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Abstract— A new interest towards restricted Boltzmann ma- Il. BOLTZMANN MACHINE
chines (RBMs) has risen due to their usefulness in greedy

learning of deep neural networks. While contrastive divergnce Bol hi BM) i hasti |
learning has been considered an efficient way to learn an RBM, Boltzmann machine (BM) is a stochastic recurrent neura

it has a drawback due to a biased approximation in the learniy ~ Network consisting of binary neurons [3]. The network is
gradient. We propose to use an advanced Monte Carlo method fully connected, and we use 0 or 1 as the state of each neuron
called parallel tempering instead, and show experimentafithat ;.. The links between each pair of neurons are symmetric
it works efficiently. (meaning that the effect of one neuron on the state of the
other one is symmetric for each pair) and it is assumed that
there are no edges going from the neurons to themselves.
I. INTRODUCTION

The probability of a particular state = [xq,x2,- -, 24]7
is defined by the energy of BM which is postulated as
Recently, deep neural networks such as a deep belief net- 1
work [1] and a deep Boltzmann machine [2] have become Ex|W)= 752 Zwijzixﬂ"
widely applied to various machine learning tasks. These dee izl

neural networks are characterized and distinguished fhem twhereW is a weight matrix consisting of weights;; of the
conventional multi-layer perceptron and other shallowraku synaptic connections between neuransnd j. We assume
networks by their large number of layers of neurons anthat w; = 0 and thatw;; = w;;. The bias terms can be
its adaptation by a layer-wise unsupervised greedy legrnimmitted by using an auxiliary component in the state vector
method. that always has the value The probability of a stat is

A deep neural network is typically constructed by stacking Px| W)= Z(;V) exp [-E(x | W) 1)
multiple restricted Boltzmann machines (RBM) so that the
hidden layer of one RBM becomes the visible layer ofvhere
another RBM which is situated one level up. This way of Z(W) = ZGXP [—E(x | W)]
constructing deep neural networks allows for using layer- x
wise training of RBMs, which facilitates finding a moreis the normalizing constant.
accurate model for the data. Such multi-stage learning has - - )
been empirically shown to work better than conventiondf follows from (1) that the conditional probability of a gle
learning methods such as the widely used back-propagatiBRUron being eithen or 1 given the states of the other
[2]. It is thus important to have an efficient and well-belngyi N€Urons can be written in the following way:
learning method for RBM. In this paper, we explore some Pl — 1 W — 1
advanced sampling procedures for that. (@i =1]x, W)=

1+ exp (— Zj;éi wijmj)

The paper starts by briefly discussing theoretical backgtou wherex,; denotes a vectdws, -+, z;_1, Ti1, - cxg)T. It
behind a general Boltzmann machine (BM). Then, we staig obvious that this probability is expressed using thedziash

the difference between the general BM and RBM, anglonlinear sigmoid function used in multi-layer perceptron
introduce a learning algorithm specific to RBM. Contrastivg,etworks.

divergence learning which is a successful learning allgorit
for RBM is explained, and later a learning algorithm utiigi The neurons of BM are usually divided into visible and
parallel tempering is introduced. In the experimental parhidden ones = [v?, h”|T, where the states of the visible
we demonstrate the capability of RBM to learn the dataeurons are clamped to observed data, and the swates
distribution by drawing samples from a trained RBM. Wethe hidden neurons can change freely.

also compare the newly proposed learning algorithm with

contrastive divergence learning.

(@

A. Learning Boltzmann machine
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{vW}N  the log-likelihood of the parameters of BM is  the probability distribution represented by BM to be exactl
N N identical to the probability distribution defined by theitiag
_ (t) _ (t) data set. Although the analytical formulation of the exact
LW) ;logP(v W) ZlogZP(v BIW), probability distribution of the training data set is unkmw
the positive phase mimics it by clamping the visible neurons
to the training data, and lets the hidden neurons freely have
their own states. It can then be compared to the probability

where the statek of the hidden neurons have to be marginal-
ized out. This yields

N S exp(dx O Wx(®) distribution represented by BM where both the visible and
L(W) = Zl S _ex ( XTWx) hidden neurons can freely choose their states accordirgto t

t=1 P distribution determined by the weights. When the diffeeenc

N T ® between the distributions in the two phases becomes zero or

Z IOgZeXp 53X Wx) small enough, then learning effectively stops.

