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Abstract
Boltzmann machines are often used as build-
ing blocks in greedy learning of deep net-
works. However, training even a simplified
model, known as restricted Boltzmann machine
(RBM), can be extremely laborious: Traditional
learning algorithms often converge only with the
right choice of the learning rate scheduling and
the scale of the initial weights. They are also sen-
sitive to specific data representation: An equiva-
lent RBM can be obtained by flipping some bits
and changing the weights and biases accordingly,
but traditional learning rules are not invariant
to such transformations. Without careful tuning
of these training settings, traditional algorithms
can easily get stuck at plateaus or even diverge.
In this work, we present an enhanced gradient
which is derived such that it is invariant to bit-
flipping transformations. We also propose a way
to automatically adjust the learning rate by max-
imizing a local likelihood estimate. Our exper-
iments confirm that the proposed improvements
yield more stable training of RBMs.

1. Introduction

Deep learning has gained its popularity recently as a
way for learning complicated and large probabilistic mod-
els (see, e.g.,Bengio, 2009). Especially, deep neu-
ral networks such as a deep belief network and a deep
Boltzmann machine have been applied to various ma-
chine learning tasks with impressive improvements over
conventional approaches (Hinton & Salakhutdinov, 2006;
Salakhutdinov & Hinton, 2009; Salakhutdinov, 2009b).

Deep neural networks are characterized by the large num-
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ber of layers of neurons and by using layer-wise unsu-
pervised pretraining to learn a probabilistic model for the
data. A deep neural network is typically constructed by
stacking multiple restricted Boltzmann machines (RBM)
so that the hidden layer of one RBM becomes the vis-
ible layer of another RBM. Layer-wise pretraining of
RBMs then facilitates finding a more accurate model for
the data. Various papers (Salakhutdinov & Hinton, 2009;
Hinton & Salakhutdinov, 2006; Erhan et al., 2010) empir-
ically confirmed that such multi-stage learning works bet-
ter than conventional learning methods, such as the back-
propagation with random initialization. It is thus important
to have an efficient method for training RBM.

Unfortunately, training RBM is known to be difficult. Re-
cent research suggests that without careful choice of learn-
ing parameters that are well suited to specific data sets and
RBM structures, traditional learning algorithms may fail to
model the data distribution correctly (Schulz et al., 2010;
Fischer & Igel, 2010; Desjardins et al., 2010). This prob-
lem is often manifested in the fact that likelihood decreases
during learning.

In this paper, we discuss the difficulties of training RBMs
using the traditional gradient and propose a new training
algorithm. The proposed improvements include an adap-
tive learning rate and a new enhanced gradient estimate.
The adaptation rule for the learning rate is derived from
maximizing a local approximation of the likelihood. The
enhanced gradient is designed such that it does not con-
tain terms which often distract learning when the traditional
gradient is used. The new gradient is also invariant to the
data representation.

We conduct extensive experiments comparing the conven-
tional learning algorithms with the proposed one. We use
the MNIST handwritten digits data set (LeCun et al., 1998)
and the Caltech 101 Silhouettes data set (Marlin et al.,
2010) as benchmark problems. Some experiments were
performed on the transformed MNIST data set in which
each bit was flipped. We refer to this data set as 1-MNIST.
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The data set 1-MNIST is known to be more difficult to
learn, and we give an explanation for this effect. The em-
pirical results suggest that the new learning rules can avoid
many difficulties in training RBMs.

2. Training Restricted Boltzmann Machines

RBM is a stochastic recurrent neural network consisting of
binary neurons arranged in two layers (Smolensky, 1986).
Each neuronvi in the visible layer is connected to all the
hidden neurons, and each neuronhj in the hidden layer
is connected to all the visible neurons. We denote byv a
binary column vector containing the statesvi of the visible
neurons and similarly byh a vector of hidden stateshj .

