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We propose a method for inferring semantic information from textual data in content-based

multimedia retrieval. Training examples of images and videos belonging to a specific semantic class

are associated with their low-level visual and aural descriptors augmented with textual features such as

frequencies of significant words. A fuzzy mapping of a semantic class in the training set to a class of

similar objects in the test set is created by using Self-Organizing Maps (SOMs) trained from the low-

level descriptors. Experiments with two databases and different textual features show promising

results, indicating the usefulness of the approach in bridging the gap from low-level visual features to

semantic concepts.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

In the last decade the amount of digital information available
to the public has been increasing ever more rapidly. Particularly
the volume of multimedia and multimodal data has been growing
in recent years. This development has been driven by the
increasing availability and uptake of digital cameras, mobile
phones with camera capabilities, and digital video cameras. This
trend can also be seen in the increasing popularity of multimedia
sharing web sites such as YouTube, Flickr and Google Video.

This exciting development puts an increasing emphasis on the
development of automated content-based retrieval methods that
index and retrieve multimedia information based on its contents.
Such methods, however, suffer from a serious problem: the
semantic gap, i.e. the wide gulf between the low-level features
used by computer systems and the high-level semantic concepts
understood by human beings. In this article we propose a method
of using different textual features for inferring semantics from
textual information to help bridge the semantic gap from visual
features to semantic concepts.

We have used our PicSOM [21] content-based information
retrieval (CBIR) framework to test our proposed method on two
very different visual databases. The first one is a set of videos and
semantic classes from the NIST’s TRECVID 20052 development
data set. The TRECVID video set contains TV broadcasts in
ll rights reserved.
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different languages and textual data acquired by using automatic
speech recognition and machine translation software where
appropriate. The video shots in the annotated set are accompanied
with verified semantic ground truth concepts such as ‘‘videos
depicting explosions or fire’’. Our initial experiments with this
data have been published earlier in [42].

The second data set is from the ‘‘Pockets full of memories’’ art
installation that was on display in the Centre Pompidou National
Museum of Modern Art, Paris, France from April 10 to September
3, 2001 [24]. The visitors contributed over 3300 objects by
digitally scanning images of them and describing them with
names and keywords. These descriptions are in different
languages, mostly French and English. The visitors could also
add semantic descriptions of the objects by moving continuous-
valued sliders between eight different property pairs, such as
old–new, functional–symbolic, etc.

In the approach we use, several Self-Organizing Maps (SOMs)
[16] are trained in an unsupervised manner with visual, aural and
textual feature data calculated from the objects of a multimodal
database. Then all objects in the training set that belong to a given
semantic class are mapped onto these SOMs. This mapping
generates relevance value fields on the SOM surfaces, which can
further be mapped to the objects of the test set. These relevance
values can be interpreted as membership values of a fuzzy set
corresponding the given semantic class. The objects of the test set
can then be ordered according to these relevance values gained
from the SOM mapping.

In this article we complement the basic set of low-level visual
and aural features with different types of statistical features
calculated from the text associated to the visual objects. The
motivation for this is that the textual data utilizes human
language and is therefore closer to human semantic perception.

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
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In the current experiments we have used more textual features
than in our earlier experiments. We present experiments using
word histogram and keyword frequency features using SOMs and
a binary keyword method using an inverted file. This setting is
actually more general since any method which generates an
ordering of objects of any modality in the test set can be used. As
long as different modalities have well-defined associations, e.g.,
keyframe images as parts of video shots that contain them, they
can be combined in the multimodal fusion stage of our system.

The main contributions of this article are twofold. First, we
propose a novel method for combining different modalities in an
efficient and natural way, even incorporation of different types of
indices (e.g. SOM, inverted file). Secondly, we compare different
textual features used both in isolation and in combination with
visual and aural features in semantic retrieval. In doing this we
also gain an insight into the performance of the SOM-based
methodology in comparison with the computationally more
heavy inverted file index.

The rest of the article is organized as follows. First, Section 2
introduces the question of extracting the ‘‘statistical’’ semantic
content from both natural language and visual data domains.
Then, Section 3 describes our PicSOM framework for CBIR and
discusses how textual features can help in bridging the semantic
gap between visual features and high-level concepts. The feature
extraction methods are explained in Section 4 and the two
databases used in our experiments in Section 5. The results of the
experiments are presented in Section 6 and, finally, the conclu-
sions are drawn in Section 7.
2. Semantics in natural language and visual data

Traditionally, semantics is an area of linguistics that deals with
meaning. Semantics is usually used to refer to (i) the relation that
some sign has to objects or events and (ii) the relation that a sign
has to other signs. Often the signs, like words in some natural
language, have hierarchical relationships and these structures are
referred to as taxonomies. Notions of semantic categories and
concepts are also often used.

In the context of this article, the most interesting question is
whether the semantic information expressed in some natural
language could be automatically inferred to the extent that would
prove to be useful for the purpose of multimedia retrieval. For this
goal, it can be assumed that very precise formalization of the
natural language will not be needed.

