Turbulent transport coefficients from spherical dynamo simulations

Jörn Warnecke¹, Petri J. Käpylä², Maarit J. Käpylä², Matthias Rheinhardt² & Axel Brandenburg³

¹Max-Planck-Institut für Sonnensystemforschung

²ReSoLVE, Aalto University

³University of Colorado, Boulder and NORDITA Stockholm

October 28, 2015

 success: oscillatory dynamos with equatorward migration of toroidal magnetic fields

< □ > < 同 > < 三 > <

 success: oscillatory dynamos with equatorward migration of toroidal magnetic fields

< □ > < 同 > < 三 > <

 success: oscillatory dynamos with equatorward migration of toroidal magnetic fields

 success: oscillatory dynamos with equatorward migration of toroidal magnetic fields

• problems with real stars:

extremely different timescales, high density contrast

 success: oscillatory dynamos with equatorward migration of toroidal magnetic fields

• problems with real stars:

extremely different timescales, high density contrast

 success: oscillatory dynamos with equatorward migration of toroidal magnetic fields

• problems with real stars:

extremely different timescales, high density contrast

here simulations considered with:

- spherical wedge geometry: 15° polar cones
- fast rotation: $\Omega = 5\Omega_{\odot}$
- moderate density contrast: $\lesssim 20$
- various boundary conditions: blackbody vs. fixed T
- various Prandtl numbers: $\frac{\nu}{\eta} = 0.2...2.5, \frac{\nu}{\chi_{SGS}} = 0.5...1$

deals with *evolution of averaged magnetic field* **B** for spherical bodies: azimuthal average (default) spherical-harmonic filtering (problematic)

< 口 > < 同 > < 臣 > < 臣 >

deals with *evolution of averaged magnetic field* **B** for spherical bodies: azimuthal average (default) spherical-harmonic filtering (problematic)

Objectives

- descriptive level:
 - qualitative understanding of dynamo by identification of crucial effects
 - correlation of specific effects and phenomena axisymmetric vs. non-axisymmetric modes equatorially symmetric vs. antisymmetric vs. hemispherical equatorward vs. poleward migration multiple timescales, grand minima

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

deals with *evolution of averaged magnetic field* **B** for spherical bodies: azimuthal average (default) spherical-harmonic filtering (problematic)

Objectives

- descriptive level:
 - qualitative understanding of dynamo by identification of crucial effects
 - correlation of specific effects and phenomena axisymmetric vs. non-axisymmetric modes equatorially symmetric vs. antisymmetric vs. hemispherical equatorward vs. poleward migration multiple timescales, grand minima
- predictive level:
 - growth rates, eigenfunctions of kinematic modes (doable)
 - long-term simulations, producing grand extrema or random polarity reversals by intrinsic nonlinearities (not doable now)

Reynolds decomposition

$$\boldsymbol{B} = \overline{\boldsymbol{B}} + \boldsymbol{b}, \qquad \boldsymbol{U} = \overline{\boldsymbol{U}} + \boldsymbol{u} \implies$$

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

2

Reynolds decomposition

$$\boldsymbol{B} = \overline{\boldsymbol{B}} + \boldsymbol{b}, \qquad \boldsymbol{U} = \overline{\boldsymbol{U}} + \boldsymbol{u} \implies$$

Mean-field induction equation

$$\partial_t \overline{\boldsymbol{B}} = \eta \nabla^2 \overline{\boldsymbol{B}} + \nabla \times (\overline{\boldsymbol{U}} \times \overline{\boldsymbol{B}} + \overline{\boldsymbol{\mathcal{E}}})$$

イロト イポト イヨト イヨト

ъ

Reynolds decomposition

$$\boldsymbol{B} = \overline{\boldsymbol{B}} + \boldsymbol{b}, \qquad \boldsymbol{U} = \overline{\boldsymbol{U}} + \boldsymbol{u} \implies$$

Mean-field induction equation

$$\partial_t \overline{\mathbf{B}} = \eta \nabla^2 \overline{\mathbf{B}} + \nabla \times (\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \overline{\mathbf{\mathcal{E}}})$$

closure requires modeling of mean electromotive force

 $\overline{\boldsymbol{\mathcal{E}}} = \overline{\boldsymbol{\boldsymbol{u}} \times \boldsymbol{\boldsymbol{b}}}$

in terms of \overline{B} , e.g. by ansatz

 $\overline{\mathcal{E}} = \mathbf{a} \cdot \overline{\mathbf{B}} + \mathbf{b} \cdot \nabla \overline{\mathbf{B}}$ \mathbf{a}, \mathbf{b} functionals of $\overline{\mathbf{U}}, \mathbf{u}$

Reynolds decomposition

$$\boldsymbol{B} = \overline{\boldsymbol{B}} + \boldsymbol{b}, \qquad \boldsymbol{U} = \overline{\boldsymbol{U}} + \boldsymbol{u} \implies$$