- 10gZeXp xTWx) ] . B. Practical limitation and approximate approach

Although the activation and learning rules of BM are both
The gradient of the log-likelihood is obtained by takingclearly formulated, there are practical limitations in us-

partial derivative with respect to parameters ing BM. Especially, the gradient-based update formula is
) (t) T computationally unfeasible, as the distributions requliire
1 j exp(lx(t) Wx(®) both phases can only be obtained by evaluating all possible
(’)wu ~2 ; Zh exp( x®7T Wx(®) combinations of the states of the neurons in the machine.

S exp( xTWx) the states. For example, BM which was designed to handle

N 28 x 28 black-and-white image with 500 hidden nodes

_N [izzw 0) w P(h | v, W) has 228284500 possible combinations, and the number is
2 - unimaginably huge. Evaluating all those states at every
gradient update step is simply unfeasible. In fact, even

_inmjp(x | W)] the evaluation of a probability of a single combination is
almost impossible, as all combinations of the states must be

B > TiTjexp(ix TWX)‘| There exist exponentially many possible combinations of

t=1

N evaluated regardlessly to compute the normalizing cohstan
B {<$i“"j>P<h|{v<ﬁ},W> - <xif“j>P<x\W>} ’ Z(W).

where we used a shorthand notatibhy, ., which can be 10 o1i0us approach to overcome this difficulty is to use
understood as the expectation computed over the probﬁb"&lbbs sampling (see e.g. [4]). Gibbs sampling can easily be
distribution P(). implemented because the conditional distribution of tagest
of a single neuron in BM given the states of all the other
neurons is given by (2). This approach can greatly reduce the
s o e computational burden of the gradient update rule. If we as-
Wi Wit <xl$]>P(h‘{vm} w) <$ZIJ>P(X|W)} = sume that the number of samples required for explaining the
probability distribution of the whole state space is sudiitly
Wheren denotes the learning rate, and it has absorbed tRenaller than the size of the state space, that is the number
factor &. Thus the direction of the gradient is the differencef all possible combinations of the states of the neurores, th
between the correlations under two distinct probabilistéi  |earning of BM is not anymore as computational unfeasible

butions. The first on€zx;) py, (v} wy 1S the correlation as the exact computation of the probability masses.
obtained while the visible nodes are clamped to the training

data, and it represents the target probability distributo However, there also exist other kinds of limitations in gsin
which the trained BM is intended towards. The second terf@ibbs sampling for training BM. The biggest problem is
(zsxj) p W) is the correlation obtained from the currentdue to the full-connectivity of BM. Since each neuron is
probabiiity distribution represented by the BM. Accordingconnected to and influenced by all the other neurons, it
to the sign of each term, the computations of the two ternfekes as many steps as the number of neurons to get one
can be called the positive phase and the negative phasample of the BM state. Even when the visible neurons
respectively. are clamped to the training data, the number of required
steps for a single fresh sample is still at least the number
The learning algorithm can be seen as driving BM so thaif hidden neurons. This makes the successive samples in the
the correlations between each pair of neurons in the twahain highly correlated with each other and this poor mixing
phases coincide with each other. In other words, we waaffects the performance of learning. Another limitatiorito$

The overall update formula for a parametey; is



approach is that multi-modal distributions are problematiconditioned on the training data. For instance, the exgpiecta
for Gibbs sampling [5]: Due to the nature of componentfor updating the weights is
wise sampling, the samples might miss some modes of the

N
o 1
distribution. (Vi) pniviny.0) = 3 szit)P(hg,t) IvD.©), (4)
t=1
I1l. RESTRICTEDBOLTZMANN MACHINE whereP(hEﬁ | {v(¥}, ©) is computed using (2) with the

bias term included.
To overcome these practical limitations imposed on the
general Boltzmann machine, a structurally restrictedivars Although the difficulties in learning have partly been salye
of Boltzmann machine called Restricted Boltzmann Mathe practical limitations of the general Boltzmann machine
chine (RBM) has been proposed [6]. RBM is constructedtill remain. As the number of neurons in RBM increases,
by removing the lateral connections in-between the visibld@ greater number of samples must be gathered by Gibbs
neurons and the hidden neurons. Therefore, a visible neurs@mpling in order to properly explain the probability dis-
would only have edges connected to the hidden neurons, alfi@ution represented by RBM. The computational load has
a hidden neuron would only have edges connected to tR€en greatly reduced but it still remains large. Moreoves, t
visible neurons. Now, the structure of RBM can be dividedroblem of the multi-modal probability distribution hastno
into two layers with inter-connecting edges, and it resembl at all been addressed.
the structure of the bi-partite graph.