Aside from the practical needs of improving the existing
content-based retrieval techniques, a more profound question is
associated with the symbol grounding problem [9]. If one could
implement a statistical framework for analyzing the visual and
textual aspects of a multimodal object conjointly, then it might be
viable to find common groundings for some semantic concepts in
the language and visual domains. Or, it could be possible to
ground some language concepts visually or vice versa.

2.1. Statistical presentation of language semantics

Serious efforts to develop computerized systems for natural
language understanding have taken place for more than half a
century. However, the more general the domain or complex the
style of the text, the more difficult it is to reach a high quality of
understanding. All systems need to deal with problems like
ambiguity and lack of semantic coverage and utilize pragmatic
insight. The methodological realm of semantic processing of
language is still largely dominated by predicate logic.

Maybe the most striking example of formalization of natural
language is the work of Montague [31]. Examples of the language
considered in his work include sentences like ‘‘Bill walks’’, ‘‘every
man walks’’, ‘‘the man walks’’, and ‘‘John finds a unicorn’’. It may
be fair to say that most of the linguistic phenomena are set aside.
The idea of being rigorous may often lead to the negligence of the
original complexity of the phenomenon being considered [47].

Handling a computerized form of written language rests on the
processing of discrete symbols. Similarity in the appearance of the
words does not usually correlate with the content they refer to. As
a simple example one may consider the words ‘‘window’’, ‘‘glass’’
and ‘‘widow’’. The words ‘‘window’’ and ‘‘widow’’ are phonetically
close to each other, whereas the semantic relatedness of the
words ‘‘window’’ and ‘‘glass’’ is not reflected by any simple metric.
This motivates the selection to use symbolic presentation of
natural languages such as English on the word-level instead of
character, phoneme or syllable levels.

Contextual information has been widely used in statistical
analysis of natural language corpora (consider, e.g., [3,41]). One
useful numerical representation can be obtained by taking into
account the sentential context in which the words occur. First, we
represent each word by a vector in an n-dimensional space, and
then code each context as an average of vectors representing the
words in that context. In the simplest case, the dimensionality n

can be taken equal to the number of different words, and each
word is represented by a vector with one element equal to one and
others equal to zero. Then the context vector simply gives the
frequency of each word in the context. In information retrieval, a
similar approach is called as the bag-of-words technique, applied in
methods related, e.g., to the vector space model [40]. For
computational reasons the dimension may be reduced by
different methods, e.g. random projection [14] or Latent Semantic
Indexing (LSI) [6].

The main tool used in our experiments for dimension
reduction is the SOM. Earlier, the SOM has been used in the
analysis of word context data, e.g., by [37] (artificially generated
short sentences), and [12] (Grimm’s fairy tales). It has also been
used for finding semantic relationships between document titles
in a small document collection [25] and cluster documents
according to their textual similarity [10], and even for very large
document collections [17]. In [8], a SOM analysis of word contexts
was performed with a one-dimensional map in order to find
synonymous words (see also [12]). The result can be called a SOM
of words, or a word category map. Earlier, the name Self-
Organizing Semantic Map has also been used. Similar results
have also been presented in [27–29]. In the current article, a new
approach for extracting contextual information is employed based
on the occurrence frequencies of a set of statistically computed
keyphrases.
2.2. Image semantics

Image semantics can be defined as understanding the
conceptual content of images. The understanding is tightly
intertwined with the abilities (i) to segment an image in a
relevant manner, (ii) to detect invariant features and (iii) to relate
these features with semantic categories.

The definition of semantics, as outlined above, is typically
based on the linguistic level. On the other hand, the final or
reference relation of many words is with some visually percei-
vable object or event. For instance, one may attempt to define the
meaning of the word ‘‘horse’’ by indicating its position in a
hierarchical system as an animal and a living object, or through
some features that can be expressed in language. However, the
meaning of the word ‘‘horse’’ is also strongly related to its shape
or the variety of shapes as a living object.
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Traditionally there has not been any particularly useful way to
create, for instance, a functional shape or texture description
framework. Therefore, the semantic descriptions of visual content
have focused on representations that can be expressed in some
linguistic form. Purely linguistic or symbolic models of semantics
can, though, be considered deficient as, e.g., pointed out by
Harnad as the symbol grounding problem [9]. This means that
defining word meaning purely in terms of other words or symbols
produces circular definitions as in a dictionary. Humans, however,
solve this problem naturally, by grounding many words in
perception and physical experience. Many computational systems
now try to incorporate sensory data, such as vision and hearing, to
improve learning [38]. This has lead us to explore methods using
visual data in conjunction with textual data in a machine learning
system.

