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Motivation: learning models from black boxes
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Many applications:

Verify that a black-box component is safe to use

Dynamic malware analysis

...
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Learning FSMs from input-output traces
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Moore machines
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(I,O,Q, q0, δ, λ)

input alphabet, I = {a, b}

output alphabet, O = {0, 1, 2}

set of states, Q = {q0, q1, q2, q3}

initial state, q0

transition function, δ : Q× I → Q

output function, λ : Q→ O

By definition, our machines are deterministic and complete.
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Input-output traces
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a, b aa 7→ 020

baa 7→ 0122
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abaa 7→ 02220

abba 7→ 02220

Moore machine Some I/O traces generated by the machine
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Consistency
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a, b aa 7→ 020

baa 7→ 0122

bba 7→ 0122

abaa 7→ 02220

abba 7→ 02220

This machine is consistent with this set of traces.
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Consistency
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aa 7→ 020

baa 7→ 0122

bba 7→ 0122

abaa 7→ 02220

abba 7→ 02220

This machine is inconsistent with this set of traces.
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A first attempt at problem definition

Given ...

Input alphabet, I

Output alphabet, O

Set of IO-traces, S (the training set)

... find a Moore machine M such that:

M is deterministic

M is complete

M is consistent with S
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A trivial solution

b 7→ 01

aa 7→ 020

ab 7→ 022
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This is called the prefix-tree machine.
Not quite a solution: machine incomplete ...
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... but easily completed with self-loops.

Georgios Giantamidis (Aalto University) Learning Moore Machines from Input-Output Traces December 8, 2016 12 / 32



Problems with the trivial solution

(1) Poor generalization, due to trivial completion with self-loops

The machine may be consistent with the training set ...
... but how accurate is it on a test set?

(2) Large number of states in the learned machine

The prefix-tree machine does not merge states at all.
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Revised problem definition

The LMoMIO problem (Learning Moore Machines Input-Output Traces):

Given ...

Input alphabet, I

Output alphabet, O

Set of IO-traces, S (the training set)

... find a Moore machine M such that:

M is deterministic

M is complete

M is consistent with S

... and also:

M generalizes well (good accuracy on a-priori unknown test sets)

M is small (few states)

M is found quickly (good learning algorithm complexity)
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How to measure “accuracy”?

We define three metrics: Strong, Medium, Weak

test trace
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Related work

active

passive
exact

heuristic

A* [Angluin, 1987]

NP-hard [Gold, 1978]

K-tails [Biermann & Feldman, 1972]
Gold's algorithm [Gold, 1978] 
RPNI [Oncina & Garcia, 1992]
Genetic algorithms
Ant colony optimization
Our work
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Identification in the limit

Concept introduced in [Gold, 1967], in the context of formal language learning

Learning is seen as an infinite process

Training set keeps growing: S0 ⊆ S1 ⊆ S2 ⊆ · · ·
Every input word is guaranteed to eventually appear in the training set

For each Si, the learner outputs machine Mi

Identification in the limit := learner outputs the right machine after some i

A good passive learning algorithm must identify in the limit.
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Characteristic samples

To prove identification in the limit, we use the notion
of the Characteristic Sample [C. de la Higuera, 2010]:

Concept existing for DFAs (deterministic finite automata) – we adapt it to
Moore machines

Intuition: set of IO-traces that “covers” the machine (covers all states, all
transitions)

For a minimal Moore machine M = (I,O,Q, q0, δ, λ), there exists a CS of
total length O(|Q|4|I|)

Charateristic Sample Requirement (CSR):

A learning algorithm satisfies CSR if it satisfies the following:

If the training set S is a characteristic sample of a minimal machine
M , then the algorithm learns from S a machine isomorphic to M .

CSR can be shown to imply identification in the limit
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Three learning algorithms

PTAP - Prefix Tree Acceptor Product

PRPNI - Product RPNI

MooreMI - Moore Machine Inference
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PTAP - Prefix Tree Acceptor Product

This is the trivial solution we discussed earlier:

b 7→ 01
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Drawbacks:

Large number of states in learned machine

Poor generalization / accuracy
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PRPNI - Product RPNI

Observations:

A DFA is a special case of a Moore machine with binary output
(accept/reject)

A Moore machine can be encoded as a product of dlog2 |O|e DFAs

Based on these observations, PRPNI works as follows:

Uses the RPNI algorithm [J. Oncina and P. Garcia, 1992], which learns DFAs

Learns several DFAs that encode the learned Moore machine

Computes product of the learned DFAs and completes it

Drawbacks:

DFAs are learned separately, therefore do not have same state-transition
structure =⇒ state explosion during product computation

Invalid output codes
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Invalid output codes

Output alphabet: O = {0, 1, 2}

Binary encoding of O: f = {0 7→ 00, 1 7→ 01, 2 7→ 10}

q0

q1

q2 r0 r1

s0 s1 s2

s5 s4 s3

00 11 00

01 10 01

a a

a

b

b

b

a

b

a

b a a

aa

a a

b b b

b b b

Invalid output code: 11 does not correspond to any output symbol
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MooreMI - Moore Machine Inference

Modified RPNI, tailored to Moore machine learning

Like PRPNI, learns several DFAs that encode the learned Moore machine

Unlike PRPNI, learned DFAs maintain same state-transition structure

Therefore, no state explosion during product computation

No invalid output codes either
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Results

Theorem 1

All three algorithms return Moore machines consistent with the IO-traces received
as input.

Theorem 2

The MooreMI algorithm satisfies the characteristic sample requirement and
identifies in the limit.

Experimental evaluation result:

MooreMI is better not just in theory, but also in practice
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Summary

Learning deterministic, complete Moore machines from input-output traces

Characteristic sample for Moore machines

Three algorithms to solve the problem

MooreMI algorithm identifies in the limit
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Future work

Extend to Mealy machines

Learning symbolic machines

Learning from traces and formal requirements (e.g. LTL formulas)

Industrial case studies

Thank you! Questions?
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