. . A. Contrastive divergence learnin
The most important advantage over the general BM is on the 9 g

improved effectiveness in doing sampling. It follows fromcrontrastive divergence (CD) learning [7] does not follow

the fact that all neurons in one layer are independent e gradient obtained by the maximum likelihood criterion
each other given the states of the neurons in the other layer. 9 . y Ine . :
ather, CD learning approximates the true gradient by re-

Now Gibbs sampling can be done layer-wise rather thaé}acing the expectation ové@t(v, h | ©) with an expectation
component-wise. It can then greatly reduce the number L . " .
P 9 y r a distribution?, that is obtained by running steps of

sampling runs required to get enough samples to repres%ﬁﬁbs sampling from the empirical distribution. In praetic

the probability distribution. . : . ;

P y parallel chains of Gibbs sampling are run starting seplgrate
Furthermore, in the view of computational efficiency, thdrom €ach observation in the data set. The samples avstep
layer-wise sampling can fully utilize the modern paraleti areé used to compute the expectation.

computing environment, as sampling of each neuron ( he learning formula. then. becomes
component) in the same layer can be done independently 9 ' ’

of each other and simult_aneously, wher_eas Gibbs sampling Wij — wi; +1) [W‘hj)p — (z:ihj) p
on the general BM requires that sampling of each neuron
must be done sequentially. It should be noted that the case = 0 produces the

empirical distributionP(h | {v(Y}, ®) used in the positive
As the restriction has been imposed on the structure, tiase, whereas the case= oo produces the true distribution
energy, the state probability must be modified accordinglyof the negative phasf(x | ®).

E(v,h| @)= —% (vIWh +b’v +c’h) As it can be anticipated from the fact that the direction

1 of the gradient is not identical to the exact gradient, CD

P(v,h| @)= 7@ P {-=E(v,h | ©)}, learning is known to be biased [8]. Nevertheless, CD learnin

has been proven to work well in practice. A good property

where now paramete® = (W, b, c) include biased and  of CD is that in case the data distribution is multimodal,

c. The learning rules then become running the chains starting from each data sample guasntee
that the samples approximating the negative phase have

Wij — Wij + N {(Uz‘hﬁP(h\{v(”}-@) B <Uihj)P(vJﬂl(a)} representatives from different modes.

bi < bi +mp |:<Ui>P(h\{v(‘)},(-)) - <’Ui>P(v,h|®)}
IV. RESTRICTEDBOLTZMANN MACHINE AND PARALLEL
Cj = €+ e [<hj>P(h|{v<”},®) - <hJ>P(v7h|®)} ’ TEMPERING
where we used the same shorthand notatipp,., as before. _ _
A problem that has not been addressed neither by Gibbs
For computing the correlations during the positive phase, t sampling nor by CD learning is that the samples generated
exact computation of the correlation between the clampeatlring the negative phase do not tend to explain the whole
neuronsv and the (free) hidden neurors is possible, state space. This paper, therefore, proposes to use ybeanot
since all the hidden neurons are independent of each othiemproved variant of Markov-Chain Monte Carlo sampling



1) Create a sequence of RBNIBy, R1, - - , Rx) such that parameters &, are®; = (T, W, b, c¢), where
0<Ty<Ti < - <Tkg=1.
2) Create an empty set of sampl&s= {}.
3) Setxg = (x0,0, - ,XK,0) Such that everxy o is a uniformly distributed random vector (or use old ones
from the previous epoch).
4) Form =1to M, repeat
a) Samplex,, = (xo,m, - ,XK,m) from the sequence of RBMs such that,,, is sampled by one-step
Gibbs sampling starting from, ,,,—1.
b) Forj = K to 1, repeat
o Swapx;,,, andx; i, according toPswapX;,m,X;—1,m) computed using (5).
c) Addxg , to X.
5) X is the set of samples collected by parallel tempering samgpli

