestdes
ent. Let F(ξ) be a s
alar fun
tion de�ned on the manifold S = {ξ ∈ Rn}.The dire
tion of steepest des
ent is de�ned to be the ve
tor w whi
h minimises
F(ξ + w) under the 
onstraint |w|2 = ǫ2 for su�
iently small 
onstant ǫ.In the 
ase of Eu
lidian spa
e, the dire
tion of steepest des
ent is equal tonegative gradient, and the method of steepest des
ent 
an be written as follows

ξn = ξn−1 − µ∇F(ξn−1), (3.19)



3.2. Natural Gradient 23where ∇F(ξn) is the 
urrent gradient and µ is the step size, whi
h 
an be 
om-puted with line sear
h or adaptively adjusted. The iteration is repeated untilsatisfa
tory 
onvergen
e has been rea
hed. However, in the 
ase of Rieman-nian geometry, negative gradient is no longer the dire
tion of steepest des
ent;it is repla
ed by natural gradient [3℄
∇̃F(ξ) = G−1(ξ)∇F(ξ), (3.20)where G is the Riemannian metri
 tensor and ∇F(ξ) is the normal gradient.Therefore, natural gradient des
ent algorithm is given by
ξn = ξn−1 − µ∇̃F(ξn−1). (3.21)In theory, there are some additional details that should be taken into a

ount.Most importantly, if line sear
h is used, it should use the geodesi
s of theRiemannian manifold instead of the Eu
lidian straight lines as dis
ussed inSe
tion 4.3 where Riemannian 
onjugate gradient method is presented. How-ever, many of the implementations and mu
h of the theoreti
al work on naturalgradient ignores these 
ompli
ations sin
e the derivation of the geodesi
s 
anbe a very di�
ult problem.Natural gradient des
ent typi
ally 
onverges mu
h faster than normal gradientdes
ent in non-Eu
lidian spa
es. In parti
ular, natural gradient algorithmis able to avoid many of the plateau phases en
ountered in normal gradientdes
ent. It has also been shown that online natural gradient learning is Fisher-e�
ient [3, 57, 36℄.3.2.1 E�
ient ImplementationThe 
omputation of the full G matrix is a very involved pro
ess, and in the
ase of nonlinear state-spa
e models where the dimensionality of the problemspa
e 
an be very high, even the inversion of the full matrix required forthe 
omputation of the natural gradient 
an be prohibitively 
ostly. Lu
kilywith parametri
 distributions, parameters asso
iated with di�erent variablesare often assumed independent, whi
h results in a blo
k diagonal G. Su
h amatrix 
an be inverted e�
iently as long as the blo
k sizes remain relativelysmall.Additionally, it is possible to simply ignore some of the dependen
ies betweendi�erent parameters while 
omputing the matrix G. This results in an ap-proximation of G, but in many 
ases even this approximation 
an result insigni�
ant speedups 
ompared to gradient des
ent with very small 
omputa-tional overhead.



3.2. Natural Gradient 243.2.2 Normal FamilyAs an example, we derive some basi
 properties of the univariate normal distri-bution in Riemannian geometry. The 
anoni
al parametrisation of the normaldistribution is given by
p(θ1, θ2) = exp(x2θ1 + xθ2 −K(θ1, θ2)), (3.22)where θ1 = −1

2σ2 , θ2 = µ

σ2 and K(θ1, θ2) = 1
2
log(−π

θ1

) − θ2

2

4θ1

. Even though the
anoni
al 
oordinates imposed by this parametrisation have some importantgeometri
 properties [44℄, we 
on
entrate on the more traditional parametri-sation of the normal distribution
p(x|µ, v) =

1√
2πv

exp

(−(x− µ)2

2v

)
. (3.23)For this parametrisation N [x, µ, v], we have

ln p(x|µ, v) = − 1

2v
(x− µ)2 − 1

2
ln(v) − 1

2
ln(2π). (3.24)Further,

E

{
−∂

2 ln p(x|µ, v)
∂µ2

}
= E

{
1

v

}
=

1

v
, (3.25)

E

{
−∂

2 ln p(x|µ, v)
∂v∂µ

}
= E

{
m− x

v2

}
= 0, (3.26)and

E

{
−∂

2 ln p(x|µ, v)
∂v2

}
= E

{
(x− µ)2

v3
− 1

2v2

}
=

1

2v2
, (3.27)where identity E {(x− µ)2} = v is used.The resulting Fisher information matrix is diagonal and its inverse is givensimply by

G−1 =

(
v 0
0 2v2

)
. (3.28)Another important parametrisation is given by parametrising varian
e on log-s
ale. For the repametrisation N [x,m, exp(2v)], we have

ln p(x|m, v) = −1

2
(x−m)2 exp(−2v) − v − 1

2
ln(2π). (3.29)
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(a) (b)
(
) (d)Figure 3.3: The amount of 
hange in mean in �gures (a) and (b) and theamount of 
hange in varian
e in �gures (
) and (d) is the same. However, therelative e�e
t is mu
h larger when the varian
e is small as in �gures (a) and(
) 
ompared to the 
ase when varian
e is high as in �gures (b) and (d) [69℄.and

E

{
−∂

2 ln p(x|m, v)
∂m∂m

}
= E{exp(−2v)} = exp(−2v), (3.30)

E

{
−∂

2 ln p(x|m, v)
∂v∂m

}
= E {2(x−m) exp(−2v)} = 0, (3.31)and

E

{
−∂

2 ln p(x|m, v)
∂v∂v

}
= E

{
2(x−m)2 exp(−2v)

}
= 2. (3.32)For normal distribution with log-s
ale varian
e the Fisher information matrixis again diagonal and its inverse is given by

G−1 =

(
exp(−2v) 0

0 2

)
. (3.33)Intuitively, these results 
an be interpreted as follows. When the varian
e ofa Gaussian distribution is large, the relative e�e
t of a 
hange in the mean issmaller than when the varian
e is small as shown in Figure 3.3 [69℄. Likewise,when the varian
e of the Gaussian distribution is large, the relative e�e
t ofthe 
hange in the varian
e is mu
h smaller than when the varian
e is small.



3.2. Natural Gradient 26In addition to the Riemannian metri
 tensor, some other important results
an also be derived for the normal distribution. Only the results are givenhere, for detailed derivation see e.g. [64℄. For a normal distribution N [x, µ, σ2]the Riemannian distan
e d(θ1, θ2) between two distributions θ1 = (µ1, σ
2
1) and

θ2 = (µ2, σ
2
2) is given by

d(θ1, θ2) =
√

2 cosh−1(((µ1 − µ2)
2 + 2(σ2

1 + σ2
2))/4σ1σ2). (3.34)The geodesi
 
urve 
onne
ting the two distributions is given by

µ(t) = c1 + 2c2 tanh(t/
√

2 + c3)

σ(t) =
√

2c2 cosh−1(t/
√

2 + c3) (3.35)when µ1 6= µ2, where {ci} are 
onstants that satisfy µ(0) = µ1 and σ(0) =
σ1(0) = σ1 and that for some value of the geodesi
 length t µ(t) = µ2 and
σ(t) = σ2. Likewise when µ1 = µ2 = µ, the geodesi
 is given by

µ(t) = µ1

σ(t) = exp(t/
√

2 + c), (3.36)where c is a 
onstant that satis�es the same 
onditions [1℄.These results 
an also be extended to multivariate Gaussian distributions,detailed results and derivations 
an be found in e.g. [64℄. The presen
e ofgeodesi
s in simple analyti
 form is important for pra
ti
al implementation ofoptimisation algorithms. One su
h example is explored in Se
tion 4.3, wherethe Riemannian 
onjugate gradient is introdu
ed.3.2.3 Related WorkNatural gradient learning has been applied to a wide variety of problems su
has independent 
omponent analysis (ICA) [4, 3℄ and MLP networks [3℄ aswell as to analyze the properties of general EM [2℄, mean-�eld variationallearning [67℄, and online variational Bayesian EM [60℄. Riemannian 
onjugategradient has also been applied to a variety of di�erent problems, in parti
ulardi�erent eigen-like problems [17, 16℄. However, in all these works the geometryis based on the true posterior p(θ|X) whereas this work uses the geometry ofthe approximation of the posterior q(θ|ξ), whi
h 
an often result in greatlysimpli�ed 
omputations.Another alternative to the traditional EM algorithm is expe
tation-
onjugate-gradient (ECG) algorithm [59℄. It is rather interesting that ECG algorithm has



3.2. Natural Gradient 27several similarities with the Riemannian 
onjugate gradient method presentedin Se
tion 4.3, even though the theoreti
al ba
kground of the two algorithmsis quite di�erent.



