
Answer Set Programming as
SAT modulo Acyclicity

Martin Gebser, Tomi Janhunen, and Jussi Rintanen

Helsinki Institute for Information Technology HIIT

Department of Information and Computer Science

Aalto University

Finland

ECAI 2014, Prague, Czech Republic, August 20

ECAI’14, August 20, 2014

2/23

Answer Set Programming

Answer set programming (ASP) features a rule-based syntax

subject to answer-set semantics.

Problem
Solve
−−−→ Solution(s)

Formalize ↓ ↑ Extract

Program P
Ground
−−−−→ Gnd(P)

Search
−−−−→ SM(P)

Some native answer set solvers:

– CLASP http://potassco.sourceforge.net/

– CMODELS http://www.cs.utexas.edu/~tag/cmodels/

– DLV http://www.dlvsystem.com/

– IDP3 http://dtai.cs.kuleuven.be/krr/software/idp/

– SMODELS http://research.ics.aalto.fi/software/

http://potassco.sourceforge.net/
http://www.cs.utexas.edu/~tag/cmodels/
http://www.dlvsystem.com/
http://dtai.cs.kuleuven.be/krr/software/idp/
http://research.ics.aalto.fi/software/

ECAI’14, August 20, 2014

3/23

Example: SuDoku Puzzle

number(1..9).

border(1). border(4). border(7).

region(X,Y) :- border(X), border(Y).

1 { value(X,Y,N):number(X):number(Y):

X1<=X: X<=X1+2: Y1<=Y: Y<=Y1+2 } 1

:- number(N), region(X1,Y1).

:- 2 {value(X,Y,N):number(N)}, number(X), number(Y).

:- 2 {value(X,Y,N):number(Y)}, number(N), number(X).

:- 2 {value(X,Y,N):number(X)}, number(N), number(Y).

1 9 3 8 6 7 4 2 5

4 6 8 5 3 2 9 1 7

7 5 2 1 4 9 6 8 3

6 2 1 4 7 3 5 9 8

5 3 4 9 1 8 7 6 2

9 8 7 2 5 6 3 4 1

2 1 6 3 9 5 8 7 4

8 7 5 6 2 4 1 3 9

3 4 9 7 8 1 2 5 6

ECAI’14, August 20, 2014

4/23

Example: Running the Solver

$ gringo sudoku.lp royle.lp | clasp 0

clasp version 3.0.4

Reading from stdin

Solving...

Answer: 1

value(1,3,2) value(1,9,1) value(2,2,7) value(2,5,3) value(3,5,4)

value(3,7,2) value(4,4,2) value(5,7,4) value(5,8,3) value(6,1,1)

value(6,3,5) value(6,4,6) value(7,5,7) value(8,2,3) value(9,4,1)

value(9,9,5) value(1,2,9) value(3,1,8) ...

Answer: 2

value(1,3,2) value(1,9,1) value(2,2,7) value(2,5,3) value(3,5,4)

value(3,7,2) value(4,4,2) value(5,7,4) value(5,8,3) value(6,1,1)

value(6,3,5) value(6,4,6) value(7,5,7) value(8,2,3) value(9,4,1)

value(9,9,5) value(3,1,9) ...

SATISFIABLE

Models : 2

...

ECAI’14, August 20, 2014

5/23

Key Features of ASP

◮ Typical ASP encodings follow a three-phase design:

1. Generate the solution candidates
2. Define the required concepts

3. Test if a candidate satisfies its criteria

◮ Default negation favors concise encodings.

◮ Basic database operations are definable in terms of rules:

— Projection: node(X)← edge(Y ,X).
— Union: node(X)← edge(Y ,X). node(Y)← edge(Y ,X).
— Intersection: symm(X ,Y)← edge(X ,Y), edge(Y ,X).
— Complement: unidir(X ,Y)← edge(X ,Y), not edge(Y ,X).

◮ Recursive definitions are also supported:

path(X ,Y)← edge(X ,Z), path(Z ,Y), node(Y).

