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Motivation

◦ Knowledge Compilation [DM2002,CD1997]

◦ Formula Minimization [Q1952,Q1959,M1956]

◦ Model-based diagnosis [dK1992]

◦ Inductive generalization in model checking [BM2007]

◦ Modal logic [B2009]
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Contributions

◦ A new approach that can compile non-clausal formulae

◦ Can compile formulae with thousands of variables

◦ It’s completely based on SAT technology
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Basic Definitions

A literal is a variable or its negation

◦ Clause: A disjunction of literals

(c ∨ ¬a)

Satisfied clause: at least one literal is true under the given assignment to variables

◦ Term: A conjunction of literals

(c ∧ ¬a)

Satisfied term: all of its literals are true under the given assignment to variables
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Propositional formulae

◦ Clausal:
◦◦ CNF: conjunction of clauses

(c ∨ a) ∧ (c ∨ ¬a)

◦◦ DNF: disjunction of terms

(c ∧ a) ∨ (c ∧ ¬a)

◦ Non-clausal:
◦◦ Non-CNF and Non-DNF
◦◦ Propositional formulae: well-formed formulae built with standard

connectives ¬,∧,∨

((c ∧ a) ∨ (c ∧ ¬a)) ∧ d
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Prime Implicants and Prime Implicates

◦ A term In is called an implicant of F if In � F .
◦◦ An implicant In of F is called prime if any subset I ′n ( In is not an

implicant of F .

◦◦◦ A satisfying assignment (model) expressed as a conjunction of literals is
an implicant (i.e if p = 1, s = 0, t = 1 is a satisfying assignment then
p ∧ ¬s ∧ t is an implicant)

◦ A clause Ie is called an implicate of F if F � Ie .
◦◦ An implicate Ie of F is called prime if any subset I ′e ( Ie is not an

implicate of F .
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Example Prime Implicants/Implicates

F =
C1

(p ∨ s) ∧
C2

(r ∨ t ∨ ¬s) ∧
C3

(r ∨ ¬t)

◦ Implicate:
C4

p ∨ r ∨ t ⇒ obtained by resolution of C1 and C2

◦◦ Prime implicate: p ∨ r ⇒ obtained by resolution of C3 and C4

◦ Implicant: p ∧ ¬s ∧ r ∧ ¬t (p = 1, s = 0, r = 1, t = 0)

◦◦ Prime implicant: p ∧ r (p = 1, r = 1)
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Reduction of Implicants/Implicates

◦ CNF formulae:
◦◦ Polynomial time procedure

F =
C1

(¬a ∨ b ∨ c) ∧
C2

(a ∨ d) ∧
C3

(¬d ∨ e ∨ f )
In = ¬a ∧ b ∧ c ∧ d ∧ e ∧ ¬f

◦ Propositional formulae:
1. Shannon expansion: Worst-case exponential grow of the formula

input : Formula FCNF , In and Var(F )
output: Prime Implicant in In

1 foreach l ∈ In and var(l) ∈ Var(F ) do
2 I ′n = In \ {l}
3 if I ′n ∧ ¬F unsat then
4 In = I ′n
5 else
6 continue

7 return In
8 end
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Related work and drawback

◦ Iterated consensus or resolution [Q1952,Q1959,T1967]

◦ Unionist product [C1996]

◦ Based on dual rail encoding [P1999,J2014]

◦ Semantic resolution [S1970]

◦ SE-trees [R1994]

◦ BDD-based (i.e ZRes) [SD2001]

They all assume the formula in CNF (DNF) or they are
limited to formulae with few variables
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Hitting Set Duality (1)

◦ Minimal Hitting Set (MHS):

Given a collection Γ of sets, a hitting set H for Γ is a set such that
∀S ∈ Γ,H ∩ S 6= ∅.
◦◦ A hitting set H is minimal if none of its subsets is a hitting set.

