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Abstract—Multimodal recognition has recently become more
attractive and common method in multimedia information re-
trieval. In many cases it shows better recognition results than
using only unimodal methods. Most of current multimodal
recognition methods still depend on unimodal recognition results.
Therefore, in order to get better recognition performance, it is
important to choose suitable features and classification models for
each unimodal recognition task. In this paper, we research several
unimodal recognition methods, features for them and their com-
bination techniques, in the application setup of concept detection
in image-text data. For image features, we use GoogLeNet deep
convolutional neural network (DCNN) activation features and
semantic concept vectors. For text features, we use simple binary
vectors for tags and word2vec vectors. As the concept detection
model, we apply the Multimodal Deep Boltzmann Machine
(DBM) model and the Support Vector Machine (SVM) with
the linear homogeneous kernel map and the non-linear radial
basis function (RBF) kernel. The experimental results with the
MIRFLICKR-1M data set show that the Multimodal DBM or the
non-linear SVM approaches produce equally good results within
the margins of statitistical variation.

I. INTRODUCTION

Recently, multimodal recognition has become more attrac-

tive and common method in multimedia information retrieval

research. For example, object or scene detection from mul-

timedia resources, such as textually described images, can

be done by combining search results of related words from

text description and visual object recognition. In many cases,

multimodal models show better recognition results than using

only unimodal recognition [1], [2]. However, current multi-

modal recognition methods depend on individual unimodal

recognition results and their efficient combination.

In this paper, we research several combinations of unimodal

methods for the concept detection task in image–text data.

We apply the Multimodal Deep Boltzmann Machine (DBM)

model, the Support Vector Machine (SVM) with the linear

homogeneous kernel map and the non-linear RBF kernel, se-

mantic concept detectors, and the word2vec approach [3]. We

perform concept detection experiments with the MIRFLICKR-

1M dataset, where one million images are combined with zero

or more content-describing tags, and 25,000 of the images have

additionally been annotated with visual concept labels of 38

and 94 content classes.

The rest of this paper is organized as follows: In Section II

we give an overview of previous related works, then we present

the models and features used in our study in Section III. The

data used in our experiments is described in Section IV and the

experiments and results thereof in Section V. In Section VI,

we discuss some of our findings in more detail and, finally,

our conclusions are presented in Section VII.

II. RELATED WORKS

Multimodal content recognition can consist of many uni-

modal recognition tasks. In this paper, we especially fo-

cus on combining visual and textual information retrieval.

Various statistical methods have been applied to extract the

semantic information from each data modality separately. For

instance, the structured Vector Space Model [4], ontology

based semantic indexing model [5], syntactic topic model [6]

and word2vec [3] have shown great success when used for

textual search in general purpose search engines. Recently,

the deep neural network approach has gained popularity in

many application areas, especially in the visual data domain.

For example, according to [1], the Deep Boltzmann Machine

(DBM) outperformed the linear and non-linear SVMs in both

unimodal and multimodal recognition tasks.

It is also common to use several different models together

for improving the recognition results. For example in [7],

the TagProp model, a weighted nearest neighbor model that

predicts the term relevance of images with a weighted sum

of the annotations of most similar images in the training set,

was combined with an SVM classifier, showing significant

improvements in the recognition results.

In any recognition task, it is important to choose the best-

performing features for improving the recognition. In image

classification, it has been common to use a combination

of SIFT-based [8] and other hand-crafted features, but this

approach has now largely been replaced by the use of deep

convolutional neural network (DCNN) activation features. In

the experiments of [1], concatenated Pyramid Histogram of

Words (PHOW) features [9], Gist [10] and MPEG-7 de-

scriptors (EHD, HTD, CSD, CLD, SCD) [11] were used

as the input image features. [12] and [7] combined Gist,

local SIFT features [8], RGB, LAB, HSV histograms, and

hue descriptors [13]. A drawback of such pre-classification
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combination of different features is that the dimensionality

usually becomes quite large and the computational cost will

be rising accordingly. In the experiments of this paper, we

use DCNN activation features calculated using a pre-trained

GoogLeNet [14] network.