Chapter 4Conjugate Gradient Methods
Natural gradient algorithm presented in Se
tion 3.2 typi
ally 
onverges mu
hfaster than the normal gradient des
ent algorithm. Unfortunately, in high di-mensional problems both algorithms tend to take multiple 
onse
utive steps inalmost the same dire
tion. Natural gradient algorithm alleviates this problemto some extent, but mu
h better solution to the problem is given by 
onjugategradient method. The seminal paper on nonlinear 
onjugate gradient is [18℄,and textbook introdu
tions to 
onjugate gradient method in
lude [61, 22℄. Amore intuitive des
ription of the algorithm 
an be found in [63℄.This 
hapter starts by reviewing the 
on
epts of 
onjugate dire
tions and the
onjugate gradient method in Se
tion 4.1. Some important implementationdetails are dis
ussed in Se
tion 4.2. In Se
tion 4.3 
onjugate gradient methodis extended to Riemannian spa
e resulting in the natural 
onjugate gradientmethod, also known as the Riemannian 
onjugate gradient method. Finally,some alternative algorithms with superlinear 
onvergen
e are presented in Se
-tion 4.4.4.1 Introdu
tion to Conjugate Gradient Algo-rithmEven though the gradient des
ent and natural gradient des
ent algorithmspresented in Se
tion 3.2 
an �nd a lo
al minimum for almost any optimisationproblem, they have some short
omings that make them impra
ti
al for manyreal world optimisation problems. First of all, they only make use of the �rstorder information of the fun
tion f(x), and their 
onvergen
e is therefore quite28



4.1. Introdu
tion to Conjugate Gradient Algorithm 29slow 
ompared to more advan
ed methods, espe
ially near the lo
al minimum.Additionally, gradient des
ent algorithms often tend to take multiple stepsin almost the same dire
tion, slowing down the 
onvergen
e. The 
onjugategradient and the Riemannian 
onjugate gradient methods try to solve boththese problems.The 
onjugate gradient algorithm [25, 22℄ is the standard tool in numeri
aloptimisation for solving high dimensional systems of linear equations of theform
Ax = b, (4.1)where b is a known ve
tor, A is a known square, symmetri
, positive-de�nitematrix, and x is the unknown ve
tor to be solved. For a symmetri
 posi-tive de�nitive matrix, this problem is equal to the problem of minimising thequadrati
 form

f(x) =
1

2
xTAx− bTx. (4.2)The 
onjugate gradient method 
an also be generalised to nonlinear problemswhere f(x) is no longer quadrati
 [18℄, but the performan
e of nonlinear gra-dient methods is typi
ally best when f(x) is 
lose to quadrati
.4.1.1 Conjugate Dire
tionsGiven a matrixA, two ve
tors u and v are said to beA-orthogonal or 
onjugate(with respe
t to A) if

uTAv = 0 . (4.3)It should be noted that this notion of 
onjuga
y has no 
onne
tion to 
omplex
onjugates. Before pro
eeding to 
onjugate gradient method itself, the methodof 
onjugate dire
tions is explored. Even though there is no way to e�
iently
ompute a sequen
e of orthogonal sear
h dire
tions and step sizes, it is possibleto generate a sequen
e of A-orthogonal sear
h dire
tions by a pro
ess knownas Gram-S
hmidt 
onjugation.Given a sequen
e of n 
onjugate dire
tions {pk}, the solution to the Equa-tion (4.1) is simply given by
x =

n∑

i=1

αipi, (4.4)where
αi =

pT
i b

pT
i Api

. (4.5)
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tion to Conjugate Gradient Algorithm 304.1.2 Conjugate Gradient MethodThe 
onjugate gradient method uses a 
lever way to 
onstru
t a sequen
e of
onjugate dire
tions. The 
urrent sear
h dire
tion is generated by 
onjugationof the residuals. With this 
hoi
e the sear
h dire
tions form a Krylov subspa
eand only the previous sear
h dire
tion and the 
urrent gradient are required forthe 
onjugation pro
ess, greatly redu
ing both the time and spa
e 
omplexityof the algorithm [48℄.The 
onjugate gradient method starts out by sear
hing in the dire
tion ofthe negative gradient during the �rst iteration. The optimum in the sear
hdire
tion is determined by line sear
h. On subsequent iterations the sear
hdire
tion pk is determined by
pk = −gk + βpk−1, (4.6)where gk = ∇f(ξk) is the 
urrent gradient and pk−1 is the sear
h dire
tionfrom the previous iteration. For nonlinear 
onjugate gradient method, thereare several di�erent ways, however, to 
hoose the multiplier βk. These in
ludethe Flet
her-Reeves formula [18℄
βk =

gk · gk

gk−1 · gk−1
(4.7)and the Polak-Ribiére formula [50℄

βk =
(gk − gk−1) · gk

gk−1 · gk

, (4.8)where gk is the 
urrent gradient and gk−1 is the gradient from the previousiteration. In most problems the performan
e with Polak-Ribiére formula issuperior to Flet
her-Reeves formula [48℄, and it is also ex
lusively used in allthe experiments in this work. There is however a minor 
ompli
ation withPolak-Ribiére formula. βk may be
ome negative and thus the algorithm is notguaranteed to 
onverge. Lu
kily, there is a simple solution to this problem.The global 
onvergen
e of the algorithm to a lo
al minimum 
an be guar-anteed by setting βk = max(βk, 0), whi
h e�e
tively means that the sear
hdire
tion is reverted ba
k to the negative gradient whenever a non-positivevalue of βk is en
ountered. Another way to ensure the global 
onvergen
e ofthe Polak-Ribière 
onjugate method is to use a line sear
h algorithm that sat-is�es stronger 
onditions than the usual Wolfe 
onditions [23℄, the 
onditionstypi
ally used to ensure the e�
ient 
onvergen
e of line sear
h subroutines.