The probability of a particular state(v,h) of the network
is defined by the energy which is postulated to be

E(v,h | θ) = −vT
Wh− b

T
v − c

T
h (1)

where parametersθ include weightsW = [wij ] and biases
b = [bi] and c = [cj ]. Parameterwij is the weight of
the synaptic connections between neuronsvi andhj . The
probability of a state(v,h) is

P (v,h | θ) = 1

Z(θ)
exp [−E(v,h | θ)] ,

whereZ(θ) is the normalizing constant.

2.1. Training

Maximum likelihood estimation of the parameters of RBM
can be done using gradient-ascent update with learning rate
η and the following gradients:

∇wij = 〈vihj〉d− 〈vihj〉m (2)

∇bi = 〈vi〉d− 〈vi〉m (3)

∇cj = 〈hj〉d− 〈hj〉m . (4)

We denote by〈·〉d the expectation over the data, or in
other words the distributionP (h | {v(t)},θ). Similarly,
〈·〉m denotes the expectation over the model distribution
P (v,h | θ). We also use a shorthand notation〈·〉P which
is the expectation over the probability distributionP .

A practical way to avoid computing the gradients exactly,
which is not computationally feasible, is to use Markov-
Chain Monte-Carlo (MCMC) sampling methods to com-
pute the expectations〈·〉m approximately. The restricted
structure of RBM makes Gibbs sampling efficient in draw-
ing samples fromP (v,h | θ): Given one layer, either vis-
ible or hidden, the neurons in the other layer are mutually
independent. This makes it possible to sample from the
whole layer at once.

Training is typically done using only a subset of data exam-
ples for computing the expectations〈·〉d on each iteration.
This subset of training data is usually called mini-batch.

2.1.1. CONTRASTIVE DIVERGENCE

Contrastive divergence (CD) learning (Hinton, 2002) ap-
proximates the true gradient in (2)–(4) by computing〈·〉m
using samples obtained after runningn steps of Gibbs sam-
pling starting from each data sample of the corresponding
mini-batch. The CD gradient for the weights is approxi-
mated as

∇wij ≈ 〈vihj〉d− 〈vihj〉Pn
(5)

wherePn denotes the distribution aftern steps of Gibbs
sampling. Even though CD learning is known to be biased
(Carreira-Perpĩnán & Hinton, 2005), it has proven to work
well in practice.

2.1.2. PARALLEL TEMPERING

Parallel tempering (PT) sampling was recently pro-
posed to replace Gibbs sampling for estimating〈·〉m
(Desjardins et al., 2010; Cho et al., 2010). The basic idea
of PT is that multiple chains of Gibbs sampling are run
for models with different “temperatures”. Every now and
then, the samples are swapped between the chains. Chains
with higher temperatures correspond to more diffuse dis-
tributions and therefore they can produce a greater variety
of samples. This facilitates better exploration of the state
space.

In this paper, we use PT with a set ofN inverse tempera-
tures0 < β2 < · · · < βN−1 < 1. βN = 1 corresponds
to the current RBM model with parametersθ = (W,b, c).
Smaller valuesβi correspond to less restricted models with
parametersθi = (βiW, βib, βic). Thusβ1 = 0 corre-
sponds to the most diffuse distribution.

We run separateN chains for each sample in the mini-
batch. After every Gibbs sampling step in the chains, swaps
are proposed and accepted according to the Metropolis rule.
The expectations〈·〉m are computed from the samples of
the chain withβ = 1.

2.2. Annealed Importance Sampling

It is desirable to know the actual value of the likelihood
which is optimized during learning. If the normalizing con-
stant is known, computing the likelihood is straightforward.

Annealed importance sampling(AIS) provides a way to es-
timate the normalizing constant of RBM (Salakhutdinov,
2009a). AIS is based onsimple importance sampling(SIS),
which uses the fact that the ratio of two normalizing con-
stants for two probability densitiesPA(v) = P ∗

A(v)/ZA

andPB(v) = P ∗

B(v)/ZB can be computed as:

ZB

ZA

=

〈

P ∗

B(v)

P ∗

A(v)

〉

PA

. (6)

In SIS, (6) is estimated using samples fromPA(v).
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Using this idea, AIS estimates the normalizing constant
of the model distribution by computing the ratio of the
normalizing constants of consecutive intermediate distribu-
tions ranging from so-called base distribution and the target
distribution.