TABLE I: Sequence of steps for sampling from RBM using parallel teinge
table

method callegarallel temperingPT) [9]. PT sampling used the iteration. The samples come from the true distribution
in this paper utilizes multiple Gibbs sampling chains withP(v,h | ®) assuming that enough iterations are run to
varying levels of temperatures, where a tetemperature diminish the effect of the initialization.
denotes the level of the energy of the overall system, in this
case, RBM. The higher the temperature of the chain, tHe must be noted that the Gibbs sampling chain with the
more likely the samples collected by Gibbs sampling to mowvighest temperaturel( = 0) is never multimodal. So, the
freely. samples from the chain are less prone to missing some
modes that exist in RBM. From the chain with the highest
The use of PT sampling in training RBM is simply to use itemperature to the lowest temperature, samples from each
instead of Gibbs sampling in the negative phase. Due to tlthain become more and more likely to follow the target
previously mentioned characteristics, it is expected that model distribution.
samples collected during the negative phase would explain
the model distribution better, and that the learning preced his nature of swapping samples between the different
would be done well even with a smaller number of sample€mperatures enables better mixing of samples from diftere
than those required if Gibbs sampling is used. modes with much less number of samples than that would
have been required if Gibbs sampling was used. A brief
The basic idea of PT sampling is that samples are collecteléscription of how PT sampling can be done for training
from multiple chains of Gibbs sampling with different tem-RBM is shown in Table I. This is the procedure that is run
peratures from the highest temperatifire= 0 to the current between each parameter update during learning.
temperaturd” = 1. For every pair of collected samples from
two distinct chains, the swap probability is computed, dred t
samples are swapped according to the probability. The swap V- ESTIMATING LOG-LIKELIHOOD OF RESTRICTED
probability of a pair of samples is formulated according to BOLTZMANN MACHINES
the Metropolis rule (see e.g. [4]) as
Pr, (x1,)Pr, (x1,) c For estimating_fch.e normalizing constant, this paper adapts
' Pr. (r 1 Pr, (XT2>)7 (5)  the method utilizingannealed importance sampling\IS)

~ [10] which has been successfully adapted for computing the
whereT) andT; denote the temperatures of the two chaing,ormalizing constant of RBM [11].

and x7, and xp, denote samples collected from the two
chains. Pr(-) is the probability function of the RBM with AIS is based orsimple importance samplin(SIS) method
parameter®® = (T'W, b, c), where the effect of different that could estimate the ratio of two normalizing constants.
temperatures is emulated by multiplying the current weightor two probability densities?s (x) = % and P (x) =

A

W by the corresponding temperatuife %ﬁ:‘), the ratio of two normalizing constants, andZ 5 can
%‘f’ estimated by a Monte Carlo sampling method without any
bias if it is possible to sample from (-):

Pswapxr, ,X7,) = min (1

After each round of sampling and the swaps, the sample
the true temperaturé = 1 is gathered as the sample for

7 Pi(x 1 PA(x
1Since the lower value denotes the higher temperature, a iterense 24 Ep, [ B( )} ~ M Z B( )

M
temperaturess frequently used, but in this papégmperaturewill be used. ZB P (X) 1 P (X)

i



1) Create a sequence of intermediate temperaflifesuch thatd <7, <71 < --- < T, = 1.
2) Create a base RBMR, with parameter®, = (W, b, c), whereW, = 0.
3) Create a sequence of intermediate RBNjssuch that

« It has twice as many hidden nodes as the target RBM has.
« Parameters ar®; = ([(1 — Tx)Wo TpW],b, [cTcT}T).
4) Form =1to M, repeat
a) Samplex; from Ry.
b) Fork =1to K — 1, repeat
o Samplex;;1 from R by one-step Gibbs sampling starting from.
c) Setu,, = Hszl %M where P} (-) is an unnormalized marginal distribution function Bf,.

_1(xk)?

5) The estimate of% is L 3707 ..

TABLE II: Sequence of estimating the normalizing constant by andealportance sampling.
table

Based on SIS, AIS estimates the normalizing constant of thveere observed to resemble the digits regardless of thaliniti
model distribution by computing the ratio of the normalin state.

constants of consecutive intermediate distributions irang

from so-called base distribution and the target distrdsuti The second experiment was conducted in order to compare
The base distribution is chosen such that its normalizinge performance of RBM depending on two different learning
constantZ, can be computed exactly and it is possible tgnethods: CD learning and learning using sampling with PT.
collect independent samples from it. A natural choice of théhe performance was evaluated by the approximated likeli-
base distribution for RBM is an RBM with zero weighg. hood of the training data set and the approximated prolpgabili
This yields the normalizing constant of the test data set. We observed that the performance is

better when the gradient was estimated using PT sampling.
Zo = [[(t + exp {0:}) [T (1 + exp {e;}),

i j Furthermore, in the second experiment we computed the
where indices and j go through all the visible and hidden Probability of uniformly randomly generated data in the
neurons, respectively. current RBM model. The goal was to observe a potential