4.2. Implementation 314.2 ImplementationSome 
are must be taken while implementing a nonlinear 
onjugate gradientalgorithm. This se
tion dis
usses some potential problems and their solutions.In parti
ular, the sear
h dire
tions tend to lose 
onjuga
y after too many itera-tions, whi
h 
an signi�
antly slow down the 
onvergen
e rate of the algorithm.4.2.1 Resetting the Sear
h Dire
tionWhen applied to a linear problem and assuming in�nite pre
ision �oating pointarithmeti
, 
onjugate gradient algorithm will 
onverge in at most n steps,where n is the number of dimensions of the problem [63℄. Unfortunately thisproperty no longer holds when the problem is nonlinear or numeri
 errors
aused by �nite �oating point pre
ision are taken into a

ount. In pra
ti
ethe algorithm may have to be iterated many more than n times. Over timethe sear
h dire
tions tend to lose 
onjuga
y and it is therefore re
ommendedto periodi
ally reset the sear
h dire
tion to the negative of the gradient toimprove 
onvergen
e. This 
an done at �xed intervals, values of n or √n aretypi
ally suggested in literature [63℄ depending on the size of the problem.Another solution is to monitor the orthogonality of the subsequent gradientsand adaptively de
ide when the sear
h dire
tion should be reset. This solutionis known as Powell-Beale restarts [51℄ and one su
h possible restart 
onditionis given by
|gk−1 · gk| ≥ 0.2‖gk‖2, (4.9)where gk is the 
urrent gradient and gk−1 the gradient from the previousiteration.4.2.2 Complex ModelsFor 
omplex models su
h as high dimensional nonlinear state-spa
e models, itis often bene�
ial to update the di�erent types of parameters separately fromea
h other, as this is easier to implement and may even speed up 
onvergen
ein some 
ases. Unfortunately, the 
onjugate gradient method relies on infor-mation from the previous iteration. Unless all the parameters are updated ina single 
onjugate gradient step, this information is no longer valid, as therehave been 
hanges to the model between 
onjugate gradient iterations.The simple solution of updating all the model parameters in a single 
onjugate
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an be somewhat problemati
 however. First of all, thisapproa
h 
an even lead to slower overall 
onvergen
e 
aused by s
aling issuesbetween di�erent parameters. Finally, it may be useful to use more simple oreven exa
t update formulas for some types of parameters in the model, furtherdis
ouraging the use of a single 
onjugate gradient update step. Additionally,if the Riemannian 
onjugate gradient algorithm presented in Se
tion 4.3 isused, it 
an be a rather involved pro
ess to 
ompute the natural gradients ofall the model parameters.4.3 Riemannian Conjugate GradientUp to this point, natural gradient learning and 
onjugate gradient method havebeen studied separately. Natural gradient learning works quite well on its own,avoiding most of the short
omings of the normal gradient des
ent. However,when only approximations of the natural gradient 
an be 
omputed, it 
anbe quite bene�
ial to 
ombine natural gradient and the 
onjugate gradientmethods, as is later shown experimentally. The resulting �natural 
onjugategradient� algorithm is known as the Riemannian 
onjugate gradient [65℄.The Riemannian 
onjugate gradient uses a similar iteration as the 
onven-tional 
onjugate gradient. There are few key di�eren
es, however. First ofall, the gradient ∇f(w) must be repla
ed by the natural gradient ∇̃f(w) =
G−1∇f(w). In addition, the ve
tor norms and inner produ
ts in Equations (4.8)and (4.9) must be repla
ed by their generalised 
ounterparts in Riemannianspa
e. Finally, line sear
h must be performed along geodesi
 
urves, whi
h isdis
ussed in more detail in the next se
tion. Many of the formulas used in 
on-jugate gradient method involve ve
tors from tangent spa
es at di�erent pointsin Riemannian spa
e. To evaluate these formulas, parallel transport must beused to transform the ve
tors to the same tangent spa
e [65℄.In 
on
lusion, the Equations (4.6), (4.8), and (4.9) must be rewritten as follows.The sear
h dire
tion pk for Riemannian 
onjugate gradient method is thereforegiven by

pk = −g̃k + βτpk−1, (4.10)where g̃k = ∇̃f(ξk) is the natural gradient and β in the 
ase of Polak-Ribiéreformula is given by
βk =

(g̃k − τ g̃k−1) · g̃k

τ g̃k−1 · g̃k

, (4.11)
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ondition by
|τ g̃k−1 · g̃k| ≥ 0.2‖g̃k‖2, (4.12)In all these three equations τ denotes parallel transport of the ve
tor fromthe previous sear
h point to the 
urrent sear
h point along the geodesi
 
urve.Additionally, all inner produ
ts are taken based on the Riemannian norm. Anillustration of the operation of the Riemannian 
onjugate gradient algorithm
an be seen in Figure 4.1 [16, 65℄.PSfrag repla
ements

ξk−1

ξk

ξk+1

−g̃k

pk

τpk−1

Figure 4.1: Riemannian 
onjugate gradient algorithm on a 
urved manifold.Geodesi
s from two su

essive iterations and the 
urrent gradient g̃k, previoussear
h dire
tion (translated using parallel transport) τpk−1 and the 
urrentsear
h dire
tion pk are displayed [16, 65℄.4.3.1 Line Sear
h Along Geodesi
sFor an exa
t Riemannian 
onjugate gradient algorithm, the line sear
h sub-routine also requires 
ertain 
hanges. Even though traditional line sear
h isused in the experiments of this work, the pro
ess is reviewed for the sakeof 
ompleteness. As mentioned earlier, the line sear
h in Riemannian 
onju-gate gradient algorithm is performed along a geodesi
 
urve, the analogue ofa straight line in Riemannian spa
e. As long as the geometry of the problemspa
e is su
h that geodesi
s 
an be derived in analyti
 form, this simply meansthat the points used in line sear
h subroutine are taken along the geodesi
 [65℄.Unfortunately, even though using geodesi
s for line sear
h is simple in theory,in pra
ti
e geodesi
s and parallel transport may be hard to 
ompute e�
ientlyfor many problem spa
es. In 
ertain spe
ial 
ases su
h as normal distribution



4.4. Other Superlinear Algorithms 34with suitable parametrisation there exists relatively simple formulas for bothgeodesi
s and parallel transport in 
losed form. However, for more generaldistributions this is often not the 
ase and various approximations have to beused for implementation.4.3.2 LimitationsRiemannian 
onjugate gradient method assumes that the Fisher informationmatrix, geodesi
 
urves and parallel transport 
an be 
omputed for the Rie-mannian manifold of the problem spa
e. Unfortunately, for some problemsthese may be very time-
onsuming to derive and 
ompute.Additionally, the superlinear 
onvergen
e of Riemannian 
onjugate gradientalgorithm is only guaranteed when exa
t line sear
h is used. In most 
ases thisis not pra
ti
al, sin
e in general using exa
t line sear
h may require in�nite
omputation time. Inexa
t line sear
h typi
ally leads to good results as well,but su
h algorithm may 
onverge slowly in 
ertain spe
ial 
ases [65℄.4.4 Other Superlinear AlgorithmsConjugate gradient methods have been very su

essful in solving a large varietyof di�erent problems and they are widely used to solve large s
ale real worldproblems. However, there are also many other superlinear algorithms thatare better suited to 
ertain problems. This 
hapter gives an overview of some
ompeting superlinear algorithms and 
ompares their strengths and weaknesseswith the 
onjugate gradient method. It is also interesting to note that manyof the algorithms presented in this se
tion have a relatively straightforwardextension to Riemannian manifolds.An overview of the di�erent algorithms dis
ussed in this 
hapter is presentedin Table 4.1. It is important to note that many of the superlinear optimisationalgorithms require spe
i�
 
onditions to rea
h their stated 
onvergen
e rate,and may exhibit linear 
onvergen
e or fail to 
onverge entirely when these
onditions are not met. The listed time and spa
e 
omplexities are only for ea
hstep of the algorithm itself, in some 
ases the 
omputation of the gradients andHessians 
an ex
eed these limits. Finally, when the algorithms are extendedto Riemannian spa
e, additional 
omputation is required. This overhead isheavily dependant on the geometry of problem spa
e.