2.3. Difficulties in Training RBMs

The fact that the objective function is very costly to esti-
mate makes training RBM difficult. It is difficult to deter-
mine how well learning is progressing. Furthermore, it is
not possible to use advanced optimization methods such as
conjugate gradient or even line-search.

Learning is performed using stochastic gradient, and it con-
verges to a local solution. It is generally not feasible to
compare different local optima analytically.Schulz et al.
(2010) andFischer & Igel(2010) recently showed that de-
pending on initialization and learning parameters the re-
sulting RBMs can highly vary even for a small data set.

Furthermore, most learning algorithms discussed in the
previous section can diverge if the learning parame-
ters are not chosen appropriately (Desjardins et al., 2010;
Schulz et al., 2010; Fischer & Igel, 2010). The use of ad-
vanced MCMC sampling methods such as PT has been
shown to avoid divergence but the likelihood can highly
fluctuate in the long run without using the appropriate
learning rate scheduling (Desjardins et al., 2010; 2009).

One way to analyze the quality of a trained model is to
look at the features (the weightswij) and the bias terms
cj corresponding to different hidden neuronshj . Neurons
that have a large biascj are most of the time active. They
are not very useful because the weights associated to them
can be incorporated into the bias termb. Other neurons
(e.g. with large negative biasescj) can be always inactive
or there can be neurons (with weightswij close to zero)
whose activations are independent of data. Such hidden
neurons are also useless because they do not contribute to
the modeling capacity of RBM.

Ideally, each hidden neuron should represent a distinct
“meaningful” feature, for example, a typical part of an im-
age. We have noticed, however, that very often the hidden
neurons tend to learn features that resemble the visible bias
termb. This effect is more prominent at the initial stage
of learning and for data set in which visible bits are mostly
active, such as 1-MNIST.

Fig. 1(a)-(b) show the weightsW of RBM with 36 hid-
den neurons trained using the traditional gradient (2)–(4)
on MNIST and 1-MNIST with the constant learning rate
0.1 and weights initialized randomly from

[

−1 1
]

. The
features learned from MNIST look quite good, even though
there are some useless neurons. However, the features
learned from 1-MNIST are clearly bad: 18 hidden neurons

(a) (b) (c)

Figure 1.Visualization of filters learned after five epochs by RBM
with 36 hidden neurons. (a) Traditional gradient, MNIST. (b) Tra-
ditional gradient, 1-MNIST. (c) Proposed algorithm (Section3),
1-MNIST.

are mostly active and represent global features that some-
what resemble the visible bias, the other 18 neurons are
mostly inactive and hence useless.

There is a number of well-known heuristics proposed to
improve the training results. They include proper schedul-
ing of the learning rate, weight decay prior for the weights,
adding momentum terms to the gradients, and forcing spar-
sity of the hidden activations. These heuristics are known
to help in many practical applications, however, with extra
parameters which should be selected very carefully. Good
values of these parameters are typically found by trial and
error and it seems that one requires a lot of experience to
set the learning settings right (Hinton, 2010).

3. Improved Training Algorithm

This section describes the two novel contributions.

3.1. Adaptive Learning Rate

Here we propose an algorithm for automatically adapting
the learning rate while training RBM using stochastic gra-
dient. The automatic adaptation of the learning rate is
based on maximizing the local estimate of the likelihood.