We also use semantic concept vectors as image features.

The approach is based on our earlier work [15] where we

were using the same MIRFLICKR-1M database that is used

also in the current experiments, but SIFT features instead of

the DCNN features utilized here. The basic idea of using the

outputs of a bank of visual detectors as feature inputs to other

detectors has been used by many researchers for both image

and video content analysis. Examples of successful uses of the

method include e.g. [16]–[18].

III. METHODS

In this section, we describe the models and features used in

our experiments.

A. Models

For modeling the unimodal data distributions, we have used

two approaches: the Deep Boltzmann Machine (DBM) and the

Support Vector Machine (SVM). For the multimodal case, we

have used the multimodal extension of DBM and post fusion

of the unimodal SVM outputs.

1) DBM: In [1], Gaussian-Bernoulli Restricted Boltzmann

Machine (RBM) [19] is used for modeling the image clas-

sification layer, and the replicated softmax model [20] for

modeling the text classification layer. Then, a Multimodal

DBM is used over the joint distribution of those two layers.

Because the Gaussian RBM [19] was designed for modeling

real-valued vectors, it is suitable for modeling feature vector

values as the input image representation. Let v ∈ RD be

the real-valued input features, and h ∈ {0, 1}F be binary

stochastic hidden units. Then, the energy of the state {v,h}
for Gaussian-Bernoulli RBM is:

E(v,h; θ) =
D∑

i=1

(vi − bi)2

2δ2
i

−
D∑

i=1

F∑
j=1

vi

δi
Wijhj −

F∑
j=1

ajhj (1)

where θ = {a,b,W, δ} are the model parameters. The

probability density that the model assigns to v is given by

P (v; θ) =
1

Z(θ)

∑
h

exp(−E(v,h; θ)),

Z(θ) =
∫
v

∑
h

exp(−E(v,h; θ))dv.
(2)

The replicated softmax model [20] is suitable for modeling

with sparse count data because it is automatically extracting

low-dimensional latent semantics from a large unstructured

collection of documents. Assume we can ignore the order of

words and consider a document that contains D words. Let

v ∈ NK be a vector of visible units where vk is the number

of times the word k appears in the document with vocabulary

of size K, and h ∈ {0, 1}F be binary stochastic hidden units.

Then, the energy of the state {v,h} is:

E(v,h; θ) = −
K∑

k=1

F∑
j=1

vkWkjhj −
K∑

k=1

bkvk −M

F∑
j=1

ajhj (3)

where θ = {a,b,W} are the model parameters and M is the

total number of words in document. The probability density

that the model assigns to v is:

P (v,h; θ) =
1

Z(θ)
exp(−E(v,h; θ)),

Z(θ) =
∑
v

∑
h

exp(−E(v,h; θ)).
(4)

In order to reduce the computational cost, the above uni-

modal DBM models were trained with the Contrastive Diver-

gence (CD) algorithm [21].

Figure 1 shows a two-layer DBM for the text and image

modalities and an additional layer of binary hidden units above

them to join the two modalities together. The DBM contains a

set of visible units v ∈ {0, 1}D, and sequence of hidden units

layers h(1) ∈ {0, 1}F1 ,h(2) ∈ {0, 1}F2 , . . . ,h(L) ∈ {0, 1}FL .

The energy of the joint configuration {v,h} is defined as:

E(v,h; θ) = −v�W(1)h(1) − h(1)�W(2)h(2) (5)

The joint probability distribution of the text–image input is

then modeled as:

P (ua,vb|θ) =
∑

h
(2)
a ,h

(2)
b ,h(3)

P (h(2)
a ,h(2)

b ,h(3)) · (6)

(
∑
h

(1)
a

P (ua,h(1)
a ,h(2)

a )) · (
∑
h

(1)
b

P (vb,h
(1)
b ,h(2)

b ))

where ua ∈ R
L denotes the image input Ia represented in

an L-dimensional feature space and vb ∈ N
K denotes the

representation of the text query Qb consisting of keywords in

a K-dimensional vector space.