◦ Example Minimal Hitting Set:

Γ =

 {a, b, c}{b, d}
{e}

H1 = {b, e}, H2 = {a, d , e}, H3 = {c, d , e}.
Note that instead {a, b, e} is not a Minimal Hitting Set.
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Hitting Set Duality (2)

◦ Prime Implicants and Implicates are related by a hitting set duality
◦◦ PIn(F ): set of all prime implicants of F
◦◦ PIe(F ): set of all prime implicates of F

A term (clause) I is a prime implicant (implicate) of F if and
only if I is a minimal hitting set of PIe(F ) (PIn(F ))

This remains true for any subset of PIe(F )(PIn(F )) that is equivalent
to F (cover)
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MHS on subsets of PIe(F )(PIn(F ))

◦ Suppose PI
′
e(F ) ⊂ PIe(F ) and PI

′
e(F ) not equivalent to F

◦◦ A MHS p of PI
′

e (F ) does not necessarily corresponds to a prime
implicant

A term p is a prime implicant of F if

1. p is a MHS of PI
′

e (F )

2. p ∧ ¬F is unsatisfiable

◦ When sets are represented as clauses with positive literals, minimal
models correspond to MHS
◦◦ A minimal model is a model containing a minimal number of variables

assigned to true
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Prime Compilation of Non-Clausal Formulae

◦ An approach completely based on SAT technology

◦ Exploits the existing duality between prime implicants and prime
implicates in order to find new prime implicants/implicates

◦ Complements existing approaches (i.e ZRes) [SD’01]
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H formula

◦ We use a CNF formula H to keep track of the already computed
prime implicants/implicates

Unexplored
assignment

prime implicants &
prime implicates
to block

H formula
(dual rail encoding)

F formula

When H is unsatisfiable either all the PIn(F ) or all the PIe(F )
have been computed
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Dual Rail Encoding (1)

◦ Prime implicants/implicates can be more than 2n

◦ Example without dual rail encoding:

F = d ∧ (a ∨ ¬b ∨ ¬d) ∧ (c ∨ b)

PIn(F ) PIe(F )

¬b ∧ c ∧ d b ∨ c
a ∧ c ∧ d d
a ∧ b ∧ d a ∨ c

a ∨ ¬b

H = (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ ¬b ∨ ¬d) ∧ (b ∨ c) ∧ d ∧ (a ∨ ¬b)

(b ∨ ¬c) (¬a ∨ ¬b)

¬b

¬c c

⊥
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◦ Prime implicants/implicates can be more than 2n

◦ Example without dual rail encoding:

F = d ∧ (a ∨ ¬b ∨ ¬d) ∧ (c ∨ b)

PIn(F ) PIe(F )

¬b ∧ c ∧ d b ∨ c
a ∧ c ∧ d d
a ∧ b ∧ d a ∨ c

a ∨ ¬b

H = (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ ¬b ∨ ¬d) ∧ (b ∨ c) ∧ d ∧ (a ∨ ¬b)

(b ∨ ¬c) (¬a ∨ ¬b)

¬b

¬c c

⊥
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Dual Rail Encoding (2)

◦ For each variable v in var(F ) create two variables xv and x¬v :

1. (xv = 1 and x¬v = 0)⇒ v = 1
2. (xv = 0 and x¬v = 1)⇒ v = 0
3. (xv = 0 and x¬v = 0)⇒ v is a don’t care
4. (xv = 1 and x¬v = 1)⇒ forbidden

In order to achieve the requirement of point 4 add the clause
{(¬xv ∨ ¬x¬v ) | v ∈ var(F )}
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Algorithm primer-b

input : Formula F
output: PIn(F ) and prime implicate cover of F

1 H ← {(¬xv ∨ ¬x¬v ) | v ∈ var(F )}
2 while true do
3 (st,AH)← MinModel(H)
4 if not st then return

5 AF ← Map(AH)

6 (st,M¬F )← SAT(AF ∧ ¬F )

7 if st then # F � ¬M¬F ; i.e. ¬M¬F is an implicate
8 Ie ← ReduceImplicate(M¬F ,F )
9 ReportImplicate(Ie)

10 b ← {xl | l ∈ Ie}
11 else # AF � F ; i.e. AF is an implicant
12 In ← AF

13 ReportImplicant(In)
14 b ← {¬xl | l ∈ In}
15 H ← H ∪ {b}
16 end

18 / 23



Algorithm

input : Formula F
output: PIn(F ) and prime implicate cover

of F
1 H ← {(¬xv ∨ ¬x¬v ) | v ∈ var(F )}
2 while true do
3 (st,AH)← MinModel(H)
4 if not st then return