The relationship between image content and semantic con-
cepts has become a subject of recent intensive study in the field of
CBIR. The goal has been given various names ranging from
‘‘image-to-word transformation’’ [32], ‘‘matching words and
pictures’’ [1], ‘‘image auto-annotation’’ [30], ‘‘automatic image
captioning’’ [35], to ‘‘automatic image annotation’’ [7], depending
on the selected viewpoint and the specific tasks the authors have
been addressing. Various different technical methods and their
combinations have been applied, including co-occurrence statis-
tics [32], expectation maximization (EM) [1], support vector
machines (SVM) [7], latent semantic analysis (LSA) [30], and
Markov random fields (MRF) [2]. The SOM have also been applied
in our previous works for inferring semantics from automatically
segmented images [23,45,22,46].

In summary, we claim that both images and linguistic
expressions provide semantic information and these sources of
information are partially complementary. This idea is also
empirically supported by the results of the experiments reported
in this article, where we show that in most cases visual and
textual features perform best in semantic retrieval when used
together and not in isolation.
3. PicSOM CBIR system

The CBIR system PicSOM [21] has been used as a framework for
the research described in this article. Query by example (QBE) is
the main interactive operating principle in PicSOM, meaning that
the user provides the system a set of example objects of what he
or she is looking for, taken from the existing database. This
relevance feedback information is then expanded to related
objects. This would expand relevance both from a video to its
constituent keyframe images, and also from individual keyframes
to the video shot that contains it.

The PicSOM system has originally been used in interactive
mode where the user influences the retrieval of the system with
relevance feedback and the results will improve in each iteration.
In this article, however, there is no interaction as the experiments
have been performed in an offline mode, where pre-defined
semantic classes of the training set are used for ordering a
separate test set in the order of decreasing relevance or similarity
to each semantic class. This is because we are here interested in
the mapping abilities of the SOMs for semantic concepts using a
mixture of textual and visual features.

3.1. Retrieval with low-level visual features

PicSOM uses several SOMs [16] in parallel to index and
determine the similarity and relevance of database objects for
retrieval. These parallel SOMs have been trained with different
data sets acquired by using different feature extraction algorithms
on the objects in the database. This results in each SOM arranging
the same objects differently, according to similarities with respect
to the corresponding feature. A visual overview of the PicSOM
processing stages is shown in Fig. 1.

In the interactive mode each database object receives a
relevance value based on user input. In the offline mode, these
values are initialized by using pre-defined semantic classes of
objects. For each object type (e.g. video, image, text), all relevant-
marked objects in the database of that type get a positive weight
inversely proportional to the total number of relevant objects of
the given type. Similarly the non-relevant objects get a negative
weight inversely proportional to their total number. The grand
total of all weights is thus always zero for a specific type of
objects. On each SOM, these values are summed into the best-
matching units (BMUs) of the objects. This results in the
formation of sparse relevance value fields on the map surfaces.

The sparse relevance values on the maps are low-pass filtered
or ‘‘blurred’’ to spread the relevance information between
neighboring units. Due to the topology preserving property of
the SOM we can expect neighboring map units to be similar,
which motivates this procedure. The filtering is performed by
convolving the value fields by a tapered kernel function. This
produces to each map unit a qualification value, which is given to
all objects that are mapped to that unit (i.e. have it as the BMU).
Map areas with a mixed distribution of positive and negative
values will even out in the blurring, and get a low-average
qualification values. Conversely in an area with a high density of
mostly positive values, the units will reinforce each other and
spread the positive values to their neighbors. This process
automatically weights the maps according to their ability to
map relevant objects coherently and densely in specific map
areas.

The next processing stage is to combine the qualification
values gained from each map to the corresponding objects. These
values are again shared with related objects. For example the
relevance of a video clip is obtained as the sum of the values of its
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keyframe images, audio and possible textual content. In the final
stage, the test set objects are ordered in the decreasing order of
qualification values. This ordering, we argue, estimates the
decreasing order of relevance of the objects to the semantic
target of the retrieval task. In the interactive retrieval mode, a
specific number of objects with the highest qualification values
would be returned to the user as retrieval results of that round. In
the offline mode a performance measure is calculated as the final
result.
3.2. Bridging the semantic gap with textual features

The PicSOM system was initially designed for images, and
particularly using low-level statistical visual features only. Such
features describe images on a very low-abstraction level, for
example local color distributions, and do not generally correspond
very well with the human perception of an image. In the TRECVID
experiments, to be described in this article, we have also used
motion and sound features, but the problem remains the same: a
very low-level feature description cannot match abstract human
understanding.

However, textual features have a close relationship to semantic
concepts, as they describe the human language, which has a much
closer relation to human understanding and meaning of concepts
than any low-level visual features. By including textual features
we hope to bring the feature and concept levels closer to each
other and thus help to bridge the semantic gap. By using SOM
techniques this is done in a fuzzy manner, providing only
semantic class membership values for each object. This fuzziness
is appropriate as such relationships can never be defined exactly,
even by human beings.