2) SVM: In the experiments, we used both linear and non-

linear SVMs. For the linear case, we apply the homogeneous

kernel map approximation of the intersection kernel [22],

and use the LIBLINEAR [23] library with the L2-regularized

logistic regression solver. The implementation of the homoge-

neous kernel maps for the intersection kernels is available in

the VLFeat library [24].

For the non-linear case, we used the non-linear radial basis

function (RBF) kernel. It is a popular SVM kernel in many

computer vision tasks and has often been reported to achieve

a good performance. The RBF kernel can be represented as:

KRBF(x, z) = exp
(−γ ‖x− z‖22

)
, (7)

where γ is the kernel width. To train the non-linear RBF kernel

SVM, we used the C-SVC classifier of the LIBSVM software

library [25].

Some form of post fusion of the unimodal SVM classifier

outputs is needed to obtain classification results for multimodal

objects, which in our case consist of pairs of one image and a



Fig. 1: Multimodal DBM [1]. The left side layers are image-specific DBM
and the right side layers are text-specific DBM.

(possibly empty) set of textual tags. In our current experiments

we have used the simple weighted arithmetic mean fusion rule

where a weighted sum of the SVM outputs is assigned as the

fusion output to the multimodal object in question.

B. Features

We have used three types of features in our experiments:

1) purely visual, 2) semantic concept vectors that combine

visual information and image tags, and 3) purely textual

features.

1) Visual features: Motivated by the good results obtained

by using deep convolutional neural network (DCNN) activa-

tion value features for object and scene recognition tasks,

we have replicated the experiments of [1] and performed

our new experiments with state-of-the-art deep net features.

In particular, we use reverse spatial pyramid pooled [26]

activations with two scale levels from the 5th Inception module
in the GoogLeNet [14] network, implemented with the Caffe

library [27]. The resulting features are then 2048 dimensional.

2) Semantic concept vectors: Semantic concept vectors

incorporate semantic background information from auxiliary

training data where either accurate class information is avail-

able for images, or less accurate, but numerous textually

tagged images exist. Our case is the latter as we are using

the image tags of the 975,000 unannotated images in the

MIRFLICKR-1M dataset.

The semantic concept vectors are produced in three steps:

1) a large number of background concept classifiers are

trained, 2) the concept classifiers are applied to the training

and testing images and the image-wise concatenated classifier

outputs are treated as novel visual features, and 3) the training

data part of these features is used to create new classifiers

which are then applied to the testing data in the original

classification problem.

The background concept detectors are traditional visual

concept detectors, which in our case were trained with the

RBF kernel SVM from low-level DCNN visual features and

Ks = 500 most common tags in the MIRFLICKR-1M dataset.

Then, semantic concept vectors were produced by using those

prediction outcomes. Let C1, ..., CKs
be the background con-

cept vocabulary, the semantic concept vector ci for each image

xi, i = 1, . . . , N, is then constructed as follows:

ci =

⎛
⎜⎝

pi,1

...

pi,Ks

⎞
⎟⎠ (8)

where pi,j ∈ [0, 1] is the concept membership score of image

xi in concept Cj , generated as the prediction output score of

the corresponding semantic concept classifier.

3) Textual features: We used two types of textual features.

First, the 2000-dimensional term-frequency-type text feature

consisting of the 2000 most frequent tags in the dataset was

used, similarly to [1]. Each component of the vectors was 1

or 0, indicating whether the corresponding tag had been given

to that image or not, respectively. If no tag had been given,

then values were set by Gibbs sampling in the feature vector

as described in [1].

Second, we used word2vec [3] which can produce high-

dimensional semantically meaningful vectorial representations

for words. The word embedding reflects the semantic simi-

larities of the words and can be trained by using different

natural language processing models on large text corpora.

In our experiments, we used a pre-trained 200-dimensional

word2vec model created from 17 million words of the ”text8”

Wikipedia corpus. We again used the 2000 most frequent tags

and summed the word2vec vectors of the tags to represent the

textual information associated with each image.

