
SMT Based State Reachability

Checking for Multithreaded Programs

Kari Kähkönen and Keijo Heljanko

The Main Goal

• Determine if a given global state is reachable in a

multithreaded program

• More specifically: Given a set of test executions, can we

predict that a given global state is reachable even if

none of the test executions observed that state

• Our approach:

– Model test executions as unfoldings (i.e., as a Petri net)

– Translate the unfolding and the reachability problem into a SMT

instance

Unfoldings of Multithreaded Programs

Global variables:

X = 0

Thread 1:

X = 5;

a = X;

Thread 2:

b = input();

if (b == 0)

c = X;

d = X;

Global State Reachability In Unfoldings

Is a global state satisfying X > 40 & Y = 15 reachable?

SMT Translation

• Each satisfying assignment is made to correspond to a

reachable marking in the unfolding

– Base translation captures all reachable markings

– A global state property can then be added to the translation

• A boolean variable is created for each event and

condition (i.e., for each transition and place)

• A variable for an event is true iff the event needs to be

fired in order to reach the marking

• A variable for a condition is true iff it contains a token in

the marking

SMT Translation (1)

𝑒 ⇒

𝑒
𝑖
∈• •𝑒 ∪•

𝑒𝑖(1) e

e1 e2

𝑒 ⇒ 𝑒1 ∧ 𝑒2

e

For each event e

SMT Translation (2)

𝑒 ⇒ 𝑔(2)

e1 e2

𝑒1 ⇒ 𝑖𝑛𝑝𝑢𝑡1 = 0

For each event e with a constraint g

𝑖𝑛𝑝𝑢𝑡1 = 0 𝑖𝑛𝑝𝑢𝑡1 ≠ 0

𝑒2 ⇒ 𝑖𝑛𝑝𝑢𝑡2 ≠ 0

SMT Translation (3)

𝑒 ⇒

𝑒
𝑖
∈𝑐• ∖{𝑒}

¬𝑒𝑖
(3)

c

e1 e2

𝑒1 ⇒ ¬𝑒2

For each condition c and each event e

in the postset of c

𝑒2 ⇒ ¬𝑒1
(Linear encoding is also possible)

SMT Translation (4)

𝑐 ⇒ 𝑒 ∧ ¬(

𝑒
𝑖
∈𝑐•

𝑒𝑖)(4)

c

e2 e3

𝑐 ⇒ 𝑒1 ∧ ¬(𝑒2 ∨ 𝑒3)

For each condition c and event e

in the preset of c

e1

Cycles of Asymmetric Conflicts

No reachable marking with

both c8 and c11

e5 must be fired before e2

e2 must be fired before e3

e3 must be fired before e4

e4 must be fired before e5

Handling Cycles in the SMT Translation

• We want the encoding for reachable markings to

become unsatisfiable if the marking implies a cycle of

asymmetric conflicts

• Idea: encode a valid firing order for the events

– Create an interger variable describing this order for each event

SMT Translation (5)

𝑒𝑖 ⇒ 𝑛𝑗 < 𝑛𝑖(5) e3

e1 e2

𝑒3 ⇒ 𝑛1 < 𝑛3

For each event ei and each event ej in • • 𝑒𝑖 ∪
•ej

𝑒3 ⇒ 𝑛2 < 𝑛3

SMT Translation (6)

𝑒𝑖 ⇒ 𝑛𝑗 < 𝑛𝑖(6)

e1 e2

𝑒2 ⇒ 𝑛2 < 𝑛1

For each read event ei and write event ej that

have a common condition in their context / preset

Example
𝑒2 ⇒ 𝑛1 < 𝑛2
𝑒3 ⇒ 𝑛2 < 𝑛3
𝑒5 ⇒ 𝑛4 < 𝑛5

𝑒1 ⇒ 𝑛1 < 𝑛4
𝑒3 ⇒ 𝑛3 < 𝑛4
𝑒5 ⇒ 𝑛5 < 𝑛2

𝑒2 ⇒ 𝑒1
𝑒3 ⇒ 𝑒2
𝑒5 ⇒ 𝑒4

𝑐1⇔ ¬𝑒2
𝑐2⇔ ¬𝑒1
𝑐3⇔ ¬𝑒4
𝑐4⇔ ¬𝑒4
𝑐5⇔ 𝑒1 ∧ ¬𝑒2
𝑐6⇔ 𝑒2
𝑐7⇔ 𝑒2 ∧ ¬𝑒3
𝑐8⇔ 𝑒3
𝑐9⇔ 𝑒4
𝑐10⇔ 𝑒4 ∧ ¬𝑒5
𝑐11⇔ 𝑒5

Experiments

Benchmark Property SAT Without

read arcs

With read

arcs

Updater x+y > 200 ∧ y < 100 UNSAT 0m 49s >30m

Updater x + y > 200 SAT 0m 47s >30m

Synthetic 3 i+j = 50 ∧ k = -32 ∧ i >152 SAT 2m 2s 0m 46s

Fib 1 i ≥ 32 ∨ j ≥ 32 SAT 0m 41s 0m 12s

Fib 1 i ≥ 144 ∨ j ≥ 144 UNSAT 0m 39s 0m 38s

Fib 2 i ≥ 32 ∨ j ≥ 32 SAT 4m 28s 2m 29s

Fib 2 i ≥ 144 ∨ j ≥ 144 SAT 7m 2s 26m 18s

Fib 2 i > 144 ∨ j > 144 UNSAT 7m 15s 29m 54s

Conclusions

• Unfoldings of programs can be used to determine if a

given global state is reachable in the program

• Global states can be searched directly from the

unfolding or a SMT solver can be used as the search

engine

• Unfoldings with read arcs can contain cycles of

asymmetric conflicts

– Makes the SMT translation more demanding to solve

– Perhaps there is a better way to handle the cycles?