A notable philosophical advantage can be seen to result from
using SOM techniques for both visual and textual data: the
different information domains will become commensurable when
the extracted statistical features are mapped on the SOM surfaces.
Consequently, the interplay of the information modalities will not
be hindered by the fact that the information originates from
conceptually different sources. It is important to note that this is a
general property of the PicSOM system, and not restricted to the
specific feature types and modalities mentioned in this article.
3 http://www.cis.hut.fi/projects/speech/
4. Feature extraction

In the PicSOM system, several feature extraction methods can
be applied for each object type in the database. For example, from
all images one can calculate color, shape and texture descriptors
and from videos aural and motion descriptors. For each feature
extraction method a separate SOM is trained with the resulting
feature vectors.

Each feature will then organize the database objects differently
on the SOM surface according to its discriminative properties.
These features will, in general, perform differently for different
semantic classes and different sets of objects. However, the
automatic weighting performed in PicSOM will reward features
that discriminate relevant and non-relevant objects well, i.e. SOMs
that map semantic classes into well-defined clusters. Conversely,
features that perform clustering badly will get a very low weight,
ensuring that their impact on the final result will be very small.

In the following sections we will describe shortly the different
visual and aural features used in our experiments, and then the
textual features in more detail.
4.1. Visual and aural features

As still image features we have used both our own non-
standard features as well as the standardized MPEG-7 descriptors
[13] calculated using the MPEG-7 Experimentation Model (XM)
Reference Software [33]. The following MPEG-7 still image
features were used: Edge Histogram, Homogeneous Texture, Color
Structure and Color Layout.

If we treat the values in the different color channels of the HSV
color space as separate probability distributions, we can calculate
the three first central moments: mean, variance and skewness.
This produces our simple non-standard color moments feature.
The Zernike moments [15] feature describes the overall shape of
the border of an object. This border can be obtained from the
segmentation mask of a segmented image. Texture neighborhood
is a simple textural feature that examines the luminance values of
the eight-neighborhood of each inner pixel in an image. The
values of the feature vector are then the estimated probabilities
for each 8-neighborhood position that the corresponding neigh-
bor pixel is brighter than the central pixel.

For the video content we used the standard MPEG-7 Motion
Activity descriptor and our own non-standard temporal features
of color and texture data. A temporal video feature is calculated as
follows. Each frame of the video clip is divided into five spatial
zones: upper, lower, left, right and center. A still image feature
vector is calculated separately for each zone and then concate-
nated to form frame-wise vectors. The video clip is temporally
divided into five non-overlapping video sub-clips or slices of equal
length. All the frame-wise feature vectors are then averaged
within the slices to form a feature vector for each slice. The final
feature vector for the entire video clip is produced by concatenat-
ing the feature vectors of the slices. For example, using the three-
dimensional average RGB color still image feature we would get a
temporal video feature vector with a dimensionality of
3� 5� 5 ¼ 75.

The purpose of the concatenations in our temporal features is
to capture how the averaged still image features change over time
in the different spatial zones. Such features make sense since the
video clips used in our experiments are short enough for the
averages within the slices to be meaningful, while still having
some variations between different slices. The variations result, for
example, from some object moving from a spatial zone to another.

As an audio feature the Mel-scaled cepstral coefficient (MFCC),
or shortly Mel cepstrum, was used. This feature is commonly used
for speech recognition, but can be used with other sounds as well
[5]. Mel cepstrum is the discrete cosine transform (DCT) applied
to the logarithm of the Mel-scaled filter bank energies.

The Mel cepstrum feature should be able to detect speech of
different persons and particularly separate speech from other
natural sounds, and also music, such as theme music in a TV
program or commercial. In news broadcasts this might; however,
be problematic since there can be non-natural sounds, such as
explosions. Furthermore, many sounds may be overlapped by
others, such as a reporter narrating. This feature is calculated
using an external program created by the Speech recognition
group at the Laboratory of Computer and Information Science at
the Helsinki University of Technology.3

4.2. Word histogram

The word histogram feature is a statistical textual descriptor
which is calculated in three stages. First a histogram is calculated
for each textual object (document) in the database giving the

http://www.cis.hut.fi/projects/speech/
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frequencies of all the words in that text excluding stop words (i.e.
commonly used words such as ‘‘the’’). Then the document-specific
histograms are combined into a single histogram or dictionary for
the whole database. The final word histogram feature vectors are
calculated for each document by comparing its word frequencies
to the dictionary, i.e. the words in the database-wide histogram.
For each word in the dictionary we calculate the term frequency-
log-inverse document frequency (tf-log-idf) weight [39] for the
document. The tf-log-idf weight is commonly used in information
retrieval and is given as the product of the term frequency and the
logarithm of the inverse document frequency.

The feature extraction procedure can be formulated mathe-
matically as follows: The term frequency for a word k in one
document is calculated as

tfk ¼
nkP

j2KD
nj

, (1)

where nk is the number of occurrences of the word k in that
document. The denominator gives the number of occurrences of
all dictionary words KD in that same document (again excluding
stop words). The corresponding document frequency is calculated
as

dfk ¼
Nk

N
, (2)

where Nk is the number of documents where the word k appears,
and N is the total number of documents in the collection. The tf-
log-idf is then given as the product of Eq. (1) and the log-inverse
of Eq. (2):

tf- log -idfk ¼
nkP

j2KD
nj

log
N

Nk
. (3)

The resulting feature vector is then composed of the tf-log-idf
values of all dictionary words k for that document. The final
dimensionality this vector can be very large, even for moderately
sized databases. Dimensionality reduction can then be employed,
for example in our experiments we reduced the dimensionality to
100 by using singular value decomposition.