4.4. Other Superlinear Algorithms 35Table 4.1: Optimisation algorithm summaryMethod Convergen
e Time 
omplexity Spa
e 
omplexityGradient des
ent O(n) O(n) O(n)Conjugate gradient O(n2) O(n) O(n)Memory-gradient O(n2) O(n) O(n)S
aled 
onjugate gradient O(n2) O(n) O(n)Quasi-Newton O(n2) O(n2) O(n2)Newton O(n2) O(n3) O(n2)4.4.1 S
aled Conjugate GradientThe traditional 
onjugate gradient algorithm o�ers fast 
onvergen
e, but if the
omputation of the 
ost fun
tion requires signi�
ant time, the line sear
h 
anbe quite time 
onsuming. An alternative way to determine the step size is touse a so-
alled trust region or Levenberg-Marquardt approa
h. Su
h variantof the 
onjugate gradient method is known as the s
aled 
onjugate gradientmethod. The algorithm itself is rather 
omplex and introdu
es some newparameters, full details 
an be found in [43℄.The Levenberg-Marquardt approa
h introdu
es a new s
ale term λk whi
hfor
es the approximation of the Hessian to remain positive de�nite. Afterthe update the quality of the approximation is evaluated, and the parameteris adjusted a

ordingly. When the λk is zero, the algorithm is equal to thetraditional Conjugate Gradient method.The main bene�t of the S
aled Conjugate Gradient method is the fa
t that itrequires only 
onstant number of 
ost fun
tion and gradient evaluations periteration. In the optimal 
ase, the line sear
h in the traditional ConjugateGradient method requires similar run time as the S
aled Conjugate Gradi-ent method. In pra
ti
e, standard 
onjugate gradient method with good linesear
h subroutine requires two to three times more 
ost fun
tion and gradientevaluations 
ompared to the S
aled Conjugate Gradient method.There are some issues with the S
aled Conjugate Gradient method, however.First of all, some s
aled 
onjugate gradient iterations are spent adjusting thes
ale parameter without any redu
tion in the 
ost fun
tion even though fullgradient and 
ost fun
tion evaluations are required for these iterations as well.In addition, the step sizes are less optimal than with line sear
h, whi
h leads to
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onjuga
y of the sear
h dire
tions. Finally, whereas a 
onjugategradient algorithm is easy to implement, the s
aled-
onjugate gradient algo-rithm is relatively 
omplex and relies on 
ertain parameter values that mustbe 
hosen during the implementation.4.4.2 Memory GradientConjugate gradient algorithm uses information from two iterations to approx-imate the Hessian matrix. It is also possible to store and utilise gradient andsear
h dire
tion information from more than two iterations to better approxi-mate the higher order information of the optimised fun
tion.Based on this idea, a 
lass of algorithms has been developed that try to improvethe performan
e of gradient based algorithms without signi�
antly in
reasingthe 
omputational 
omplexity. These algorithms in
lude memory gradient [40℄and the three-term-re
urren
e algorithm [45℄, both of whi
h take into a

ountsear
h dire
tion information from several past iterations.Compared to 
onjugate gradient methods, these algorithms require more mem-ory overhead, and are more di�
ult to implement than the simple 
onjugategradient. Even though they provide some performan
e advantages over 
on-jugate gradient, neither has been studied as widely nor enjoys the same pop-ularity as 
onjugate gradient method.4.4.3 Newton's MethodThe algorithms presented so far in this 
hapter do not dire
tly use the higherorder information of the fun
tion. There also exists a wide 
lass of algorithmsthat dire
tly use this higher order information, however. The most popu-lar of these algorithms are Newton's method and its various approximations,known as quasi-Newton algorithms. All these algorithms provide superlinear
onvergen
e near the lo
al minimum. Unfortunately, these algorithms oftenhave rather limited region of 
onvergen
e, and typi
ally other methods su
has gradient des
ent are used to initialise the iteration. Another alternative isthe Levenberg-Marquardt method, a robust algorithm that 
ombines Newton'smethod and gradient des
ent [38℄.Newton's method has also been generalised to Riemannian manifolds [65, 66,73℄. Newton-like algorithms have one typi
al problem while solving high-dimensional problems, however. They require matrix operations with n × n
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es, where n is the dimension of the problem spa
e. In many high-dimensional problems, this is not 
omputationally feasible, as for example theproblem spa
e of a NSSM may well have dimensionality of n > 10000. Matrixoperations during ea
h optimisation step with matri
es of this size are typi
allynot feasible even with state-of-the-art algorithms and hardware.When the dimensionality of the problem spa
e is slightly smaller, Newton-based algorithms 
an provide a viable alternative to 
onjugate gradient meth-ods. Of parti
ular interest are limited memory Newton algorithms [48℄, whi
hhave partially repla
ed 
onjugate gradient methods in problems with slightlylower dimensionality. Conjugate gradient methods, however, are still the best
hoi
e for very high dimensional problems be
ause of their modest 
omputationand memory demands. Conjugate gradient methods are also relatively easy toimplement and more suitable to parallel 
omputation than many 
ompetingalgorithms.



Chapter 5Nonlinear State-Spa
e Models
Nonlinear state-spa
e models (NSSM) are one parti
ularly important 
lass ofprobabilisti
 models. In this 
hapter NSSMs are presented as a 
ase study fornatural gradient learning, and in parti
ular the NSSM from [71℄ is dis
ussedin more detail.General NSSM stru
ture and the building blo
ks of the model are dis
ussed inSe
tion 5.1. The NDFA model from [71℄ is presented as an example of an NSSMin Se
tion 5.2. Finally, implementation details of the 
onjugate gradient andRiemannian 
onjugate gradient methods for the NDFA model are dis
ussed inSe
tion 5.3.5.1 Model Stru
tureState-spa
e models are one popular way to model dynami
al systems. Insteadof modelling the dynami
s of the observed time-series X = {x(t)} dire
tly,state-spa
e models use a set of hidden states S = {s(t)} to model the dynami
s.Furthermore, the mapping that maps the states ba
k to the a
tual observationsis modelled. The states form a so-
alled state-spa
e, hen
e the name of themodel.

38



5.1. Model Stru
ture 395.1.1 Linear State-spa
e ModelThe simplest state-spa
e model is the linear state-spa
e model
x(t) = As(t) + n(t), (5.1)
s(t) = Bs(t− 1) + m(t), (5.2)where x(t) are the observations and s(t) are the hidden internal states of thesystem. The ve
tors m(t) and n(t) are the pro
ess and observation noise,respe
tively. A and B de�ne the linear observation and dynami
 mappings.The observations X and the states S are assumed to be real-valued and thetime t is dis
rete.In pra
ti
e, linear model for the dynami
s is too restri
tive. The behaviour ofa linear dynami
al system is de�ned by the eigenvalues of the matrix A, andthere is only a very restri
ted set of possible out
omes. This is insu�
ient formodelling any but the most basi
 real-world systems [7℄.5.1.2 Nonlinear modelsIn prin
iple, it is relatively straightforward to extend a linear state-spa
e modelinto a nonlinear one. It is simply enough to repla
e the linear mappings bygeneri
 nonlinear mappings, resulting in the model

x(t) = f(s(t), θf ) + n(t) (5.3)
s(t) = g(s(t− 1), θg) + m(t), (5.4)where θf and θg are the ve
tors 
ontaining the model parameters whi
h de�nethe mappings f and g, respe
tively. The dependen
e of the mappings f and gon the model parameters θ is assumed for the rest of this text, even thoughit is not expli
itly shown for reasons of 
larity. Only the observations x(t)are known beforehand, and both the states s and the mappings f and g arelearned from the data.Assuming that the mappings f and g are modelled in a generi
 enough way,nonlinear state-spa
e models are generi
 enough to model any time-series. Theaddition of nonlinearity 
an also give rise to 
haoti
 e�e
ts. Over long timeperiods, even small 
hanges in the states 
an lead to 
omplitely di�erent out-
omes.