ECAI’14, August 20, 2014

6/23

Translation-Based ASP

ASP can be implemented by translating ground programs into:

— Boolean Satisfiability (SAT)

[J., ECAI, 2004; J. and Niemelä, MG-65, 2010]

— Integer Difference Logic (IDL)

[Niemelä, AMAI, 2008; J. et al., LPNMR, 2009]

— Integer Programming (IP)

[Liu et al., KR, 2012]

— Bit-Vector Logic (BV)

[Nguyen et al., INAP, 2011; Extended in 2013]

☞ Existing solver technology can be harnessed for ASP!

ECAI’14, August 20, 2014

7/23

Motivation

◮ Complexities of translations vary in program length n:
O(n) IDL, IP, BV

O(n × log2 n) SAT [J., ECAI 2004]

O(n2) SAT [Lin & Zhao, IJCAI 2003]

O(2n) SAT [Lin & Zhao, AIJ 2004]

◮ What would be a minimal extension of SAT such that

1. a linear embedding from ASP is enabled and

2. the extension is efficiently implementable?

◮ In this paper, we consider embeddings into an extension

based on graphs subject to an acyclicity constraint:

M. Gebser, T. Janhunen, and J. Rintanen:

“Satisfiability Modulo Graphs: Acyclicity” [JELIA 2014].

ECAI’14, August 20, 2014

8/23

Outline

Formalisms of Interest

Translating Programs into SAT modulo Acyclicity

Implementation and Experiments

Conclusion

ECAI’14, August 20, 2014

9/23

Source Formalism: Normal Programs

◮ Normal logic programs (NLPs) consist of rules of the form:

a← b1, . . . ,bn,not c1, . . . ,not cm.

◮ The semantics is given by stable models, also known as

answer sets, satisfying [Gelfond and Lifschitz, ICLP, 1988]:

M = LM(PM).

Example

Consider the following program:

a← b. a← c. b ← a. c ← not d . d ← not c.

=⇒ M1 = {a,b, c} is stable but M2 = {a,b,d} is not.

ECAI’14, August 20, 2014

10/23

Target Formalism: Syntax

A theory in SAT modulo acyclicity (ACYC) is a tuple

〈X ,C,N,A, l〉 where

1. C is a set of clauses based on propositional variables in X ,

2. G = 〈N,A〉 is a directed graph with a finite set of nodes N

and arcs A ⊆ N × N, and

3. l : A→ X is a labeling that assigns a propositional variable

l(u, v) to every arc 〈u, v〉 ∈ A in the graph G.

Example

Rewriting our NLP using N = {a,b} and E = {〈a,b〉, 〈b,a〉}:

a ∨ ¬b, a ∨ ¬c, ¬a ∨ b ∨ c, b ∨ ¬a, ¬b ∨ a,

c ∨ d , ¬c ∨ ¬d , ¬a ∨ c ∨ e〈a,b〉, ¬b ∨ e〈b,a〉.

ECAI’14, August 20, 2014

11/23

Target Formalism: Semantics

An ACYC theory T = 〈X ,C,N,A, l〉 is satisfied by an

interpretation M ⊆ X , denoted M |= T , iff

1. M |= C and

2. 〈N,AM〉 with AM = {〈u, v〉 ∈ A | M |= l(u, v)} is acyclic.

Example

Recall the theory T from our running example:

a ∨ ¬b, a ∨ ¬c, ¬a ∨ b ∨ c, b ∨ ¬a, ¬b ∨ a,

c ∨ d , ¬c ∨ ¬d , ¬a ∨ c ∨ e〈a,b〉, ¬b ∨ e〈b,a〉.

=⇒ M1 = {a,b, c,e〈b,a〉} |= T but

M2 = {a,b,d ,e〈a,b〉,e〈b,a〉} 6|= T .