Let θ = (W,b, c) be the current model,θ′ = (W′,b′, c′)
is the updated model with some learning rateη and
Pθ(v) = P ∗

θ
(v)/Zθ is the probability density function

(pdf) with normalizing constantZθ for the model with pa-
rametersθ. Now if we assume that the learning rate is
small enough and therefore the two models are close to
each other, the likelihood ofθ′ can be computed as in SIS
using (6):

Pθ′(vd) =
P ∗

θ′(vd)

Zθ

Zθ

Zθ′

=
P ∗

θ′(vd)

Zθ

〈

P ∗

θ′(v)

P ∗

θ
(v)

〉

−1

Pθ

, (7)

wherevd denotes the training data. In practice, we use
samples from the next mini-batch forvd.1

1Our experiments showed that if the same samples were used
both for obtaining the gradients and the adaptive learning rate, the
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Now we would like to select a learning rate so as to maxi-
mize the likelihood of the new parametersθ

′. Equation (7)
can be used to approximate the required likelihood. The
unnormalized pdfP ∗

θ′ is computed using the training sam-
ples and (1), and the expectation〈·〉Pθ

can be estimated
using the samples fromPθ, like in SIS. These samples are
collected in order to estimate the negative term in (5) and
therefore computing this expectation can be done practi-
cally for free.

In principle, one could find the optimal learning rate that
maximizes the local estimate of the likelihood on each iter-
ation. However, this would likely lead to large fluctuations
of the learning rate because of the small sample size (mini-
batch). In our experiments, we selected the new learning
rate from the set{(1− ǫ)2η0, (1− ǫ)η0, η0, (1+ ǫ)η0, (1+
ǫ)2η0}, whereη0 is the previous learning rate andǫ is a
small constant.

3.2. Enhanced Gradient

In this section, we propose a new gradient to be used in-
stead of (2)–(4). Let us first define the covariance between
two variables under distributionP

covP (vi, hj) = 〈vihj〉P − 〈vi〉P 〈hj〉P .

We can rewrite the standard gradient (2) as

∇wij = covd (vi, hj)− covm (vi, hj)

+ 〈vi〉dm∇cj + 〈hj〉dm∇bi , (8)

where〈·〉dm = 1
2 〈·〉d + 1

2 〈·〉m is the average activity of a
neuron under the data and model distributions.

The standard gradient (8) has several potential problems.
The gradients w.r.t. the weights are correlated with the gra-
dient w.r.t. the bias terms, assuming thatcovd (vi, hj) −
covm (vi, hj) is uncorrelated with∇cj and∇bi. This ef-
fect is prominent when there are many neurons which are
mainly active, that is for which〈·〉dm ≈ 1. These terms
can distract learning of meaningful weights, which often
leads to the case when many neurons try to learn features
resembling the bias terms, as shown in Fig.1(b).

When〈·〉dm ≈ 0 for most of the neurons, this effect can be
negligible, which might explain why learning 1-MNIST is
more difficult than MNIST and partially explain why sparse
Boltzmann machines (Lee et al., 2008), which ensure that
the average activation of a hidden neuron is kept at low
level, have been successful.

A related problem is that the update using (8) is different
depending on the data representation. This can be shown
by using transformations where some of the binary units

learning rate fluctuated too much in the case of PT learning and
diverged in the case of CD learning.

of RBM are flipped such that zeros become ones and vice
versa:

ṽi = v1−fi
i (1− vi)

fi , fi ∈ {0, 1} ,
h̃j = h

1−gj
j (1− hj)

gj , gj ∈ {0, 1}.

The parameters can then be transformed accordingly toθ̃

w̃ij = (−1)fi+gjwij

b̃i = (−1)fi
(

bi +
∑

j

gjwij

)

c̃j = (−1)gj
(

cj +
∑

i

fiwij

)

,

such that the resulting RBM has an equivalent energy func-
tion, that isE(x̃ | θ̃) = E(x | θ)+ const for allx. When a
model is transformed, updated, and transformed back, the
resulting model depends on the transformations:

wij ← wij + η
[

covd (vi, hj)− covm (vi, hj)

+
(

〈vi〉dm− fi
)

∇cj +
(

〈hj〉dm− gj
)

∇bi
]

(9)

bi ← bi + η
[

∇bi −
∑

j

gj (∇wij − fi∇cj − gj∇bi)
]

cj ← cj + η
[

∇cj −
∑

i

fi (∇wij − fi∇cj − gj∇bi)
]

,

where∇θ are the gradients defined in Eqs. (2)–(4).