5.1. Model Stru
ture 405.1.3 Modelling NonlinearitiesOne major problem while implementing a nonlinear model is the representationof the nonlinearities. Whereas linear mappings 
an simply be represented bymatri
es, there is no su
h easy solution for generi
 nonlinear fun
tions. Lu
kily,there exist di�erent fun
tion approximators that 
an approximate any fun
tionto a desired a

ura
y given enough parameters. The most well-known of theseare the various series de
ompositions in
luding polynomial approximations andtrigonometri
 series. Unfortunately, trigonometri
 series 
an only be used tomodel periodi
 fun
tions and polynomi
 approximations 
an be sensitive tovery small parameter 
hanges, whi
h makes them a poor 
hoi
e for learningpurposes. In addition, high order polynomi
 approximations tend to generalisevery poorly. Some of these problems 
an be solved by using splines instead ofhigher order polynomials [24℄.In the �eld of neural networks, two di�erent fun
tion approximations are widelyused. These are the radial-basis fun
tion (RBF) and multilayer per
eptron(MLP) network. Both of them are universal fun
tion approximators; givenenough parameters (i.e. neurons), they 
an at least in theory model any fun
-tion to a desired a

ura
y [31, 24℄. Sin
e the NDFA model des
ribed in Se
-tion 5.2 and used in the experiments uses MLP networks, the next se
tiondes
ribes them in greater detail.5.1.4 Multilayer Per
eptronA MLP network 
onsists of several simple neurons known as per
eptrons. Aper
eptron is a very simple 
omputation unit that 
omputes a single outputfrom multiple inputs by applying a nonlinear a
tivation fun
tion to a linear
ombination of the inputs. A per
eptron 
an be presented mathemati
ally bythe equation
y = ϕ(

n∑

i=1

wixi + b) = ϕ(wTx + b), (5.5)where w = [w1 w2 . . . wn]
T is the weight ve
tor, x are the inputs, b is the biasand ϕ is the a
tivation fun
tion [24℄.In neural networks resear
h, the most 
ommon a
tivation fun
tions are thelogisti
 sigmoid 1/(1 + e−x) and the hyperboli
 tangent tanh(x). These twoare 
losely related and they share the useful property that they exhibit nearlylinear behaviour near the origin but be
ome saturated qui
kly farther awayfrom the origin. This property makes them well suited for modelling both
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ture 41strongly and mildly nonlinear fun
tions [24℄.A single per
eptron 
an only represent very limited linearly separable map-pings. Therefore large networks of per
eptrons are used, as seen in Figure 5.1.MLP networks are usually arranged in several layers with at least one so 
alledhidden layer between the input and the output layers [24℄.

Figure 5.1: MLP network with one hidden layer.The fun
tional form of a nonlinear state-spa
e model where nonlinearities aremodelled with MLP networks with one hidden layer is
f(s(t)) = B tanh[As(t) + a] + b (5.6)

g(s(t− 1)) = s(t− 1) + D tanh[Cs(t− 1) + c] + d, (5.7)where A and C are the weight matri
es for hidden layers, B and D are theweight matri
es for output layers, and a, c, b, and d are the 
orrespondingbiases [71℄.MLP networks are most often used in supervised learning tasks, where themost 
ommonly used learning algorithm is the ba
k-propagation algorithmwhi
h iterates between ba
kward and forward passes [24℄. In addition, it ispossible to derive a nonlinear Kalman �lter known as the Extended KalmanFilter (EKF) [6, 24℄ whi
h 
an be used to derive the hidden state-spa
e if theobservations and the nonlinear mappings are known.The 
omplete learning of hidden state-spa
e models requires more 
omplexalgorithms and is usually mu
h slower than in the 
ase of supervised learningtasks. One su
h unsupervised learning algorithm is given by Dr. Valpola [71℄.In this work this algorithm is extended to take into a

ount the non-Eu
lidiannature of the spa
e of probability distributions as des
ribed in Se
tion 3.2.The algorithm uses MLP networks to model the nonlinearities and is based on
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 Fa
tor Analysis 42variational Bayesian learning, whi
h is dis
ussed in more detail in Se
tion 2.4.Other learning algorithms for nonlinear state-spa
e models in
lude the workof Ghahramani and Roweis [21℄, whi
h uses RBF networks and standard EMalgorithm where EKF is used for the E-step.5.2 Nonlinear Dynami
 Fa
tor AnalysisAs an example of a NSSM, nonlinear dynami
 fa
tor analysis (NDFA) [71℄is used. This parti
ular NSSM uses multilayer per
eptron networks with onehidden layer and tanh nonlinearity to model the nonlinear mappings.The weights of the MLP networks and the other model parameters are allassumed to be independent and they are modelled with Gaussian distribu-tions with diagonal 
ovarian
e to limit the number of parameters and keepthe 
omputation e�
ient. The state ve
tors s(t) are also assumed 
omponent-wise independent. The subsequent state ve
tors are also assumed independentwith one ex
eption: the dependen
e between the 
orresponding 
omponentsof s(t− 1) and s(t) is modeled with a linear dependen
e parameter ŝ(t, t− 1).This 
orrelation is a realisti
 minimal assumption for modelling a dynami
system [71℄. This simple assumption also makes the derivation of a naturalgradient algorithm straightforward.This dynami
 model for the parameters and the states leads to the approxi-mation
q(S, θ) = q(S)q(θ) (5.8)and
q(θ) =

∏

i

qi(θi), (5.9)and �nally
q(S) =

∏

i

qi(si(t)|si(t− 1)), (5.10)where the approximate density qi(si(t)|si(t − 1)) is parametrised by its mean
si(t), linear dependen
e ŝi(t, t− 1), and varian
e s̃i(t).5.3 Riemannian Conjugate GradientThe implementation of the Riemannian 
onjugate gradient algorithm is basedon the NDFA pa
kage [70℄ presented in [71℄. There are some key improve-



5.3. Riemannian Conjugate Gradient 43ments, however. First of all, the Taylor approximation used for the nonlin-earities in [71℄ 
an result in stability problems. This problem 
an be solvedby repla
ing the Taylor approximation by Gauss-Hermite quadratures as de-s
ribed in [26, 28℄. The repla
ement of Taylor approximations with the more
omplex approximation roughly doubles the 
omputational 
ost of the algo-rithm. However, the resulting algorithm tends to 
onverge faster and and it isalmost entirely free from the stability problems of the original implementation,so this modi�
ation is quite justi�ed.Additionally, the heuristi
 update rules from [71℄ for the states and nonlinearmappings tend to 
onverge slowly. A signi�
ant speedup 
an be attained byrepla
ing these update rules with an e�
ient dire
t optimisation algorithm.In this 
ase, the means of the latent states and all the network weights areupdated simultaneously using the Riemannian 
onjugate algorithm with somesimplifying assumptions as des
ribed later in this se
tion. The lo
al optimumin the sear
h dire
tion is found using a line sear
h subroutine based on poly-nomi
 interpolation. The formulas for the gradients of the parameters q(S) and
q(θ) required in the 
omputation of the natural gradient 
an be found in [71℄.It is important to note that the natural gradient is 
omputed based on thegeometry of the approximating distribution q, whereas tradiationally naturalgradient algorithms have been only used for the true posterior distribution.5.3.1 Used ApproximationsTo simplify the implementation of the Riemannian 
onjugate gradient, 
ertainapproximations were used. First of all, the 
omponent-wise dependen
y pa-rameter ŝ is updated separately from the means and varian
es to simplify thegeometry of the problem spa
e. Typi
ally this parameter 
an be updated in asingle step, so the extra 
omputational 
ost is not signi�
ant.Additionally, natural gradient learning is only used for the network weightsand the sour
es. The rest of the parameters and hyperparameters are updatedby the algorithms des
ribed in [71℄. It is unlikely that using Riemannian
onjugate gradient for all the parameters would have resulted in a signi�
antspeedup 
ompared to the 
urrent implementation. Usually only the weightsand the sour
es require signi�
ant amount of iterations to 
onverge, the otherparameters and hyperparameters typi
ally 
onverge relatively fast.



