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2.5 Time-series modelling in bioinformatics

Bayesian methods are well-suited for analysis of molecular biology data as the data sets
practically always consist of very few samples with a high noise level. We have stud-
ied models of gene transcription regulation based on time series gene expression data in
collaboration with the Machine Learning and Optimisation group at the University of
Manchester. This is a very challenging modelling task as the time series are very short,
typically at most a dozen time points.

In [22], we have developed a method of modelling single input motif systems, where
a single transcription factor regulates a number of genes. This is achieved by imposing
a Gaussian process prior on the latent regulator (transcription factor protein) activity,
which under a linear ODE transcription model leads to a joint Gaussian process model for
all observable gene expression values. The model can further be extended by incorporating
the transcription factor expression levels through a translation model. It is also possible
to consider nonlinear models by using approximate inference. A sample model of p53
activation is illustrated in Fig. 2.8.
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Figure 2.8: An inferred model of transcription factor p53 activation based on five known
target genes. Red marks denote observed gene expression values while blue curves are
inferred by the model along with 2 standard deviation error bars.

We have applied the model to genome-wide ranking of potential target genes of tran-
scription factors. In experiments with key regulators of Drosophila mesoderm and muscle
development, this has lead to extremely promising results in terms of enrichment of dif-
ferential expression in loss-of-function mutants as well as ChIP-chip binding near the
predicted target genes [23].
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