4.3. Keyword frequency

Another textual feature used in our experiments is the
keyword frequency which is calculated as follows. First, all the
texts of all objects belonging to a given semantic class are
concatenated into a class-specific corpus. Then, a list of keyword
candidates is extracted based on the frequencies of the keywords
in that corpus. The potential keywords may consist of one or more
words, in our experience the length is limited to three or four
words.

Next, a reference corpus is utilized to select such keywords
from the frequency list that are common in the class corpus under
examination, but more rare in the reference corpus; i.e. keywords
that best distinguish the class-specific corpus from the reference
corpus. The purpose of the reference corpus is to represent a
certain language in general, and typically a very large and well-
balanced corpus is chosen for the task. Thus, comparing a
particular-domain corpus to the reference corpus should reveal
keywords that are specific to that domain only.

The keyword lists of both corpora are sorted according to the
keyword frequencies, and all keywords are given their rank in the
list (all keywords that have an equal frequency receive an equal
rank). Then, the keywords of the class-specific corpus are
processed one by one, calculating for each keyword the ratio of
the ranks of the keyword in the two corpora.

Finally, the keywords are sorted in an ascending order
according to their rank ratios. Keywords that receive a low ratio
are the ones we are interested in, since they were more common
in the particular corpus than in the reference corpus. On the other
hand, the middle ground of the keyword list is now occupied by
general, probably non-specific keywords that were common in
both corpora, and the end of the list has keywords that were more
frequent in the reference corpus [11]. An idea very similar to the
keyword frequency method has also been presented in [4].

In this article we used the keyword frequency feature only for
the TRECVID database experiments, since the ‘‘Pockets full of
memories’’ database had only a few keywords per object which
was not deemed sufficient for this method. We used the text data
from the entire TRECVID database as the reference corpus. The
semantic classes were quite small in comparison to the entire
database and it could thus be seen as sufficiently neutral. The
overall TRECVID database corpus represents mostly news broad-
cast type text with a considerable amount of ‘‘noise’’ from the
automatic speech recognition and possible machine translation. If
we would have used a completely separate reference corpus such
peculiarities may been deemed as significant. This, we fear, was
the case in our previous experiments, where we used an external
reference corpus with worse results [44].

4.4. Binary keywords

The binary keyword method uses an inverted file index that
contains a mapping from words to all the database objects
containing them. As such, the inverted file index is a very
commonly used method for information retrieval, but is compu-
tationally very heavy. A recent extension of the PicSOM system
allows the usage of such an inverted file as a replacement for SOM
indexing by BMUs [18]. Instead of mapping the textual objects of a
given semantic class to BMUs, we instead seek the most
informative keywords of a class and map them directly to other
objects using the inverted file.

The binary keyword features were generated by gathering
concept-dependent lists of the most informative terms or key-
words. Let us denote the number of objects in the training set
associated with semantic class c as Nc , and assume that of these
objects, Nc;k contain the keyword k in the textual data. Using
words not found in the stop word list, the following measure can
be calculated for keyword k regarding the class c:

ScðkÞ ¼
Nc;k

Nc
�

Nk

N
, (4)

where Nk is the total number of documents that contain the
keyword k and N is the total number of documents in the
collection. If this measure has a high positive value it means that
the keyword k has a higher frequency in the class c than in the
collection as a whole. A negative value with high magnitude
would similarly indicate a word that appears less commonly in
the class than in the collection generally. For every semantic class
c, we record the 10 or 100 most informative keywords k according
to the ScðkÞ measure. The number of used keywords depends on
which one gives better retrieval performance for that class in
cross-validation. A class-specific inverted file is then created as
mapping from these informative words to the database objects
that contain them. In the PicSOM system a measure indicating the
closeness of a textual object i to the semantic class c used in
generating the inverse file can be calculated as

Si;c ¼
X

k

di;k

Nk
; where di;k ¼

1 if k exists in i;

0 otherwise:

(
(5)

In Eq. (5) the sum is taken over all words k in the inverse file. Nk is
the total number of documents that contain the keyword k. The
higher the value of Si;c for a specific textual object is, the closer it is
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Fig. 2. The hierarchy of videos and examples of multi-modal SOMs.

Table 1
Semantic classes from the TRECVID 2005 data set

Semantic class description A priori (%) Training set Test set
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deemed to be to the given class c. The value of this measure is
then added to the qualification values of objects produced by the
other, SOM-based, features.
An explosion or a fire 1.08 109 265

Regional territory graphic (map) 1.90 376 282

A US flag 0.79 123 151

An exterior of a building 7.28 1578 943

Waterscape or waterfront 2.30 375 420

A captive person 0.16 23 32

Any sport in action 2.59 460 437

A car 7.27 1279 1239

All objects 100 17 230 17407
5. Data

We have used two rather different data sets in our experi-
ments. The TRECVID video database is a large and rich multimedia
database with videos, keyframe images, audio and text. In contrast
the ‘‘Pockets full of memories’’ database contains simple single-
object images with corresponding keywords. These databases will
be presented in more detail in the following sections.