5.3. Riemannian Conjugate Gradient 445.3.2 Update OrderIn the 
urrent implementation of the algorithm, the model parameters andhyperparameters are updated �rst. This is done for two reasons. First of all,parameter updates 
an be done separately from the feedforward and ba
kwardpasses of the sour
es. Additionally, this update order allows taking into a
-
ount any external modi�
ations (su
h as pruning away dead neurons) to themodel straight away.The parameter updates are followed by feedforward and feedba
k passes, whi
halso in
lude the 
omputation of the 
ost fun
tion CKL. The gradient informa-tion from the ba
kward pass is �rst used to update the varian
es of the networkweights and sour
es based on �xed point update rule. This is followed by up-dating the means using a dire
t update algorithm, in the experiments in thisthesis either 
onjugate gradient or Riemannian 
onjugate gradient algorithm.Even though varian
es and means 
an be updated in a single Riemannian 
on-jugate gradient iteration, updating them separately resulted in a more stablealgorithm.It should be noted that the gradient information is only 
omputed on
e, eventhough te
hni
ally it should be re
omputed after the varian
es have been up-dated. A full feedforward and ba
kward pass is quite expensive in terms of
omputation time, and thus small loss of a

ura
y 
an be justi�ed here. Intu-itively, the 
hange in the varian
e of a parameter has a smaller e�e
t on thegradient of the mean than vi
e versa. This was also veri�ed experimentally,thus justifying the 
hosen update order.5.3.3 Line Sear
hMany optimisation algorithms alternate between �nding a new sear
h dire
-tion and �nding the optimum in this dire
tion. The pro
edure of �nding theoptimum is known as line sear
h. For linear problems exa
t line sear
h is oftenpra
ti
al, but for nonlinear problems this is typi
ally not the 
ase and inexa
tline sear
h methods must be used. Therefore the minimum is bra
keted eitherby using a sear
h pro
edure su
h as Fibona

i or golden se
tion sear
h or byusing polynomial interpolation and extrapolation. When the fun
tion to beminimised is 
ontinuous, the performan
e of polynomial interpolation methodsis typi
ally superior to other alternatives [52℄.In quadrati
 interpolation a se
ond order polynomial of the form p(α) = aα2 +
bα + c is �tted to the available data points. The extremum of the polynomial
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an be found at −b
2a
. Given three known data points f(x1), f(x2), and f(x3)this 
an be rewritten as
xmin =

1

2

β23f(x1) + β31f(x2) + β12f(x3)

γ23f(x1) + γ31f(x2) + γ12f(x3)
, (5.11)where βij = x2

i − x2
j and γij = xi − xj . To ensure that the extremum is aminimum and that interpolation is performed instead of extrapolation, the
ondition

f(x2) < f(x1) ∧ f(x2) < f(x3) (5.12)must be satis�ed [52℄.Whenever gradient information or more than three fun
tion evaluations areavailable, 
ubi
 interpolation 
an be used instead of quadrati
 interpolation.In 
ubi
 interpolation a third order polynomial of the form p(α) = aα3 + bα2 +
cα + d is �tted to the available data. The lo
al extremum of the polynomialare the roots of the equation

3aα2 + 2bα + c = 0 (5.13)and the lo
al minimum is given by the root with 6aα + 2b > 0 [52℄.Even higher order polynomial interpolation 
an be used to approximate thefun
tion f(x) but the use of higher than third order polynomials often leadsto problems with numeri
al stability, in
reased 
omputational 
omplexity, andmay also result in Runge's phenomenon, the os
illation of the interpolationpolynomial near the end points of the interpolation interval. This phenomenonis 
losely related to Gibbs' phenomenon, a similar problem with sinusoidal basisfun
tions [52℄.Before the lo
al minimum has been bra
keted, the end points must be adjustedso that the 
ondition (5.12) holds. For a 
onvex fun
tion this 
an be done ina rather simple way by doubling t3 or halving t2 and setting the other pointto the old value of the adjusted point until both parts of the 
ondition aresatis�ed.To speed up this bra
keting, a polynomi
 approximation 
an be used hereas well. Given the interpolated or extrapolated minimum tmin, we 
an set
t3 = 2tmin when adjusting the points upwards and t2 = tmin when adjustingthe points downwards. To make the extrapolation more robust, only quadrati
extrapolation is used. Additional safeguards are also used to limit the mini-mum and maximum relative 
hange in the line sear
h points.



Chapter 6Experiments
In this 
hapter, the 
onjugate gradient method and Riemannian 
onjugategradient method presented in Chapter 4 are applied to three di�erent problems.In ea
h experiment, the nonlinear state-spa
e model presented in Se
tion 5.2is used to learn a di�erent data set.In Se
tion 6.1, the method is applied to a syntheti
 data set generated usingrandom MLPs. In Se
tion 6.2 the method is used to learn the dynami
s ofthe inverted pendulum system, an important ben
hmark in 
ontrol theory.Finally, in Se
tion 6.3 the method is applied to the 
hallenging real world dataset 
onsisting of human spee
h.6.1 Syntheti
 DataTo 
ompare the performan
e of 
onjugate gradient and Riemannian 
onjugategradient under di�erent noise levels, the algorithms were applied to multiplerandomly generated syntheti
 data sets.6.1.1 Data SetThe data sets 
onsisted of 500 samples, whi
h were generated using the gener-ative model de�ned in Equations (5.3) and (5.4). The mappings were modelledby MLPs with 10 hidden nodes, and all the weights were randomly generatedfrom a Gaussian distribution. The state spa
e was three dimensional, and thegenerated data was four dimensional. 46



6.1. Syntheti
 Data 47Two groups of data sets were generated using this method. For the �rst group,the innovation (pro
ess noise) m(t) varian
e was kept 
onstant σ2
m = 10−4 andthe varian
e of the observation noise n(t) was varied. For the se
ond group,the innovation pro
ess varian
e was varied while the observation noise varian
ewas 
onstant σ2

n = 10−4.6.1.2 LearningThe NSSMs used in this experiment used the same parameters as the originaldata: three dimensional state-spa
e and MLP networks with 10 hidden nodes.Initial values of the means of the MLP weights were drawn randomly from thesame distribution as the weights of the MLPs used to generate the data. NSSMstates were initialized to all zeros. For ea
h di�erent noise level three di�erentinitialisations of the parameters were used and those iterations where di�erentalgorithms 
onverged to a di�erent lo
al optimum from the same initialisationwere ignored.Iteration was assumed to have 
onverged when |Bt − Bt−1| < 10−4 for 200
onse
utive iterations, where Bt is the bound on the marginal log-likelihood atiteration t.6.1.3 ResultsA 
omparison of the 
onvergen
e speed of 
onjugate gradient and Riemannian
onjugate gradient is presented in the Figure 6.1. The heuristi
 algorithmfrom [71℄ su�ered from some stability problems with this data set and thereforeit was omitted from the results.At low levels of observation noise n(t) and pro
ess noise m(t) the performan
eof regular and Riemannian 
onjugate gradient algorithms is 
omparable. Asthe noise levels in
rease, the Riemannian algorithm be
omes signi�
antly fasterwhile the regular 
onjugate gradient algorithm bene�ts less. Still, the e�e
tof the noise varian
e to 
onvergen
e speed is sublinear, whereas in theory itwould be linear for the EM [49℄.The speed di�eren
e in the methods in 
ases of high noise is 
aused by the fa
tthat there will be more un
ertainty on the values of some parameter. Hen
ethere will be greater variation among the posterior varian
es that determinethe inverse Fisher information matrix of Equation (3.28), whi
h will therefore
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Figure 6.1: The e�e
ts of varian
e on the 
onvergen
e speed of 
onjugategradient (dash-dotted line) and Riemannian 
onjugate gradient (solid line).The plots show 
onvergen
e speed with di�erent levels of observation noise
n(t) (left) and 
onvergen
e speed with di�erent levels of innovations m(t)(pro
ess noise, right).
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Figure 6.2: The varian
e of the posterior varian
es of the latent states anddi�erent model parameters plotted against observation noise n(t) (left) andinnovation pro
ess m(t) (right). The varian
es are shown for the latent states(solid line), input layer weights of the observation mapping f (dash-dotted linewith 
ir
les), output layer weights of f (dash-dotted line with 
rosses), inputlayer weights of the dynami
al mapping g (dotted line with 
ir
les), and outputlayer weights of g (dotted line with 
rosses).di�er more from the form of 
onstant times identity. This is illustrated inthe Figure 6.2, whi
h shows a 
lear in
rease in the varian
e of the estimatedposterior varian
es in situations where regular 
onjugate gradient is performingbadly in 
omparison to the Riemannian variant.