IV. DATA

MIRFLICKR-1M dataset: The MIRFLICKR-1M dataset

consists of 1,000,000 images with user-given tags and EXIF

meta data. 25,000 of them have two annotations from sets of

38 and 94 concepts. The rest 975,000 images have not been

annotated with these concepts, but most of them have textual

tags. The images were originally downloaded from the social

photography site flickr.com [28]. The 38 concept categories

include scene categories such as ”sky,” ”river,” ”lake” and

object categories such as ”portrait,” ”people,” ”car.” The 94

concept categories have 19 super categories such as ”timeof-

day,” ”weather,” ”age,” ”gender,” and 94 child categories such

as ”day,” ”sun,” ”baby,” ”male,” under the corresponding super

categories. In this paper, we perform experiments on the 38

concepts to get results commensurable with those in [1], [2],

and also with the 94 concepts set for completeness and future

reference.

V. EXPERIMENTS AND RESULT

For the empirical evaluation, we implemented a similar

setting as Srivastava et al did in [1], [2]. For the text feature

inputs vb, we used the same K = 2000 vocabulary words as

used in their work and additionally 200-dimensional word2vec



features. In order to compare the image classification results,

we used the PHOW, Gist and MPEG-7 based features (L =
3857) provided in [1] and our DCNN GoogLeNet activation

features (L = 2048) as the image input features.

The number of hidden units in each DBM layer were the

same as in [1]. Following their procedure, we used the DBM

model with and without pre-training with the 975,000 images

with tags only. We performed each experiment five times,

always using 10,000 objects for training, 5000 objects for

validation and the remaining 10,000 objects for testing.

The results of the experiments are shown in Table I, mea-

sured as the mean average precision (MAP) and the precision

at rank 50 (Prec@50). The rows 1–3 show the results with

the image only unimodal models trained without using the

975,000 unannotated images in any way. The rows 4–8 show

the same unimodal image models, but now making use of also

the extra 975,000 images. The rows 9–13 are the results with

the text-only unimodal models by using the tag information

from the 25,000 annotated images only. The rows 14 and

15 show the unimodal text-only concept detections where

information from the 975,000 tag-only annotated images has

been used additionally. Similarly, the rows 16–22 are the

results of multimodal concept detections with joined image–

text models with and without the 975,000 unannotated images.

In all cases where SVM detectors of multiple modalities or

features have been combined (i.e. the rows 8, 15, 17, and 22),

we used the weighted arithmetic mean fusion rule with the

weight percentages shown in the parentheses. The multimodal

combination of the DBM results was always performed by

using the Multimodal DBM model of eq. (6).

The row 19 shows the best multimodal model in [2]. In

this case, the text input was not clamped and the model was

allowed to update the text input layer when performing the

mean-field update. Similarly, the row 20 is the best multimodal

result of [1] where various additional techniques have been

used to improve the MAP result.

Comparing the performances of the different features, on

the rows 5 vs. 6 and 20 vs. 21, it is clear but unsurprising that

the GoogLeNet features outperformed the PHOW-based and

other hand-crafted features. In the text modality, rows 10 vs. 12

and 11 vs. 13, the 200-dimensional word2vec features gave

disappointing result compared to the full 2000-dimensional

text features. Also, the semantic concept vector features, when

combined with either the visual or textual unimodal model,

give significant improvement in the MAP results of the rows

3 vs. 8, 11 vs. 15, and 17 vs. 22.

Comparing the classification models, the non-linear RBF

kernel SVM outperformed the linear homogeneous kernel map

SVM, on rows 2 vs. 3, 10 vs. 11 and 12 vs. 13. Comparing

the RBF SVM and the DBM models is not as straightforward.

The RBF SVM tends to show slightly better performance in

the mean average precision measure, especially in the case of

94 concepts. On the other hand, DBM seems to be better in

the rank 50 precision measure. We can also observe that the

DBM approach performs slightly better than RBF SVM in the

text modality on rows 9 vs. 11.

Fig. 2: Two positive example images for concept ”sea r1”. Left: Ranking im-
proved with multimodal approach. Right: Ranking worsened with multimodal
approach. See text for details.

Fig. 3: Two false positive example images for concept ”sea r1.” Left: False
recognition became less probable with multimodal approach. Right: False
recognition became more probable with multimodal approach. See text for
details.