’ problem of CD learning that the samples generated during

By computing the product of the estimated ratios of théhe negative phase do not represent the state space as well
intermediate normalizing constants adg, the normalizing as the samples generated by PT sampling, but only repre-

constant of the target RBM can be estimated. The algorithe@nt the region centered around the training samples [13].
implementing AIS is outlined in Table 1. The probability of random data was computed for different

learning methods and comparéd.
To achieve an accurate estimate of the normalizing constant
a large number of intermediate RBMs should be used, arxj
the normalizing constant must be estimated by as marr]Xa
annealing runs as possible [11]. This means taand M
in the algorithm from Table Il should be large. The runs of
AIS are independent from each other, so they can be ful
parallelized.

Generating samples from a trained restricted Boltzmann
chine

BM was constructed such that there are 64 visible neurons
nd 100 hidden neurons. Each neuron had a bias parameter.
RBM was trained with 3822 training samples 8fx 8
handwritten digits. The original OptDigits data set prasd
VI. EXPERIMENTS 17-level greyscale digits but for simplicity we rounded the
intensity of each pixel so that the intensity less than 8 treca
Two different sets of experiments were done usingtMag. 0 (and 1 otherwise).
The goal of the first experiment was to test the capability of _ ) )
RBMs to capture the data distribution. We generated samplBEM was trained separately by CD learning with= 1
from RBM trained on the OptDigits data set. The data set wa'd learning with PT sampling. PT sampling was done with
acquired from the UCI Machine Learning Repository [12}/€ = 20 and temperature®, = 0, 71 = 0.05, ..., Ty = 1.
and it consisted of handwritten digits of the size 8 pixels. ) . . -
We assume that uniformly drawn samples do not lie close tdréiging

The _samples were collected by paraIIeI tempering Samp“nﬂta because the size of the training data set is much sritadlerthe size
starting from a randomly drawn state. Most of the samples the state space which 4.



The models represented by the RBMs are named CD1 and
::l' { L I ‘ 5 E ? i 5- PT, respectively. Each gradient update was done in the batch
(a) Training data set style so that all the training samples were used. CD1 and PT

were trained for 2000 epochs, and the learning naséarted
from 0.05 and gradually decreased following the search-then-

converge strategy.
= | Figure 1 shows the training data samples and the visual-

ization of the hidden nodes after training. The visualmati

of the hidden node was done by displaying the weights
associated with the node as a grey-scale digit. It can be
observed that each hidden node represents a distinct éeatur

To see the generative behavior of RBM, the samples were
h gathered using PT sampling starting from a random initial

sample. K = 20 was used for PT sampling. Figure 2 shows
the activation probabilities for the visible neurons of the
generated samples from the models learned with CD1 and
PT. The digits in the figure are 19 samples chosen out of
2000 samples collected by PT sampling starting from the
random sample. Each consecutive samples are separated by
100 sampling steps, and the first digit in both figures of
Figure 2 represents the random initial sample. It is cleat th
the trained RBM is able to generate digits which look similar

to the training data. The proposed method of learning with
PT sampling works as well as the conventional CD learning.

=
=

(b) Visualization of hidden nodes (CD1)

B. Comparison between contrastive divergence learning and
parallel tempering

L™ A=
Eiﬁ

For the second experiment, we trained RBMs with the same
100 hidden neurons using four learning algorithms: CD1,
(c) Visualization of hidden nodes (PT) CD5, CD25 and PT (where GDis CD learning withn

Fig. 1: Training data set and visualization of hidden nodes. (a§ampllng steps).

shows 10 training samples where for each digit one sal
ple was randomly chosen. (b) and (c) shows the weight mghe parameter& and M of parallel tempering were chosen

connected to nine randomly chosen hidden neurons. so that the number of total Gibbs sampling steps during one
figure gradient update matches that of CD1 which uses as many
samples as the training data samples. PT was, therefore,

trained with K = 20 temperatures and/ = 192 samples

ﬁ E i " I_ ! ,ﬂ. I. # ? pergr_adientup_date. Thischoice is reasor_1able_in a sense tha
236 EE ¥

the difference in CD learning and learning with PT sam-
! . i E pling only depends on the number of Gibbs sampling steps,
whereas the computational cost of additional operations ma
(@) Model learned with CD1 vary largely depending on the implementation.
374731

SLFILCE

(b) Model learned with PT

Each RBM was trained for 635 epochs and the probabilities
! 1 ' of both training and test data were estimated. The parameter
used in AIS wereM = 50 and K = 5000. All the models
! i ! were trained 30 times and the averaged performance indices
were calculated.

