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Motivation: learning models from black boxes
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Many applications:
@ Verify that a black-box component is safe to use
@ Dynamic malware analysis
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Learning FSMs from input-output traces

IO-traces
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Moore machines

(0 |
b/Yb @ input alphabet, I = {a, b}

@ output alphabet, O = {0,1,2}

e . o set of states, Q = {qo, 1,42, 43}
el

@ initial state, qg

a
@ transition function, § : Q X I — Q

@ output function, A: @ — O

(I) Oa Qa QO757 >‘)
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Moore machines

(o |
b/Yb @ input alphabet, I = {a, b}

@ output alphabet, O = {0,1,2}
% 0 o set of states, @ = {qo,41, 42,93}
/\\1 // @ initial state, qg
“ @b @ transition function, § : Q x I — Q
v @ output function, A: @ — O
(1,0,Q,q0,6, )

By definition, our machines are deterministic and complete.
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Input-output traces

N>
b/& b aa — 020

baa — 0122

ﬁ bba — 0122
\a/ b/ abaa +— 02220
k/a, b abba +— 02220

Moore machine Some |/O traces generated by the machine
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Consistency

D
b/& b aa — 020
baa — 0122
ﬁ bba v 0122
Y b/ abaa — 02220
&% b abba — 02220
\2/

This machine is consistent with this set of traces.
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Consistency

b/f@ aa — 020

Wb baa — 0122

ﬁ‘m ’ @ bba — 0122
Y b/ abaa — 02220
%@/a, b abba — 02220

This machine is inconsistent with this set of traces.
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A first attempt at problem definition

Given ...
@ Input alphabet, I
@ Output alphabet, O
@ Set of 10-traces, S (the training set)

... find a Moore machine M such that:
@ M is deterministic
@ M is complete

@ M is consistent with S
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A trivial solution

a v b
b— 01 %/ \"
aa — 020 % m v
ab — 022
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A trivial solution

yl
. IV N

aa — 020 va v
ab — 022

This is called the prefix-tree machine.
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A trivial solution

yl
. IV N

aa — 020 v“ v
ab — 022

This is called the prefix-tree machine.
Not quite a solution: machine incomplete ...
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A trivial solution

A5
A
b— 01
aa — 020 ‘
ab — 022 \\‘ O

.. but easily completed with self-loops.
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Problems with the trivial solution

(1) Poor generalization, due to trivial completion with self-loops

@ The machine may be consistent with the training set ...
@ ... but how accurate is it on a test set?
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Problems with the trivial solution

(1) Poor generalization, due to trivial completion with self-loops

@ The machine may be consistent with the training set ...
@ ... but how accurate is it on a test set?

(2) Large number of states in the learned machine
@ The prefix-tree machine does not merge states at all.
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Revised problem definition

The LMoMIO problem (Learning Moore Machines Input-Output Traces):

Given ...
@ Input alphabet, T
@ Output alphabet, O
@ Set of 10-traces, S (the training set)

. find a Moore machine M such that:
@ M is deterministic
@ M is complete

@ M is consistent with S
. and also:

e M generalizes well (good accuracy on a-priori unknown test sets)
@ M is small (few states)

e M is found quickly (good learning algorithm complexity)
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How to measure “accuracy”?

We define three metrics: Strong, Medium, Weak

test trace machine output  strong acc. medium acc. weak acc.
abc — 1234 1234 1 1 1
abc — 1234 4321 0 0 0
abe — 1234 1212 0 i i
abc — 1234 3434 0 0 %
abc — 1234 1324 0 ;11 %
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Related work

e A* [Angluin, 1987]

ad\\le
° e NP-hard [Gold, 1978]
>
'OGS > e*ac
S/Ve
®
K-tails [Biermann & Feldman, 1972]
/7@0,. Gold's algorithm [Gold, 1978]
St RPNI [Oncina & Garcia, 1992]

® Genetic algorithms
Ant colony optimization
Our work
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Identification in the limit

Concept introduced in [Gold, 1967], in the context of formal language learning
@ Learning is seen as an infinite process
@ Training set keeps growing: Sy €573 C S, C ---
Every input word is guaranteed to eventually appear in the training set

°
@ For each S;, the learner outputs machine M;
]

Identification in the limit := learner outputs the right machine after some 4
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Identification in the limit