5.1. TRECVID video data

Our research group at the Helsinki University of Technology
has taken part in the NIST’s TRECVID video retrieval evaluations in
2005 [19], 2006 [43] and 2007 [20]. In the experiments described
in this article we have used the TRECVID 2005 data, which
contains about 790 videos divided into a total of almost 100 000
video clips. From the set of videos originally used as the TRECVID
development data we picked only those that had some associated
textual data and semantic classifications, resulting in a set of
about 35 000 video clips. These video clips were used for the
experiments described in this article. Each video clip has one or
many keyframes, which are representative still images taken from
the video. Also the sound of the video was extracted as audio data.
NIST provided textual data acquired by using automatic speech
recognition software and machine translation from Chinese
(Mandarin) and Arabic to English.

In the PicSOM system the videos and the parts extracted from
these were arranged as hierarchical trees as shown in Fig. 2, with
the main video as the parent object and the different extracted
media types as child objects. In this way the relevance assess-
ments can be transferred bidirectionally between related objects
in the PicSOM algorithm as described in Section 3. From each
media type different features were extracted, and SOMs were
trained from these as is shown with some examples in the figure.

As image features for the video key frames we used Edge
Histogram, Homogeneous Texture, Color Structure and Color
Layout from MPEG-7. Additionally we used a Canny edge
detection feature which was provided by NIST. From the videos
we calculated the MPEG-7 Motion Activity feature, as well as
separate non-standard temporal features based on average RGB
color, texture neighborhood and color moments (see Section 4.1).
From the audio data we calculated the MFCCs.

As textual features we used word histogram, keyword
frequency and binary keywords. The texts were stemmed before-
hand using the Porter stemming algorithm [36]. The feature
vectors initially produced by the word histogram feature had a
dimensionality of about 27 000, which was reduced to 100 by
using singular value decomposition.

A total of 39 semantic sets were provided with the TRECVID
2005 development data. These are each a set of video clips that
belong to a given semantic class, for example videos depicting ‘‘an
exterior of a building’’. These video clips were cooperatively
annotated during the TRECVID evaluation using semantic class
definitions provided by LSCOM [34]. For these experiments we
divided the original TRECVID development set into training and
test sets. Table 1 shows the eight semantic classes that were used
in our experiments. The semantic class description, shown in the
first column, is a shortened version of the one that was used in
TRECVID. The second column gives the a priori probability of the
class. The third and fourth columns in the table give the number
of videos in the training set and in the test set, respectively.
5.2. ‘‘Pockets full of memories’’ data

The ‘‘Pockets full of memories’’ data set consists of 3327
objects originating from an art installation that was on display in
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Fig. 3. An ‘‘attackalarm’’ and the property values given by its owner.

Table 2
Semantic classes from the ‘‘Pockets full of memories’’ data set

Semantic class description A priori (%) Training set Test set

Old 27.1 501 400

New 60.6 938 1077

Soft 32.8 541 551

Hard 53.8 894 895

Natural 23.2 343 429

Synthetic 70.4 1207 1134

Disposable 24.0 422 375

Long-use 67.3 1083 1155

Personal 70.7 1135 1217

Nonpersonal 21.3 373 336

Fashionable 54.8 860 963

Not-fashionable 24.5 426 389

Useful 74.6 1212 1270

Useless 17.9 332 264

Functional 58.5 903 1044

Symbolic 31.5 571 476

All objects 100 1678 1649
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the Centre Pompidou National Museum, Paris, France in 2001.
During the installation visitors were encouraged to contribute
their personal items, which were scanned to produce a digital
image of them. The visitors provided the objects with a name, a
set of keywords and an evaluation of eight semantic property
pairs. These pairs were: old–new, soft–hard, natural–synthetic,
disposable–long use, personal–nonpersonal, fashionable–not
fashionable, useful–useless and functional–symbolic. The quanti-
fications were given using a touch sensitive screen, where the
visitors could select a continuous value between the two
extremes. In our experiments we have scaled the resulting values
to the range ½�1;1�. In Fig. 3 an example is shown of a scanned
image and the corresponding property evaluations.

In the original art installation the images were then organized
by the SOM algorithm that positioned objects of similar descrip-
tions near each other in a two-dimensional ‘‘wall of objects’’
which was displayed in the gallery [24]. In later research we also
looked at the visual contents of the images and the correlation
between the visual and semantic information in this database
using SOMs [44]. In this article we have used this same data to
study the mapping of a set of semantic classes, using both visual
and textual features.