ECAI’14, August 20, 2014

12/23

Applications in Sight

Acyclicity constraints lend themselves for many purposes:

◮ Specifying a variety of topological structures:

— Trees and forests (both directed and undirected)

— Directed acyclic graphs (DAGs)
— Chordal graphs

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

◮ Hamiltonian cycles

◮ Formalizing paths and reachability in general

ECAI’14, August 20, 2014

13/23

General Translation from ASP to ACYC

◮ The classical models of the completion Comp(P) coincide

with the supported models P [Apt et al., 1988].

◮ The strong groundedness of stable models can be

captured by assigning numbers/ordinals to atoms

[Elkan, AIJ 1990; Fages, JMLCS 1994;

Erdem & Lifschitz, TPLP 2003].

◮ We follow the linear translation into IDL based on level

rankings [Niemelä, AMAI 2008; J. et al., LPNMR 2009].

◮ The translation has to be applied only to atoms a ∈ At(P)
having a non-trivial component SCC(a) with |SCC(a)| > 1.

In our running example, we have SCC(a) = {a,b} = SCC(b):

a← b. a← c. b ← a. c ← not d . d ← not c.

ECAI’14, August 20, 2014

14/23

Identifying Rule Bodies

Following [Tseitin, 1968], the body B(r) of a defining rule

r ∈ DefP(a) is given a new name bdr by

1. the clause bdr ∨
∨

b∈B+(r) ¬b ∨
∨

c∈B−(r) c,

2. for each b ∈ B+(r), the clause ¬bdr ∨ b, and

3. for each c ∈ B−(r), the clause ¬bdr ∨ ¬c.

=⇒ Effectively, we have bdr ↔
∧

b∈B+(r) b ∧
∧

c∈B−(r) ¬c.

Example

Rule: a← b. a← c. b ← a.

Translation: bd1 ∨ ¬b bd2 ∨ ¬c bd3 ∨ ¬a

¬bd1 ∨ b ¬bd2 ∨ c ¬bd3 ∨ a

ECAI’14, August 20, 2014

15/23

Well Support from Internal Rules

For the well-support provided by a rule r ∈ IDefP(a):

1. The clause wsr ∨ ¬bdr ∨
∨

b∈B+(r)∩SCC(a) ¬e〈a,b〉.

2. The clause ¬wsr ∨ bdr .

3. For each b ∈ B+(r) ∩ SCC(a), the clause ¬wsr ∨ e〈a,b〉.

=⇒ Effectively, we have wsr ↔ bdr ∧
∧

b∈B+(r)∩SCC(a) e〈a,b〉.

Example

Internal rule: a← b. b ← a.

ws1 ∨ ¬bd1 ∨ ¬e〈a,b〉 ws3 ∨ ¬bd3 ∨ ¬e〈b,a〉

Translation: ¬ws1 ∨ bd1 ¬ws3 ∨ bd3

¬ws1 ∨ e〈a,b〉 ¬ws3 ∨ e〈b,a〉

ECAI’14, August 20, 2014

16/23

Enforcing Support for Atoms

For the definition DefP(a) of an atom a in a program P:

1. For each r ∈ DefP(a), the clause a ∨ ¬bdr .

2. The clause ¬a ∨
∨

r∈EDefP(a)
bdr ∨

∨
r∈IDefP(a)

wsr .

=⇒ Effectively, this entails that a↔
∨

r∈DefP(a)
B(r).

Example

Definition: a← b. a← c. b ← a.

Translation: a ∨ ¬bd1, a ∨ ¬bd2 b ∨ ¬bd3

¬a ∨ ws1 ∨ bd2 ¬b ∨ ws3

ECAI’14, August 20, 2014

17/23

Overall Properties of the Translation

◮ The resulting translation TrACYC(P) of a normal program P

is linear in the length of P.

◮ A one-to-many correspondence between the stable

models of P and the models of TrACYC(P) is obtained.

Proposition

Let P be a normal logic program and TrACYC(P) its translation

into SAT modulo acyclicity.