Finally, based on the results on the rows 16–22 it is evident

that the multimodal results are better than either visual or

textual unimodal result alone, with respect to the 38 concepts

MAP and both 94 concepts measures. However, it seems on the

rows 16 vs. 21 that the DBM pretrainig with the extra 975,000

images is not necessarily beneficial. Overall we can conclude

that the DBM and RBF SVM methods are performing equally

well within the margins of statitistical variation.

VI. DISCUSSION

Table II shows some examples of concept-wise differences

between the unimodal and multimodal results. The columns

”row 3” to ”row 21” show the MAP values of the correspond-

ing row in Table I. The ”diff” columns show the differences

between those two values for the corresponding concepts.

On the ”baby” and ”sea r1” rows, the differences are posi-

tive, which means that the multimodal mean average precision

is higher than the visual unimodal. On the the other hand,

the multimodal approach effects slightly negatively for the

”clouds” and ”tree” concepts. This observations holds for both

the RBF SVM method (the rows 3 vs. 22) and the Multimodal

DBM (the rows 6 vs. 21). Actually, we picked in Table II those

concepts among the set 38 which displayed the largest absolute

positive or negative change between the results of the rows 3

vs. 22. So we can see that even some concepts suffer in MAP

from the multimodal fusion, this effect is negligible compared

to the benefit that some other concepts obtain. Nevertheless,

the multimodal approach seems not to be beneficial for all

types of image–text contents.



TABLE I: MIRFLICKR-1M 38 and 94 concept classification results with different models. RBF = non-linear RBF kernel SVM,

linear = linear homogeneous kernel map SVM for intersection kernel, text = 2000-dimensional 0/1 tag features, word2vec =

200-dimensional word2vec features. DBM p.t. = DBM pre-training performed with 975,000 unannotated images and/or tags.

sem. = semantic concept vectors.
model image features text features 975,000 38 MAP 38 Prec@50 94 MAP 94 Prec@50

1 DBM GoogLeNet — — 0.723 ± 0.004 0.915 ± 0.003 0.405 ± 0.004 0.550 ± 0.006
2 linear GoogLeNet — — 0.702 ± 0.007 0.903 ± 0.005
3 RBF GoogLeNet — — 0.721 ± 0.004 0.905 ± 0.004 0.439 ± 0.006 0.570 ± 0.003
4 DBM [1] PHOW, Gist, MPEG-7 — DBM p.t. 0.469 ± 0.005 0.803 ± 0.005
5 DBM PHOW, Gist, MPEG-7 — DBM p.t. 0.475 ± 0.002 0.753 ± 0.002
6 DBM GoogLeNet — DBM p.t. 0.727 ± 0.003 0.918 ± 0.004 0.437 ± 0.004 0.573 ± 0.005
7 RBF sem. — 500 tags 0.720 ± 0.003 0.901 ± 0.005 0.429 ± 0.005 0.559 ± 0.001
8 RBF GoogLeNet (50%) + sem. (50%) — 500 tags 0.735 ± 0.003 0.909 ± 0.004 0.449 ± 0.005 0.577 ± 0.002
9 DBM — text — 0.488 ± 0.004 0.829 ± 0.008 0.270 ± 0.003 0.456 ± 0.007

10 linear — text — 0.421 ± 0.010 0.709 ± 0.016
11 RBF — text — 0.490 ± 0.006 0.805 ± 0.014 0.262 ± 0.007 0.430 ± 0.007
12 linear — word2vec — 0.267 ± 0.004 0.420 ± 0.008
13 RBF — word2vec — 0.466 ± 0.003 0.798 ± 0.008
14 DBM — text DBM p.t. 0.511 ± 0.004 0.834 ± 0.005 0.287 ± 0.002 0.463 ± 0.007
15 RBF — text (25%) + sem. (75%) 500 tags 0.740 ± 0.002 0.909 ± 0.006 0.449 ± 0.004 0.579 ± 0.005
16 DBM GoogLeNet text — 0.745 ± 0.003 0.923 ± 0.003 0.458 ± 0.004 0.594 ± 0.008
17 RBF GoogLeNet (70%) text (30%) — 0.741 ± 0.003 0.911 ± 0.005 0.458 ± 0.003 0.582 ± 0.002
18 DBM [2] PHOW, Gist, MPEG-7 Generated text DBM p.t. 0.531 ± 0.005 0.832 ± 0.004
19 DBM [2] PHOW, Gist, MPEG-7 text DBM p.t. 0.609 ± 0.004 0.873 ± 0.004
20 DBM [1] PHOW, Gist, MPEG-7 text DBM p.t. 0.641 ± 0.004 0.888 ± 0.004
21 DBM GoogLeNet text DBM p.t. 0.748 ± 0.003 0.919 ± 0.005 0.459 ± 0.003 0.599 ± 0.007
22 RBF GoogLeNet (37.5%) + sem.(37.5%) text (25%) 500 tags 0.752 ± 0.002 0.915 ± 0.006 0.467 ± 0.003 0.591 ± 0.003

