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Horizontal vs vertical dipole
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A=—-rxVY, ¥ = f(r)sinfcos ¢, f=re



Horizontal dipole
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Radial boundary conditions on A: stress free ’sfr’



Vertical dipole
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A= —rxVY, Y = f(r) cos®, f=r?



Decay rates for horizontal or vertical dipoles
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Millenium simulation - low res

dx = 0.006
d6 = 0.037
dp = 0.049

¢ [radian]

dt =2.77-107%
to 5.76-107*

RIR.] 0.25yr



Millenium simulation - hi res ¥

Millenium resolution:
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i.e.Omin = 0.005 radians
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Magnetic potential resolution comparison
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Low res (evolved longer) - radial component should remain zero
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Time evolve vertical dipole
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Implementation and checks

» f-plane at the pole: MPI comm in the ¢ direction!
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Implementation and checks

f-plane at the pole: MPI comm in the ¢ direction!
Boundary arrays re-ordered and sign applied correctly.
MPI corners correctly implemented for the poles.
Tested with dipole and hydro to check cross-derivatives.
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MPI corners correctly implemented for the poles.
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NaNs can be controlled with lower
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Implementation and checks

f-plane at the pole: MPI comm in the ¢ direction!
Boundary arrays re-ordered and sign applied correctly.
MPI corners correctly implemented for the poles.
Tested with dipole and hydro to check cross-derivatives.

NaNs can be controlled with lower
Courant-Friedrichs-Lewy coefficient - indefinitely?

» cdt =0.005 = dt~10""!
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Implementation and checks

f-plane at the pole: MPI comm in the ¢ direction!
Boundary arrays re-ordered and sign applied correctly.
MPI corners correctly implemented for the poles.
Tested with dipole and hydro to check cross-derivatives.

NaNs can be controlled with lower
Courant-Friedrichs-Lewy coefficient - indefinitely?

cdt =0.005 = dt~10""!
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Then find similar effect on entropy?
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Implementation and checks

f-plane at the pole: MPI comm in the ¢ direction!
Boundary arrays re-ordered and sign applied correctly.
MPI corners correctly implemented for the poles.
Tested with dipole and hydro to check cross-derivatives.

NaNs can be controlled with lower
Courant-Friedrichs-Lewy coefficient - indefinitely?

cdt =0.005 = dt~10""!
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Then find similar effect on entropy?
Increase time step once instability eliminated.
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