6.2. Inverted Pendulum System 496.2 Inverted Pendulum SystemOne very important problem where nonlinear state-spa
e models are used issystem identi�
ation in the �eld of 
ontrol. Typi
ally, observed data and ex-ternal inputs are available, and the goal is to learn a model for the system fromthis data. The learned state-spa
e model 
an then be used in various di�erent
ontrol s
hemes, one popular example is the nonlinear model predi
tive 
ontrol(NMPC) method [39℄.The state-spa
e model des
ribed in Se
tion 5.2 does not dire
tly support 
on-trol input. However, it is relatively simple to extend the model by augmentingthe state matrix S with the 
ontrol signals and ensuring that the 
ontrol statesremain 
onstant during the learning pro
ess as des
ribed in [54, 68℄.6.2.1 Data SetThe inverted pendulum system [34℄, also known as the 
art-pole system, is a
lassi
 ben
hmark for nonlinear 
ontrol and system identi�
ation. The system
onsists of a pole (whi
h a
ts as an inverted pendulum) atta
hed to a 
art(Figure 6.3). The for
e applied to the 
art 
an be 
ontrolled within 
ertainlimits. Typi
al 
ontrol task for this system is to swing the pole to an upwardposition and stabilise it. This must be a

omplished without the 
art 
rashinginto the walls of the tra
k.The observed variables of the system are the position of the 
art s, angle ofthe pole measured from the upward position φ, and their �rst derivatives s′and φ′. Control input is the for
e F applied to the 
art. The dynami
s of thesystem are des
ribed by the following di�erential equations [34℄
θ′′ =

g sin θ + cos θ
(

−F−mlθ′2 sin θ+µcsgn(s′)
M+m

)
− µpθ′

ml

l
(

4
3
− m cos2 θ

M+m

) (6.1)
x′′ =

F +ml(θ′2 sin θ − θ′′ cos θ) − µcsgn(x′)

M +m
, (6.2)where M = 1.0 kg is the mass of the 
art, m = 0.1 kg is the mass of the pole,

l = 0.5 m is half the length of the pole, g = 9.8 m/s2 is the a

eleration ofgravity, and µc = 0.05 and µp = 0.01 are the 
oe�
ients of the fri
tion of the
art and the pole respe
tively.In this experiment the dynami
s of the system are assumed unknown, and aNSSM des
ribing the system is learnt from a set of training data. The data
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PSfrag repla
ements θ

F

sFigure 6.3: The 
art-pole systemset was generated by simulating a dis
rete-time system with a time step of
∆t = 0.05 s. Both observation noise and pro
ess noise were Gaussian withvarian
e σ = 0.001. The possible for
e was 
onstrained between −10 N and
10 N, and the position between −3 m and 3 m.The 
ontrol signal used to generate the training data set was mostly randomwith some hand-tuned se
tions to ensure that the entire state-spa
e was su�-
iently represented in the training data set. Two di�erent data sets were used,a larger data set with 2500 samples and a smaller data set whi
h 
ontainedthe �rst 500 samples of the full data set.6.2.2 LearningA six dimensional state-spa
e model was used with the 
ontrol signal as theseventh state dimension. Both the observation and dynami
al mapping weremodelled with MLP networks with 30 neurons. Embedding was used to ini-tialise the sour
es to meaningful values as des
ribed in [71℄. The sour
es wereinitialised to the 6 �rst prin
ipal 
omponents of the 
on
atenated data ve
tor
x̂(t) = [xT (t) xT (t − 1) xT (t − 2) xT (t − 4) xT (t − 8) xT (t − 16)]T , and this24-dimensional embedded data ve
tor was used for the 200 �rst iterations, atwhi
h point the data ve
tor and the observation mapping MLP were pruned.These iterations are not displayed in the results of the next se
tion.Three di�erent initialisations for the other model parameters in
luding MLPweights were used to avoid problems with lo
al minima. The results in thenext se
tion are from the initialisation that 
onverged to the best value of the
ost fun
tion.



6.2. Inverted Pendulum System 516.2.3 ResultsThe performan
e of the Riemannian 
onjugate gradient, the 
onjugate gradientand the heuristi
 algorithm from [71℄ is presented in Figure 6.4.
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Figure 6.4: Comparison of the performan
e of the di�erent algorithms with the
art-pole data set using logarithmi
 s
ale for the 
omputation time. Resultswith the full data set are displayed in the top �gure, results with the smalldata set in the bottom �gure. The 
ompared algorithms are Riemannian 
on-jugate gradient (solid line), the heuristi
 algorithm from [71℄ (dashed line) and
onjugate gradient (dash-dotted line).With the large data set, none of the algorithms 
onverged in reasonable time,but the relative di�eren
es between the algorithms are rather large. Rieman-



6.3. Spee
h Data 52nian 
onjugate gradient 
learly outperformed the other algorithms in this ex-periment, and 
onjugate gradient method in parti
ular performed very poorly.Both the model trained with Riemannian 
onjugate gradient and the modeltrained with the heuristi
 algorithm have also been su

essfully used in a dif-�
ult 
ontrol task with the simulated 
art-pole system as reported in [54, 68℄.For the smaller data set, the performan
e di�eren
es between the di�erentalgorithms were slightly less pronoun
ed. The performan
e of Riemannian
onjugate gradient remained 
learly superior to the other methods, but theperforman
e of the 
onjugate gradient method and the heuristi
 algorithmwas quite similar in this experiment. Both Riemannian 
onjugate gradientand 
onjugate gradient method 
onverged to a similar lo
al minimum with aslightly di�erent values of the 
ost fun
tion. However, it took 
onjugate gradi-ent algorithm more than 10 times longer to 
onverge. The heuristi
 algorithmfailed to 
onverge in reasonable time in this experiment as well.At least in this experiment, the smaller dimensionality of the data set redu
esthe performan
e advantages of the Riemannian 
onjugate gradient. A possi-ble explanation for the larger performan
e di�eren
e between the algorithmswhen the amount of data in
reases is given by the intuitive intepretation ofnatural gradient in the spa
e of Gaussian distributions. With a larger dataset, the di�eren
es in the varian
es of the parameters will also likely be larger.A gradient based learning algorithm whi
h assumes �at geometry will try toadjust the parameters with low varian
e too mu
h 
ompared to the variableswith high, and this 
an signi�
antly slow down the overall 
onvergen
e as allthe parameters must be updated in parallel. In 
ontrast, an optimisation algo-rithm that takes into a

ount the Riemannian nature of the problem spa
e will
orre
tly s
ale the step sizes so that 
on�i
ting updates are less of a problem.6.3 Spee
h DataAs a �nal demonstration of the performan
e of the algorithm, the Riemannian
onjugate gradient method was used to learn a state-spa
e model for high-dimensional real-world data set with 
omplex dynami
s.6.3.1 Data SetThe data set in this experiment 
onsisted of 21 dimensional real world spee
hdata. The data 
onsisted of mel-s
aled log power spee
h spe
tra. A 2000 sam-