Figure 3 shows that the probability of the test data increase
While the probability of the random data decreases over the
gradlent updates. This is consistent with the fact that the

Fig. 2: Samples generated by parallel tempering sampling fro
the RBM trained with (a) CD1 and (b) PT started from
the random sample. The first digits of both figures are th

random initial samples.
figure P 3n(n) = + 09—, whereno = 0.05 for both the weight and the bias, and

no = 300 for both CD1 and PT.
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gradient maximizes the likelihood according to the distrib the test data set and the lowest probability of the random

tion of the training data. It also confirms that the prob#pili data set. It should be, however, noted that the variance of PT

of the unseen samples that are not close to any trainimg greater than those of both CD1 and CD25.

sample is decreased. However, the rate of the changes in the

likelihood and the probability of the test data over updates

differs from one model to another. PT achieves the highest

average likelihood and the highest average probabilithef t

test data, and at the same time achieves the lowest prapabili

of the random data at the fastest rate. It can be furthghe increase of. in CD learning certainly boosts up the rate

observed that PT learning is computationally more favaabbf the increase in the likelihood as a function of learning

than CD25 and comparable to CD1. epochs, but even with as large a®5 CD learning cannot
achieve as large likelihood as PT does. CD learning with

Figure 4 which shows the average probability of the test data= 25 is much more computationally demanding than PT.

set and the random data set by 30 independent trials, furth€his result indicates that the use of the advanced sampling

confirms that PT indeed achieves the highest probability aéchnique can yield faster and better training of RBM.



VII. DISCUSSION to improving PT sampling for training RBM. The in-depth
study of how the parameters of PT sampling influence the
As an alternative to Gibbs sampling, contrastive divergen@erformance must be done, as the experiments in this report

learning has been proposed and made learning of RBMgere done only with one specific setting of PT sampling. The

faster. Despite its computationally favorability and thelev adjustable parameters such as the learning rate, the naihber
acceptance, contrastive divergence learning is biasedein ttemperatures and the number of samples, significantlytaffec
sense that the computed gradient computed does not lgae performance of learning, and the relationship betwieen t
exactly to the maximum of the likelihood. This paperchoice of parameters and the performance must be further
therefore, proposed an alternative approach which wuilizestudied in order for PT sampling to be widely used.

parallel tempering for training RBMs. This approach does

not sacrifice the optimality of the direction of the gradie”hcknowledgements

but reduces the computational cost by improving the quality
of the samples.

Two separate experiments were done: (1) to confirm th
capability of RBM to capture the data distribution and (2
to show that RBM trained by the proposed PT approach
superior to that trained by the conventional CD learninge T
former experiment confirmed that RBM trained by either CD

learning or learning with PT sampling is able to generate

samples resembling the training data. The second expetrimen
confirmed that the use of the proposed PT approach can resti
in a more accurate RBM. As a performance measure, the
log-likelihood estimated using annealed importance samgpl [2]
was used. 3]

Learning with PT sampling was superior in all aspectsy
of the experimental results. We observed higher likelihood
computed on the training data and higher probability of thel®!
test data. The increase of the likelihood over the gradienjg
updates was also faster. The probability of random samples
by PT sampling was less than any other model trained with
CD learning. This confirmed the existence of the potential7
problem of CD learning that the samples generated by CD
learning during the negative phase do not represent the st
space well and fail to decrease the probabilities over th
regions which are far from the training data. At the same
time, the computational complexity of the gradient update
by PT sampling was comparable to that of CD learning. (g

Recently, the use of PT learning for RBMs has been proposed
independently also in [14]. The work in [14] illustrates thel10]
possible explanations why PT learning performs better thay,
CD learning, and presents the experimental results showing
the superiority of PT learning. It, however, lacks showihg t (12]
efficiency of PT learning compared to CD learning in terms

of the computational complexity, whereas we showed th@t3]
even in the terms of the computational load PT learning iﬁ4]

as efficient as CD learning.

A similar attempt at improving the learning by adapting an
advanced sampling method has been proposed in [5]. The
work also does sampling by considering multiple distribu-
tions of different temperatures, but the details of the pszul
algorithm (calledempered transitiondiffer greatly from that
presented in this paper.

]

Findings of this paper raise further research issues rkelate
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