Before the visual feature extraction we applied automatic
segmentation on the images to separate the main object from the
background. This was a comparatively easy task, since most
backgrounds were relatively homogeneous as can be seen in the
example in Fig. 3. The segmentation algorithm used is described
in more detail in [44]. The final visual features were thus
extracted only from the area of the image which the segmentation
algorithm had identified as belonging to the object (i.e. not the
background). The segmentation also enabled the use of the
Zernike moments feature for describing the shape of the objects.

As visual features MPEG-7 Edge Histogram, Zernike moments
and color moments were used, the same set of features as in our
previous experiments with this database. As textual features we
used word histogram and binary keywords. We decided to do
without stemming of the words since the keywords had been
written in at least two different languages, English and French.
The vector length of the word histogram feature was 3924, which
could be used directly without any reduction because the
database was quite small, only 3327 objects.

The range of the owner-given semantic properties was divided
into three equal parts and we selected the top and bottom parts as
two semantic classes. For example objects with old–new property
values in the range ½�1;�1

3� were selected as belonging to the
semantic class old, and those in the range ½13;1� to new. Table 2
summarizes all classes that could be created in this way. The
second column gives the a priori probability of the class. The third
and fourth columns in the table give the number of objects in the
training and test sets, respectively. The percentages are quite
large, which indicates that people tend to pick values in the
extremes of the property ranges.

The first image in Fig. 4 shows a SOM organized according to
the MPEG-7 Edge Histogram feature. Each SOM unit is repre-
sented by a visual label which is the most similar image of the
database in that feature space. Similar objects can be seen to form
clusters, and within the clusters the object properties change
continuously, thus retaining the topographical ordering of the
feature space.

Below in Fig. 4, the distributions of the semantic classes soft

and natural have been mapped onto the Edge Histogram SOM. The
dark areas represent map units to which many objects from that
semantic class have been mapped to. One immediately notes a
clear correlation between the soft and natural classes. There seems
to be a large set of objects that are both soft and natural, roughly
in the middle of the Edge Histogram SOM. Visual inspection of the
SOM labels indicates that these are mostly human hands. In
addition, the two distributions cluster quite cleanly, indicating
that the feature is very discriminative when evaluating these
semantic properties.
6. Experimental results

When evaluating the performance of a content-based retrieval
system it is important to measure how well the system manages
to rank the relevant objects before the non-relevant ones. These
two aspects can be evaluated by the two basic information
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Fig. 4. The MPEG-7 Edge Histogram SOM and the distribution of two semantic classes.
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retrieval measures: precision and recall. Precision is the percentage
of relevant objects in the set of returned objects thus far, while
recall is the percentage of all relevant objects that are in the
returned set. In general both aspects are important, and one way
to combine them both into a single measure is to use the non-
interpolated average precision of retrieval [26].

The non-interpolated average precision is formed by calculat-
ing the precision after each retrieved relevant object, thus
implicitly including also the recall. The final per-class perfor-
mance measure is obtained by averaging these precisions over the
total number of relevant objects. In this calculation, the precision
is defined to be zero for all non-retrieved relevant objects. In the
TRECVID experiments, only the 2000 objects deemed to be the
most relevant ones were evaluated, while in ‘‘Pockets full of
memories’’ all 1649 objects in the test set were ranked each time.
The per-class average precision was finally averaged over all
semantic classes of that database to generate an overall average
precision.

Several experiments were run with the two databases. Each
experiment was performed separately for each of the semantic
classes. In the TRECVID runs there were seven experiments, each
for a different combination of features: only non-textual features
(nt), the three textual features: word histogram (wh), keyword
frequency (kwf) and binary keywords (bkw) used alone, and then
in combination with the non-textual features (whþ nt, kwf þ nt,
bkwþ nt). The binary keyword method used different inverted
files for each semantic class as explained previously. In the
‘‘Pockets full of memories’’ runs we performed only (nt, wh, bkw,
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Table 3
Average precision results for TRECVID experiments

Semantic class nt wh kwf bkw whþ nt kwf þ nt bkwþ nt

Explosion or fire 0.0567 0.0061 0.0104 0.0285 0.0595 0.0583 0.0779
Map 0.3396 0.0061 0.0411 0.0049 0.3402 0.3402 0.3433
Depicting US flag 0.0713 0.0023 0.0052 0.0059 0.0763 0.0825 0.0848
Exterior of building 0.0988 0.0108 0.0042 0.0068 0.0985 0.0996 0.0990

Waterscape or front 0.2524 0.0056 0.0090 0.0053 0.2482 0.2484 0.2515
Captive person 0.0054 0.0043 0.0025 0.0000 0.0161 0.0161 0.0158

Sport in action 0.2240 0.0108 0.0338 0.0970 0.2207 0.2328 0.2666
A car 0.2818 0.0177 0.0065 0.0114 0.2824 0.2820 0.2800

Average 0.1662 0.0080 0.0141 0.0200 0.1677 0.1700 0.1774

Table 4
Average precision results for ‘‘Pockets full of memories’’ experiments

Semantic class nt wh bkw whþ nt bkwþ nt

Old 0.262 0.302 0.344 0.309 0.350
New 0.594 0.630 0.706 0.636 0.699

Soft 0.337 0.398 0.514 0.405 0.522
Hard 0.546 0.562 0.704 0.573 0.706
Natural 0.260 0.353 0.462 0.343 0.458