We have thus2nv+nh different update rules defined by dif-
ferent combinations of binaryfi andgj , i = 1, . . . , nv and
j = 1, . . . , nh, wherenv, nh are the number of visible
and hidden neurons, respectively. All the update rules are
well-founded maximum likelihood updates to the original
model. We propose to use as the new gradient a weighted
sum of the2nv+nh gradients with the following weights:
∏

i

〈vi〉fidm

(

1− 〈vi〉dm

)1−fi
∏

j

〈hj〉gjdm

(

1− 〈hj〉dm

)1−gj

By using these weights we prefer sparse data representa-
tions for which〈·〉dm ≈ 0 because the corresponding mod-
els get larger weights.

The proposed weighted sum yields the enhanced gradient

∇e wij = covd (vi, hj)− covm (vi, hj)

∇e bi = ∇bi −
∑

j

〈hj〉dm (∇wij −∇bi − 〈vi〉dm∇cj)

∇e cj = ∇cj −
∑

i

〈vi〉dm (∇wij −∇cj − 〈hj〉dm∇bi),

where ∇e wij has the form of (8) with the bias gra-
dient terms cancelled out. In the experiments, we
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Figure 2.L2-norms of the gradients for weights during the learn-
ing of a RBM with 361 hidden neurons. The blue curve plots the
norms of the traditional gradient, and the green curve plots the
norms of the proposed robust gradient. The norms of the differ-
ence between two gradients are drawn with the red curve.

used simplified equations for the bias gradients∇e bi =
〈vi〉d − 〈vi〉m −

∑

j 〈hj〉dm∇e wij and∇e cj = 〈hj〉d −
〈hj〉m−

∑

i 〈vi〉dm∇e wij ,which approximate the proposed
weighted sum. It can be shown that the new rules are in-
variant to the bit-flipping transformations. One can also
note that the enhanced gradient shares all zeroes with the
traditional gradient.

In Figs.2–3, we present some experimental analysis of the
proposed gradient. Fig.2 shows the norms of the gradient
for the weights of an RBM with 361 hidden neurons trained
on the MNIST data set. It is clear that the additional terms
that distract learning dominate in the traditional gradient,
especially at the early stage of training.

Fig.3 shows the differences in the update directions for dif-
ferent neurons of an RBM trained on MNIST. Each element
of a matrix is the absolute value of the cosine of the angle
between the update directions for the two neurons. The gra-
dients obtained by the traditional rule are highly correlated
to each other, especially, at the early stage of learning. On
the contrary, the new gradient yields update directions that
are close to orthogonal, which allows the neurons to learn
distinct features.

4. Experiments

In this section, we experimentally compare the proposed
improvements to the traditional learning algorithms. In
Sections4.1–4.3, RBMs are trained on the MNIST data set,
and in Section4.4, we use the Caltech 101 Silhouettes data.

We run 20 epochs with a mini-batch size of 128 unless oth-
erwise mentioned. Thus, each RBM was updated about
4,700 times. Both biasesb andc of an RBM were initial-
ized to all zeros. Weights were randomly initialized such
thatwij = λu whereλ is a weight scale andu ∼ U(−1, 1)
denotes a sample from the uniform random variable from
−1 to 1. By default, we usedλ = 1/

√
nv + nh.

For PT learning, we used 11 different inverse temperatures
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Figure 3.The angles between the update directions for the
weights of RBM with 36 hidden neurons. White pixels corre-
spond to small angles, while black pixels correspond to orthog-
onal directions. From left to right: traditional gradient after 26
updates, traditional gradient after 352 updates, enhanced gradient
after 26 updates, and enhanced gradient after 352 updates.

equally spaced fromβ1 = 0 to β11 = 1. For CD learning,
we usedn = 1 steps of Gibbs sampling. For each set-
ting, RBMs were independently trained with five different
initializations of parameters. After training, the normaliz-
ing constant of each model was estimated using AIS and
the log-probability of the test data was computed. We used
θi = (βiW, βib, βic) and 10,001 equally-spaced temper-
atures. Each estimate ofZ(θ) was averaged over100 inde-
pendent AIS runs.

