Answer Set Solver Backdoors

Emilia Oikarinen* Matti Järvisalo[†]

* HIIT & Aalto University, Finland † HIIT & University of Helsinki, Finland

December 16, 2014 @ Computational Logic Day

In Proc. JELIA 2014, LNAI 8761, pp. 674-683

Motivation: ASP

- Answer set programming (ASP)
 - Rule-based constraint programming paradigm
 - Offers an expressive declarative language for conveniently modelling hard combinatorial problems
 - ... together with highly efficient solver technology for finding solutions (answer sets) to the rule-based constraint models.
- Efficient answer set solvers enable addressing a wide range of important real-world problems

Our understanding for the fundamental reasons for this success is limited

Motivation: Backdoors

A generic notion for providing insights to the surprising success of constraint solving remarkably large and complex real-world instances of combinatorial problems

Constraint graph (planning) 5 vars assigned 14 vars assigned

Backdoors to Problem Instances

Set B of variables such that a systematic search procedure needs to non-deterministically branch only on the variables in B in order to decide the instance.

Research Question & Contributions

Research Question

Do ASP solver techniques influence the existence of small backdoors?

• A search procedure having small backdoor to a problem instance can in principle decide the instance efficiently.

Contributions

- Formalization of backdoors wrt three dimensions of ASP solver techniques
 - (i) Well-foundedness checking; (ii) no-good learning; (iii) branching.

Oetailed analysis:

- relative size of backdoors for the $2^3 = 8$ solver abstractions
 - Extending earlier results for Boolean satisfiability solvers: Dimensions (i) and (iii) non-existing in SAT!

Solver Abstractions

Answer set existence for $\Pi \equiv SAT$ checking comp $(\Pi) \wedge L(\Pi)$

- comp(Π): Clark's completion
 - Interpret :- as a logical equivalence \leftrightarrow .
- $L(\Pi)$: loop formulas of Π (worst-case exponential)
 - to rule out classical models not corresponding to answer sets.

Answer set solvers in three dimensions (X, Y, Z)

- X: Well-foundedness checking over the loop formulas $L(\Pi)$
 - **EWF**: eagerly after each decision
 - **LWF**: lazily only after a satisfying assignment for $comp(\Pi)$
- Y: No-good learning:
 - **CL**: yes (a la the CDCL SAT algorithm)
 - **noCL**: no (a la the DPLL SAT algorithm)

Z: Branching

- **B**: On atoms + bodies as atomic constructs
- noB: On atoms only

(X, Y, Z)-Abstractions and Solvers

The abstractions are closely related to implemented answer set solvers:

- DLV and Smodels relate most closely with (EWF, noCL, noB)
- Nomore++ with (EWF, noCL, B)
- Smodels_{cc} with (EWF, CL, noB);
- ASSAT, Cmodels, and SUP with (LWF, CL, B)
- Clasp, WASP, and SAG with (EWF, CL, B)

Answer Set Solver Backdoors

(X, noCL, Z)-backdoors

Given a program Π , a subset $B \subseteq \operatorname{atom}(\Pi) \cup \operatorname{body}(\Pi)$ is a $(X, \operatorname{noCL}, Z)$ -backdoor if

• for every truth assignment $au:B
ightarrow \{0,1\}$,

► X = EWF: unit propagation on $comp(\Pi) \land L(\Pi)$

• X = LWF: unit propagation on comp(Π)

returns a satisfying assignment for $\Pi|_{\tau}$ or concludes that $\Pi|_{\tau}$ is unsatisfiable.

• $Z = \mathbf{noB}$: $B \subseteq \operatorname{atom}(\Pi)$.

Answer Set Solver Backdoors

(X, \mathbf{CL}, Z) -backdoors

A subset $B \subseteq \operatorname{atom}(\Pi) \cup \operatorname{body}(\Pi)$ is a $(X, \operatorname{CL}, Z)$ -backdoor for Π if there exists a search tree exploration order for the $(X, \operatorname{CL}, Z)$ -solver such that:

- The solver branches only on the variables in B.
- The solver uses unit propagation on comp(Π) ∧ L(Π) when all variables in B are assigned.
- The solver either finds a satisfying assignment for Π or proves Π unsatisfiable.
- X = LWF: the solver uses L(Π) for unit propagation only when the current assignment is complete over atom(Π) ∪ body(Π).
- $Z = \mathbf{noB}$: $B \subseteq \operatorname{atom}(\Pi)$.

Analysis: Results

- We compare the size of *smallest backdoors* w.r.t. different solver abstractions
- Results from SAT carry on to ASP using an encoding from CNF into ASP
- For dimensions non-existent in SAT solvers, in order to obtain separation we find program families which have different sizes of smallest backdoors
- UNSAT vs. SAT programs

UNSAT			LWF				EWF			
			noCL		CL		noCL		CL	
			noB	В	noB	В	noB	В	noB	В
LWF	noCL	noB	≡	\geq	2	\geq	2	\geq	2	\geq
		В	\ll	≡	?	\geq	\ll	2	?	\geq
	CL	noB	\ll	\ll	≡	\geq	«	\ll	2	\geq
		В	\ll	\ll	\leq	≡	«	\ll	?	\geq
EWF	noCL	noB	«	\ll	«	?	≡	\geq	2	\geq
		В	\ll	\ll	\ll	?	\ll	≡	?	\geq
	CL	noB	\ll	\ll	«	?	«	\ll	≡	\geq
		В	\ll	«	«	\leq	«	«	\leq	≡

 $A \ll B$ A can have exponentially smaller backdoors than B

- A < B A can have smaller backdoors than B
- $A\equiv B\,$ Sizes of backdoors the same for all programs
- $A \leq B B < A$ does not hold, and A < B holds
- $\mathsf{A} \geq \mathsf{B}\,$ Equivalent to $\mathsf{B} \leq \mathsf{A}\,$
 - A ? B Relationship unknown

SAT			LWF				EWF			
			noCL		CL		noCL		CL	
			noB	В	noB	В	noB	В	noB	В
LWF	noCL	noB	≡	\geq	2	\geq	2	\geq	2	\geq
		В	\ll	≡	?	2	\ll	\geq	?	\geq
	CL	noB	<	<	≡	\geq	<	<	\geq	\geq
		В	<	<	\leq	≡	<	<	?	\geq
EWF	noCL	noB	\ll	\ll	«	\ll	≡	\geq	\geq	\geq
		В	≪	\ll	\ll	«	≪	≡	?	\geq
	CL	noB	\ll	\ll	«	\ll	<	<	≡	\geq
		В	«	«	«	\ll	<	<	\leq	≡

 $A \ll B$ A can have exponentially smaller backdoors than B

- A < B A can have smaller backdoors than B
- $A\equiv B\,$ Sizes of backdoors the same for all programs

 $A \leq B B < A$ does not hold, and A < B holds

- $A \ge B$ Equivalent to $B \le A$
 - A ? B Relationship unknown