Synthetic 0.677 0.723 0.852 0.727 0.852
Disposable 0.237 0.302 0.394 0.297 0.393

Long-use 0.641 0.698 0.821 0.695 0.820

Personal 0.652 0.729 0.806 0.717 0.804

Nonpersonal 0.248 0.255 0.399 0.270 0.400
Fashionable 0.502 0.586 0.650 0.578 0.644

Not-fashionable 0.253 0.269 0.348 0.264 0.354
Useful 0.692 0.758 0.842 0.753 0.839

Useless 0.188 0.211 0.327 0.229 0.331
Functional 0.557 0.639 0.740 0.631 0.737

Symbolic 0.322 0.354 0.496 0.368 0.503

Average 0.436 0.486 0.588 0.487 0.588
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wh+nt, bkw+nt), since the keyword frequency was not suited for
this case where we had only a very limited number of words per
object.

The experiment results for the TRECVID runs are summarized
in Table 3 and those for the ‘‘Pockets full of memories’’ in Table 4.
The best results for each semantic class are indicated in bold face.
The results show how the retrieval performance generally
increases when the textual features are used in addition to the
visual and aural ones. In TRECVID the textual features alone
perform very poorly, but still give a significant advantage when
combined with non-textual ones. On the other hand, in the
‘‘Pockets full of memories’’ experiments, the opposite occurs: the
textual features are better than the visual ones. In this case using
the textual features combined with the non-textual features does
not improve the results significantly; however, it does not reduce
the results even though the visual features perform badly by
themselves. Overall the binary keywords make a substantial
improvement, while the keyword frequency (in TRECVID) and
word histogram features lead to smaller improvements.

The textual data in TRECVID has been produced using speech
recognition and in some cases machine translation from Chinese
or Arabic. This results in very ‘‘noisy’’ textual data, since speech
recognition is never perfect, and machine translation reduces the
quality even further. A manual inspection of the texts reveals
many unintelligible words and sentences. Still, a sufficient
number of important keywords seem to get through to make a
significant difference in the results. This, however, means that the
process is largely based on finding a small set of relevant
keywords for each semantic class. In this sense the TRECVID case
is similar to ‘‘Pockets full of memories’’ where the textual data is
just a set of keywords. This may explain why the inverted file-
based binary keyword method works in most cases better than
the SOM-based textual features. The binary keyword method
directly increases the qualification values of the test set
documents with the correct keywords. The SOM features and
indices; however, work in a more indirect way, increasing the
qualification values of nearby keyword vectors, which may be
suboptimal in this case.

The success of the textual features in the ‘‘Pockets full of
memories’’ data can to some extent be explained by the relatively
limited variety of different objects depicted in the database. For
example, keys and phones, which are commonly found in people’s
pockets, are always hard and synthetic. Therefore, many of the
mappings from keywords to semantic classes are quite unambig-
uous.

In these experiments, the keyword frequency feature shows a
significant improvement compared to our earlier results [42]. This
is due to improvements in the method, and the fact that the
method now compares the words of the videos belonging to the
semantic class to the entire database itself, not an entirely
external corpus, as explained in Section 4.3.
7. Conclusions

In this article, we have studied how low-level visual features
extracted from images and videos could be complemented with
textual information. The nature of the used textual data has been
twofold: semantic keywords for images and speech recognition
output for videos. In both cases, we have analyzed how the
incorporation of the textual information domain effects the
average precision of content-based retrieval and compared it to
the baseline of purely non-textual retrieval. As textual features
have a closer relation to the semantic concepts as expressed in
natural language they can be used, we believe, to narrow the
semantic gap.

The texts and keywords were used in our experiments in three
different ways and the relative performance increases were
measured. Statistical word histogram features and the binary
keyword-based inverse file method could be used for both the
speech recognition and keyword data. In addition, statistical
keyword frequency features were used for the speech recognition
output. The central finding of the performed evaluations was that
the inclusion of the textual information always improved the
retrieval accuracy. In a majority of cases, the binary keyword
method was the best one. The two SOM-based statistical methods,
the word histograms and keyword frequencies, provided almost
similar results.

Looking at the results from the opposite direction, the
inclusion of the visual (and aural when available) low-level
features always increased the average retrieval precision obtained
with purely textual methods. This suggests that the two informa-
tion domains complement each other, which, of course, is
beneficial for inferring further semantic knowledge from the
interplay of these two different modalities.

This reasoning returns us to the symbol grounding problem
discussed in Section 2, i.e. that some symbols that humans use,
e.g. some words, have to be grounded in a physical experience
such as vision. Aside from the philosophical questions, these
issues also become important when trying to build intelligent
machines that are able to understand humans and their environ-
ment. Being able to infer connections between words and images
is a step in this direction.
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