1. If M ∈ SM(P), then there is a model N |= TrACYC(P) such

that M = N ∩ At(P).

2. If N |= TrACYC(P), then M ∈ SM(P) for M = N ∩ At(P).

ECAI’14, August 20, 2014

18/23

Extension: Disabling Edges Dynamically

◮ An edge variable e〈a,b〉 can be falsified if

1. a is known to be false,

2. a has an externally supporting rule, or
3. a has an internally supporting rule r ∈ IDefP(a) such that

b 6∈ B+(r).

◮ The extended translation Tr+
ACYC

(P) gives rise to a similar

but tighter correspondence of models.

Example

Definition: a← b. a← c. b ← a.

Case 1: a ∨ ¬e〈a,b〉 b ∨ ¬e〈b,a〉

Case 2: ¬bd2 ∨ ¬e〈a,b〉 –

Case 3: – –

ECAI’14, August 20, 2014

19/23

Implementation

◮ For tool interoperability, the SMODELS format is used as an

intermediate format for representing ground programs.

◮ Extended rules, such as choice, cardinality, and weight

rules may have to be translated away using LP2NORMAL2.

◮ To enable cross-translation for different back-end solvers,

1. the input program is instrumented with auxiliary atoms and

auxiliary rules corresponding to Tr+ACYC and

2. the completion is produced in the target format of interest.

◮ Our tools produce a number of output formats:

1. DIMACS with optional ACYC and MAXSAT extensions

2. SMT Library 2.0 (QF_IDL and QF_BV fragments)
3. PB format

4. CPLEX

ECAI’14, August 20, 2014

20/23

Tool Support

gringo / lparse

lpstrip

lpcat

lp2normal2 –

lp2acyc

lp2sat acyc2solver

[-g] [--diff]

[--bv]

[--pb]

[--mip]

The tool collection is published under:

http://research.ics.aalto.fi/software/asp/lp2acyc/

http://research.ics.aalto.fi/software/asp/lp2acyc/

ECAI’14, August 20, 2014

21/23

Experiments

Problem Hamilton Tree
Size 100 150 25 50 75 100

CLASP 0.95 20.16 4.37 1193.09 1495.32 1995.19

ACYCGLUCOSE 0.07 0.15 0.74 315.83 999.07 1414.68

ACYCMINISAT 0.04 0.12 0.83 544.43 1025.02 1224.28
Z3 2.45 50.64 4.75 1208.36 1726.56 2538.20

ACYCGLUCOSE-TrACYC 0.93 13.75 1.40 271.93 973.22 1388.82

ACYCMINISAT-TrACYC 0.76 7.28 0.80 484.92 879.18 1030.79
Z3-TrACYC 35.80 331.11 6.30 1178.44 2266.66 2714.01

ACYCGLUCOSE-Tr+ACYC
0.04 0.18 1.09 264.28 931.28 1379.15

ACYCMINISAT-Tr+ACYC 0.08 0.32 0.77 473.64 852.78 1016.50

Z3-Tr+ACYC 27.72 239.83 7.03 1230.51 1976.20 2562.70

ECAI’14, August 20, 2014

22/23

ASP Competition 2014

The LP2GRAPH system was based on the translation Tr+ACYC

and using ACYCGLUCOSE as the back-end solver.

[https://www.mat.unical.it/aspcomp2014/]

https://www.mat.unical.it/aspcomp2014/

ECAI’14, August 20, 2014

23/23

Conclusion

◮ Translation-based ASP aims to exploit

– the expressive power of ASP and

– the potential behind existing solver technology.

◮ The translation from ASP into SAT modulo acyclicity

– is linear and
– preserves stable models up to original signature.

◮ The cross-translation of ASP is enabled by

– a suitable intermediate format and

– postponing format-specific aspects to the last step.

◮ Future extensions:

– Support for further formats and solver types
– Covering optimization more widely

	Formalisms of Interest
	Translating Programs into SAT modulo Acyclicity
	Implementation and Experiments
	Conclusion