Concept introduced in [Gold, 1967], in the context of formal language learning
@ Learning is seen as an infinite process
@ Training set keeps growing: Sy €573 C S, C ---
@ Every input word is guaranteed to eventually appear in the training set
@ For each S;, the learner outputs machine M;
@ ldentification in the limit := learner outputs the right machine after some ¢

A good passive learning algorithm must identify in the limit.
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Characteristic samples

To prove identification in the limit, we use the notion
of the Characteristic Sample [C. de la Higuera, 2010]:
o Concept existing for DFAs (deterministic finite automata) — we adapt it to
Moore machines

@ Intuition: set of 10-traces that “covers” the machine (covers all states, all
transitions)

@ For a minimal Moore machine M = (I,0,Q, qo, 0, A), there exists a CS of
total length O(|Q|*|1])
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Characteristic samples

To prove identification in the limit, we use the notion
of the Characteristic Sample [C. de la Higuera, 2010]:

o Concept existing for DFAs (deterministic finite automata) — we adapt it to
Moore machines

@ Intuition: set of |O-traces that “covers’ the machine (covers all states, all
transitions)

@ For a minimal Moore machine M = (I,0,Q, qo, 0, A), there exists a CS of
total length O(|Q|*|1])

Charateristic Sample Requirement (CSR):
@ A learning algorithm satisfies CSR if it satisfies the following:

If the training set S is a characteristic sample of a minimal machine
M, then the algorithm learns from S a machine isomorphic to M.

@ CSR can be shown to imply identification in the limit
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Three learning algorithms

@ PTAP - Prefix Tree Acceptor Product

@ PRPNI - Product RPNI

@ MooreMI - Moore Machine Inference
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PTAP - Prefix Tree Acceptor Product

This is the trivial solution we discussed earlier:
V lﬂ
b— 01
a

aa — 020 ‘
ab — 022
\‘ 24D
o

@ Large number of states in learned machine

Drawbacks:

@ Poor generalization / accuracy
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PRPNI - Product RPNI

Observations:

@ A DFA is a special case of a Moore machine with binary output
(accept/reject)

@ A Moore machine can be encoded as a product of [log, |O|] DFAs

Based on these observations, PRPNI works as follows:

@ Uses the RPNI algorithm [J. Oncina and P. Garcia, 1992], which learns DFAs
@ Learns several DFAs that encode the learned Moore machine

@ Computes product of the learned DFAs and completes it

Drawbacks:

@ DFAs are learned separately, therefore do not have same state-transition
structure = state explosion during product computation
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PRPNI - Product RPNI

Observations:

@ A DFA is a special case of a Moore machine with binary output
(accept/reject)

@ A Moore machine can be encoded as a product of [log, |O|] DFAs

Based on these observations, PRPNI works as follows:
@ Uses the RPNI algorithm [J. Oncina and P. Garcia, 1992], which learns DFAs
@ Learns several DFAs that encode the learned Moore machine

@ Computes product of the learned DFAs and completes it

Drawbacks:

@ DFAs are learned separately, therefore do not have same state-transition
structure = state explosion during product computation

@ Invalid output codes
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Invalid output codes

Output alphabet: O = {0, 1,2}
Binary encoding of O: f ={0+~ 00,1~ 01,2 — 10}
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Invalid output code: 11 does not correspond to any output symbol
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MooreMI - Moore Machine Inference

Modified RPNI, tailored to Moore machine learning
Like PRPNI, learns several DFAs that encode the learned Moore machine
Unlike PRPNI, learned DFAs maintain same state-transition structure

Therefore, no state explosion during product computation

No invalid output codes either
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Results

Theorem 1

All three algorithms return Moore machines consistent with the 10-traces received
as input.

Theorem 2

The MooreMI algorithm satisfies the characteristic sample requirement and
identifies in the limit.

Experimental evaluation result:

MooreMI is better not just in theory, but also in practice
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Summary

Learning deterministic, complete Moore machines from input-output traces

@ Characteristic sample for Moore machines

Three algorithms to solve the problem

MooreMI algorithm identifies in the limit
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Future work

Extend to Mealy machines

Learning symbolic machines

@ Industrial case studies

Learning from traces and formal requirements (e.g. LTL formulas)
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Future work

Extend to Mealy machines

Learning symbolic machines

Learning from traces and formal requirements (e.g. LTL formulas)

@ Industrial case studies

Thank you! Questions?
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