6.3. Spee
h Data 53ple portion of the original data set was used, the sample 
ontained 
ontinuoushuman spee
h with no signi�
ant pauses. This sample size 
orresponds toroughly 15 se
onds of real time.It should be noted that for any reasonable dynami
al model of human spee
h,a mu
h larger data set should be used. However, even this relatively smalldata set is useful for demonstrating the 
onvergen
e speed of the di�erentalgorithms.6.3.2 LearningIn this problem a NSSM with seven sour
es was used. Both MLP networks ofthe NSSM had 30 hidden nodes.As with inverted pendulum system, the sour
es were initialised to the �rstprin
ipal 
omponents of the embedded data ve
tor x̂(t). However, be
ause ofthe high dimensionality of the problem spa
e, embedded data was not usedduring the learning. It is likely that this made it more di�
ult to learn mean-ingful dynami
s for the data. However, sin
e the main fo
us of this experimentwas to 
ompare the 
onvergen
e of the di�erent algorithms, this should notsigni�
antly alter the results.6.3.3 ResultsThe performan
e of the original heuristi
 algorithm presented in [71℄ was 
om-pared with 
onventional 
onjugate gradient learning and Riemannian 
onju-gate gradient learning. Unfortunately a reasonable 
omparison with a varia-tional EM algorithm was impossible due to the extended Kalman smoother [6℄being unstable and thus failing the E-step. The results and a part of the dataset 
an be seen in Figure 6.5. Five di�erent initialisations were used to avoidproblems with poor lo
al optima. The results presented in Figure 6.5 are fromthe iterations that 
onverged to the best lo
al optimum.The results with the spee
h data are quite similar to the inverted pendulumsystem results. Riemannian 
onjugate gradient has a 
lear performan
e ad-vantage over the two other algorithms. In parti
ular, 
onventional 
onjugategradient learning 
onverged very slowly in this problem and regardless of ini-tialisation failed to rea
h a lo
al optimum within reasonable time. Riemannian
onjugate gradient also outperformed the heuristi
 algorithm from [71℄ by afa
tor of more than 10.
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Figure 6.5: Top: Part of the spee
h spe
trum data used in the experiments.Bottom: Comparison of the performan
e of the di�erent algorithms using loga-rithmi
 s
ale for the 
omputation time. The 
ompared algorithms are Rieman-nian 
onjugate gradient (solid line), the heuristi
 algorithm from [71℄ (dashedline) and 
onjugate gradient (dash-dotted line).



Chapter 7Dis
ussion
It is important to note that the a
tual implementation of the Riemannian
onjugate gradient method is only an approximation of the exa
t algorithmpresented in Se
tion 4.3. However, as the experiments in this thesis show,even this approximation 
an lead to very signi�
ant performan
e gains.Comparison of the presented algorithm with traditional optimisation algo-rithms su
h as EM would provide valuable insight into the appli
ability ofthe presented algorithm on realisti
 problems. Unfortunately, there is no ex-a
t variational EM algorithm for the nonlinear state-spa
e model used in thiswork, whi
h makes dire
t 
omparison di�
ult.In theory, it is possible to use an EM-like algorithm where Kalman �lter basedupdates are used to infer the new states for ea
h iteration. Unfortunately,some initial testing indi
ated that iterated extended Kalman �lter (IEKS) [6℄is quite unstable for at least this parti
ular NSSM. In several simulations theNSSM ended up in su
h a state that IEKS did not 
onverge to any meaningfulstates. One solution to this problem would be to use a �lter that uses more sta-ble methods to approximate the nonlinearity. One example of su
h advan
ed�lter is ba
kward-smoothing extended Kalman �lter [53℄. However, be
ause ofrelatively 
omplex implementation and 
on
erns over in
reased 
omputational
ost, no 
omparison with this method was made.As mentioned earlier, the implementation of Riemannian 
onjugate gradientmakes use of several simplifying assumptions. Most importantly, geodesi

urves were not used for line sear
h. For manifolds where geodesi
s are 
loseto linear, the e�e
ts of this approximation will likely be limited. It is alsoworth noting that a large part of the earlier work with natural gradient makessimilar assumptions, for example many of the works of Amari [4, 3℄.55



7.1. Other Appli
ations 56Further experiments are required to determine how mu
h this approximationa�e
ted the experimental results in Chapter 6. In the experiments Riemannian
onjugate 
onverged very rapidly in the beginning. However, this 
onvergen
erate tends to slow down, and it is possible that this was at least partially
aused by the approximations used in the implementation of the Riemannian
onjugate gradient.It is also worth noting that superlinear 
onvergen
e proofs for Riemannian
onjugate gradient involve the use of exa
t line sear
h [65℄, whi
h is not feasiblein pra
ti
e ex
ept for some spe
ial 
ases. Therefore a realisti
 implementationof the Riemannian 
onjugate gradient algorithm will already have to make useof at least some approximations. In pra
ti
e the restarting 
ondition in the
onjugate gradient algorithm will ensure that the e�e
ts of the inexa
t linesear
h will not be
ome too signi�
ant.7.1 Other Appli
ationsEven though nonlinear state-spa
e models are used as a 
ase study in thisthesis, the presented algorithms 
an be used for almost any probabisti
 modelwhere parametri
 approximations are used and a suitable 
ost fun
tion 
an bederived.In pra
ti
e, there are some limitations of the appli
ability of the algorithm,however. Most importantly, geometry of 
ertain problem spa
es 
an be so 
om-plex that 
omputation of the natural gradient is not feasible. In addition, evenif the natural gradient 
an be 
omputed, the 
omputation of the inverse Fisherinformation matrix may be too time-
onsuming to make the implementationuseful in pra
ti
e.7.2 Future WorkThe implementation of the Riemannian 
onjugate gradient method uses someapproximations su
h as using the �at geometry for line sear
h subroutine,whi
h may slow down the 
onvergen
e of the algorithm, espe
ially in problemswhere the geometry of the problem spa
e is far from �at. Comparison of thebasi
 line sear
h and line sear
h along geodesi
s would provide valuable infor-mation how mu
h the geometry of the problem spa
e a�e
ts the results. Asdis
ussed earlier in this 
hapter, it is at least possible that this exa
t imple-



7.2. Future Work 57mentation would provide further performan
e gains for the experiments in thiswork as well.Variational EM algorithms have been derived for many other parametri
 mod-els, and one of these 
ould be used to 
ompare the performan
e of the algo-rithms. One interesting test 
ase would be mixture-of-Gaussian model, wheredire
t 
omparisons 
ould be made with the EM-based variational Bayesianmixture-of-Gaussians (VB-MOG) model [8℄.In the experiments with the spee
h data in Se
tion 6.3 the data set is so small,that it is impossible to derive any kind of general model for spee
h. However,with a mu
h larger data set, it may be possible to �nd a reasonable state-spa
e representation for spee
h data. Su
h a model 
ould then be used as aprepro
essing tool by using the state-spa
e representation of spee
h data ine.g. spee
h re
ognition tasks.This kind of appli
ation requires a fast inferen
e algorithm for qui
kly derivingthe state-spa
e for a given data-set. One su
h algorithm is presented in [55℄.Further study is also required to determine how the 
on
ept of total derivativespresented in this paper works with natural gradient.



Chapter 8Con
lusions
In this thesis, a Riemannian 
onjugate gradient method for learning proba-bilisti
 models was presented. Traditionally natural gradient based algorithmshave used the geometry of the true posterior distribution. In this thesis, how-ever, the geometry of the variational approximations is used instead. Thismakes the implementation simple as the spa
e of the approximating distribu-tions typi
ally has less 
omplex geometry than the spa
e of the true posteriordistributions. It is also possible to apply the method to a wide range of di�er-ent models whi
h use the same variational approximation.As a 
ase study, the algorithm was used to learn nonlinear state-spa
e mod-els with multiple di�erent data sets. Riemannian 
onjugate gradient methodperformed signi�
antly better than other 
ompared algorithms. Compared toa standard 
onjugate gradient method, the Riemannian 
onjugate gradientmethod was at least ten times faster with all the data sets.
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