5 AF ← Map(AH)

6 (st,M¬F )← SAT(AF ∧ ¬F )
7 if st then
8 Ie ← ReduceImplicate(M¬F ,F )
9 ReportImplicate(Ie)

10 b ← {xl | l ∈ Ie}
11 else
12 In ← AF

13 ReportImplicant(In)
14 b ← {¬xl | l ∈ In}
15 H ← H ∪ {b}
16 end

19 / 23



Algorithm

input : Formula F
output: PIn(F ) and prime implicate cover

of F
1 H ← {(¬xv ∨ ¬x¬v ) | v ∈ var(F )}
2 while true do
3 (st,AH)← MinModel(H)
4 if not st then return

5 AF ← Map(AH)

6 (st,M¬F )← SAT(AF ∧ ¬F )
7 if st then
8 Ie ← ReduceImplicate(M¬F ,F )
9 ReportImplicate(Ie)

10 b ← {xl | l ∈ Ie}
11 else
12 In ← AF

13 ReportImplicant(In)
14 b ← {¬xl | l ∈ In}
15 H ← H ∪ {b}
16 end

B = {(¬xv ∨¬x¬v ) | v ∈ var(F )}
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11 else
12 In ← AF

13 ReportImplicant(In)
14 b ← {¬xl | l ∈ In}
15 H ← H ∪ {b}
16 end

H = B ∧ (xb ∨ xc ) ∧ xd ∧ (xa ∨ xc ) ∧ (xa ∨ x¬b)

xa x¬a xb x¬b xc x¬c xd x¬d

AH = 10 00 10 10
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14 b ← {¬xl | l ∈ In}
15 H ← H ∪ {b}
16 end

If unsatisfiable then all the prime impli-

cants have been computed!!
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16 end

(xa x¬a) (xb x¬b) (xc x¬c ) (xd x¬d )

AH = 10 00 10 10

⇓
AF = 1 D 1 1

(a) (b) (c) (d)

Assignment to test: a ∧ c ∧ d
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a ∧ c ∧ d ∧ ¬F unsatisfiable
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input : Formula FCNF , Ie and Var(F )
output: Prime Implicate in Ie

1 foreach l ∈ Ie and var(l) ∈ Var(F ) do
2 I ′e = Ie \ {l}
3 if I ′e ∧ F unsat then
4 Ie = I ′e
5 else
6 continue

7 return Ie
8 end
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In ← a ∧ c ∧ d
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11 else
12 In ← AF

13 ReportImplicant(In)
14 b ← {¬xl | l ∈ In}
15 H ← H ∪ {b}
16 end

b ← (¬xa ∨ ¬xc ∨ ¬xd)
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Example using dual rail encoding and minimal
models

H = B∧(¬x¬b∨¬xc∨¬xd)∧(¬xa∨¬xb∨¬xd)∧(xb∨xc)∧xd∧(xa∨xc)∧(xa∨x¬b)

(xa x¬a) (xb x¬b) (xc x¬c) (xd x¬d)

AH = 10 00 10 10

⇓
AF = 1 D 1 1

(a) (b) (c) (d)

a ∧ c ∧ d is the last remaining prime implicant and is returned as
a model!

20 / 23



Results

QG6 Geffe gen. F+PHP F+GT Total

ZRes-tison 0 0 11 0 11
primer-a (PIn) 53 596 30 26 705
primer-a (PIe) 28 588 30 27 673
primer-b (PIn) 64 595 30 30 719
primer-b (PIe) 30 577 30 27 664
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Conclusion & Future Work

◦ Presented a new approach that can compile non-clausal formulae

◦ Can compile formulae with thousands of variables

◦ It’s completely based on SAT technology

◦ Complements existing approaches

◦ Future work
◦◦ Applications of prime enumeration

◦◦◦ SAT-Based Formula Simplification [IPM15]

◦◦ Preferred prime implicants/implicates
◦◦◦ Horn LUB [MPM15]
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Thank You
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