TABLE II: Examples of concept-wise MAP measure differ-

ences between unimodal and multimodal results. The row

numbers refer to the corresponding results in Table I.
concept row 3 row 22 diff row 6 row 21 diff
”baby” 0.451 0.523 0.072 0.449 0.521 0.072
”clouds” 0.807 0.801 –0.006 0.798 0.796 –0.002
”sea r1” 0.451 0.589 0.138 0.488 0.572 0.084
”tree” 0.773 0.773 –0.000 0.760 0.751 –0.009

Figure 2 shows two example images of the concept ”sea r1”

where the ranking of the image improved (left) and worsened

(right) when moving from the visual unimodal method (the

row 3) to the multimodal fusion (the row 22). The user-given

tags for the left image are beach, coast, ocean, pacific, shore,

etc. Most of them really are related to the sea, hence the tags

affect positively and lead to better ranking of the image. The

tags of the right image are shutter, slow, and speed, and they

are not related to sea at all. Therefore, the tag information

can be regarded as noise and it affects the image’s ranking

negatively in this case.

Figure 3 shows two example images where false recognition

to concept ”sea r1” is becoming either less or more probable

due to the multimodal approach. For the left image, the user-

given tags include buildings, city, newyork, streets, urban,

which are clearly not related to sea and make it less probable

to classify the image as a sea view On the other hand, for the

right image, the tags include beach, cinema, coast, ocean and

pacific, which are related to the sea. The tag information thus

misleads the multimodal classification and increases the false

recognition rate from the visual unimodal case.

Our examples on the concept and individual image levels

show that, inevitably, some concepts and some images benefit

and some suffer from the tag-based textual input to the

multimodal recognition system. On the average, however, the

gains are larger in magnitude than the losses.

VII. CONCLUSIONS

In this paper, we compared between multimodal DBM mod-

els and linear and non-linear SVM classifiers in a multimodal

recognition task with image–text data of the MIRFLICKR-1M

database. We also studied the performance of different visual

and textual features.

For the visual features, we found out that the GoogLeNet-

based DCNN features outperform the pre-classifier fusion of

PHOW-based and other traditional hand-crafted features. The

semantic concept vectors, trained by using auxiliary image–

tag data, also brought improvement in the results. For the

textual features, the 2000-dimensional binary tag vector was

better than the lower-dimensional word2vec representation.

The combination of the semantic concept vectors and the

binary vectors of tags clearly outperformed the use of binary

tag vectors only.

According to the mean average precision results, in the post

fusion of the visual and textual classification, the combination

of DCNN, semantic features and the binary tag features with

the RBF SVM classifier achieved the same performance level

as the corresponding Multimodal DBM model. When using

the precision at rank 50 as the performance criterion, the

Multimodal DBM model showed slightly better results.

Overall, the multimodal approaches always gave better

results than any unimodal approach alone. In the particular

case of the MIRFLICKR-1M database, where the user-given

image tags are quite unreliable, the visual domain proved to be

the more reliable one in the multimodal recognition task. In

the future, we will study the visual semantics of each tag,

taking into account only those tags which are relevant for

visual classification. In that way, we could concentrate on

using only visually meaningful and thus more reliable tags

in multimodal recognition.
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