4.1. Sensitivity to Learning Rate

In order to demonstrate how the learning rate can greatly
affect training results, we trained RBMs with 361 hidden
neurons using the traditional gradient with five learning
rates:η ∈ {1, 0.1, 0.01, 0.001, 0.0001}. The black curves
in Fig. 4 show the log-probability of the test data obtained
with PT and CD sampling strategies. It is clear that the re-
sulting RBMs have huge variance depending on the choice
of the learning rate. Too small learning rates prevent RBMs
from learning barely anything, whereas too large learning
rates often result in models which are worse than those
RBMs trained with proper learning rates. In the case of
η = 10, learning failed completely.

In order to test the proposed adaptive learning rate,
we trained RBMs with 361 hidden neurons using
the traditional gradient and the same five values
{1, 0.1, 0.01, 0.001, 0.0001} to initialize the learning rate.
The blue curves in Fig.4 show the obtained log-
probabilities of the test data. The results are now more sta-
ble and the variance among the resulting RBMs is smaller
compared to the results obtained with fixed learning rates
(the black curves in the same figure). Regardless of the ini-
tial learning rate, all RBMs were trained quite well. These
results suggest that the adaptive learning rate works well.
However, it was still slightly better to use a constant learn-
ing rate of0.1.

Fig. 5 shows the evolution of the learning rate during learn-
ing. Even for small initial learning rates, the adaptation
procedure was able to find appropriate learning rate values
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Figure 4.Log-probabilities of test data samples computed after 20
epochs for five runs with different initializations for the learning
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than−400. The order of the connected points is arbitrary, they
are sorted in order to make the curves more discriminate.
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Figure 5.Evolution of the adaptive learning rate from five differ-
ent initializations during learning. The learning rates are shown
as a function of the number of updates. RBMs are trained with
the traditional gradient (left) and the robust gradient (right).

after only a few hundred updates. Remarkably, the learn-
ing rates converge to the same value when the enhanced
gradient is used.

The red curves in Fig.4 show the log-probabilities of the
test data obtained with the new gradient and the adaptive
learning rate initialized with five different values. Both PT
and CD sampling were tried. It is apparent that the en-
hanced gradient improves the overall learning performance
compared to the traditional gradient. Similar performance
was obtained on 1-MNIST (the results are not shown here)
because the new gradient is invariant to data representation.

4.2. RBM as Feature Extractor

In addition to the log-probabilities of the test data, we
trained simple logistic regression classifiers on top of
RBMs to check their feature extracting performance. The
activation probabilities of the hidden neurons were used as
the features. In order not to destroy the learned structure
of the RBM, no discriminative fine-tuning was performed.
This explains why the accuracies reported in this paper are
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Figure 6.Classification accuracy of test data samples computed
after 20 epochs for MNIST (above) and 1-MNIST (below). For
each initial learning rate, the learning was conducted five times.
The results that do not appear on the upper plot were below88%.
The order of the connected points is arbitrary, they are sorted in
order to make the curves more discriminate.

far from the state-of-the-art accuracy on MNIST using deep
neural networks (Salakhutdinov, 2009b).

The black curves in Fig.6 show high variance of the clas-
sification results for the traditional gradient depending on
the chosen learning rate. The results obtained for MNIST
(the upper plot) are pretty good although the choice of the
learning rate does have an effect on performance. How-
ever, the classification accuracy obtained for 1-MNIST is
very bad, which proves that 1-MNIST is more difficult for
training using the traditional gradient.

The blue curves in Fig.6 show that the adaptive learning
rate can reduce the variance of the results obtained with
the traditional gradient. However, the results were quite
significantly worse for the initial learning rate 1. The red
curves in Fig.6 show the superior performance of the en-
hanced gradient and the adaptive learning rate compared to
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Figure 7.Visualization of filters learned by RBMs with 36 hidden neurons on MNIST withvarious initial learning rates and initial
weights scaling. Left: using the traditional gradient with fixed learning rate,right: using the enhanced gradient with adaptive learning
rate. Learning was performed for 5 epochs each.

the traditional gradient. Regardless of the initial learning
rate, all RBMs leaned features which yielded high classifi-
cation performance. Note that the results are also excellent
for 1-MNIST.

4.3. Sensitivity to Weight Initialization

In the next experiment, we test the sensitivity of training
results to the scale of the weight initialization. We trained
small RBMs with 36 hidden neurons on MNIST using dif-
ferent scales of the initial weights and varying learning
rates. PT sampling was used to draw model samples from
RBM.

The plot on the left in Fig.7 visualizes the filters learned
by RBMs using the traditional gradient with fixed learn-
ing rate. It is clear that the results are highly dependent on
the choice of the training parameters: The combination of
the initial weight scale and the learning rate should be se-
lected very carefully in order to learn reasonable features.
The combination of learning rateη = 0.1 and weight scale
λ = 0.1 seems to give the best results for the reported ex-
periments. In practice, an optimal combination of the train-
ing parameters is usually found by trial and error, which
makes training a laborious procedure.

The plot on the right in Fig.7 shows the filters learned us-
ing the new gradient and the adaptive learning rate initial-
ized with five different values. It is clear that the features
are much better than the ones obtained with the traditional
gradient. Remarkably, no hidden neuron is either dead or
always active regardless of the scale of the initial weights
and the choice of the initial learning rate.

4.4. Caltech 101 Silhouettes

Finally, we tested the proposed learning rules on Caltech
101 Silhouettes data set. RBMs with 500, 1000, and 2000
hidden neurons were trained using the proposed algorithm
for 300 epochs with the mini-batch size set to 256. The
learning rate was initialized to0.0001.

The obtained results are presented in Table1. Remarkably,
the classification accuracy improved by more than 5 % over
the best result reported byMarlin et al.(2010).

Table 1.Log-probabilities and classification accuracies of the test
data of Caltech 101 Silhouettes after 300 epochs. First numbers
were obtained by PT learning, and the following numbers were
by CD learning.

Hidden neurons Log-probability Accuracy (%)
500 -127.40, -280.91 71.56, 68.48
1000 -129.69, -190.80 72.61, 70.39
2000 -131.19, -166.72 71.82, 71.39

5. Discussion

The paper discussed the main difficulties of training RBMs
and their underlying reasons. Traditional learning algo-
rithms for RBMs, which are based on approximate stochas-
tic gradient updates, tend to lead to high variance in result-
ing models and possibly diverging behavior. Another prob-
lem is that many learning parameters (e.g., learning rate
scheduling) have to be manually and carefully chosen de-
pending on the structure of the trained RBMs and the prop-
erties of the training data set. Additionally, a problem of
having meaningless hidden neurons in RBMs during learn-
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ing has been demonstrated and discussed.

We proposed a new algorithm for RBM training that ad-
dresses the above difficulties. It consists of an adaptive
learning rate and an enhanced gradient, and it is formu-
lated with well-founded theoretical background. The en-
hanced gradient could overcome the problem of having hid-
den neurons learning the nearly identical features and was
able to speed up the overall learning significantly. Also,
unlike the traditional gradient rules which are dependent
on the data representation, the enhanced gradient was de-
rived to be invariant to it. This allowed to learn the flipped
version of the MNIST data set without any difficulty.

The paper mainly focused on parallel tempering learning,
but we also showed that contrastive divergence learning can
also be enhanced by the proposed improvements. Our fu-
ture work will apply the proposed methods to other models
in the Boltzmann family, such as deep Boltzmann machines
and Gaussian-Bernoulli Boltzmann machines.
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