Mean-field induction equation

$$\partial_t \overline{\mathbf{B}} = \eta \nabla^2 \overline{\mathbf{B}} + \nabla \times (\overline{\mathbf{U}} \times \overline{\mathbf{B}} + \overline{\mathbf{\mathcal{E}}})$$

closure requires modeling of mean electromotive force

 $\overline{\boldsymbol{\mathcal{E}}} = \overline{\boldsymbol{\boldsymbol{u}} \times \boldsymbol{\boldsymbol{b}}}$

in terms of **B**, e.g. by ansatz

 $\overline{\mathcal{E}} = \mathbf{a} \cdot \overline{\mathbf{B}} + \mathbf{b} \cdot \nabla \overline{\mathbf{B}}$ \mathbf{a}, \mathbf{b} functionals of $\overline{\mathbf{U}}, \mathbf{u}$

・ロト ・ 同ト ・ ヨト

- analytical with approximations strongly limited
- by testfield method

for determination of *a*, *b*

₹ 990

・ロト・日本・ ・ ヨト・ ヨト・

for determination of *a*, *b*

solve

$$\partial_t \boldsymbol{b}^k - \eta \nabla^2 \boldsymbol{b}^k - \boldsymbol{\nabla} \times (\boldsymbol{\overline{U}} \times \boldsymbol{b}^k + (\boldsymbol{u} \times \boldsymbol{b}^k)') = \nabla \times (\boldsymbol{u} \times \boldsymbol{\overline{B}}^k)$$

・ロト ・聞ト ・ヨト ・ヨト

∃ 𝒫𝔅

for given $\boldsymbol{u}, \overline{\boldsymbol{U}}$ and N test fields $\overline{\boldsymbol{B}}^k, k = 1, \dots, N$

for determination of *a*, *b*

solve

$$\partial_t \boldsymbol{b}^k - \eta \nabla^2 \boldsymbol{b}^k - \boldsymbol{\nabla} \times (\boldsymbol{\overline{U}} \times \boldsymbol{b}^k + (\boldsymbol{u} \times \boldsymbol{b}^k)') = \nabla \times (\boldsymbol{u} \times \boldsymbol{\overline{B}}^k)$$

▲□▶▲圖▶▲≣▶▲≣▶ = 悪 - 釣�?

for given $\boldsymbol{u}, \overline{\boldsymbol{U}}$ and N test fields $\overline{\boldsymbol{B}}^k, k = 1, \dots, N$

2 calculate
$$\overline{\mathcal{E}}^k = \overline{\mathbf{u} \times \mathbf{b}^k}$$

for determination of *a*, *b*

solve

 $\partial_t \boldsymbol{b}^k - \eta \nabla^2 \boldsymbol{b}^k - \boldsymbol{\nabla} \times (\boldsymbol{\overline{U}} \times \boldsymbol{b}^k + (\boldsymbol{u} \times \boldsymbol{b}^k)') = \nabla \times (\boldsymbol{u} \times \boldsymbol{\overline{B}}^k)$

for given $\boldsymbol{u}, \overline{\boldsymbol{U}}$ and N test fields $\overline{\boldsymbol{B}}^k, k = 1, \dots, N$

- 2 calculate $\overline{\mathcal{E}}^k = \overline{\mathbf{u} \times \mathbf{b}^k}$
- obtain a_{ij}, b_{ij} by inverting

 $\overline{\boldsymbol{\mathcal{E}}}^k = \boldsymbol{a} \cdot \overline{\boldsymbol{\mathcal{B}}}^k + \boldsymbol{b} \cdot \boldsymbol{\nabla} \overline{\boldsymbol{\mathcal{B}}}^k$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

for determination of *a*, *b*

solve

 $\partial_t \boldsymbol{b}^k - \eta \nabla^2 \boldsymbol{b}^k - \boldsymbol{\nabla} \times (\boldsymbol{\overline{U}} \times \boldsymbol{b}^k + (\boldsymbol{u} \times \boldsymbol{b}^k)') = \nabla \times (\boldsymbol{u} \times \boldsymbol{\overline{B}}^k)$

for given $\boldsymbol{u}, \overline{\boldsymbol{U}}$ and N test fields $\overline{\boldsymbol{B}}^k, k = 1, \dots, N$

- 2 calculate $\overline{\mathcal{E}}^k = \overline{\mathbf{u} \times \mathbf{b}^k}$
- obtain a_{ij}, b_{ij} by inverting

 $\overline{\boldsymbol{\mathcal{E}}}^k = \boldsymbol{a} \cdot \overline{\boldsymbol{\mathcal{B}}}^k + \boldsymbol{b} \cdot \boldsymbol{\nabla} \overline{\boldsymbol{\mathcal{B}}}^k$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

for determination of *a*, *b*

solve

 $\partial_t \boldsymbol{b}^k - \eta \nabla^2 \boldsymbol{b}^k - \boldsymbol{\nabla} \times (\boldsymbol{\overline{U}} \times \boldsymbol{b}^k + (\boldsymbol{u} \times \boldsymbol{b}^k)') = \nabla \times (\boldsymbol{u} \times \boldsymbol{\overline{B}}^k)$

for given $\boldsymbol{u}, \overline{\boldsymbol{U}}$ and N test fields $\overline{\boldsymbol{B}}^k, k = 1, \dots, N$

2 calculate $\overline{\mathcal{E}}^k = \overline{\mathbf{u} \times \mathbf{b}^k}$

obtain a_{ij}, b_{ij} by inverting

 $\overline{\boldsymbol{\mathcal{E}}}^k = \boldsymbol{a} \cdot \overline{\boldsymbol{B}}^k + \boldsymbol{b} \cdot \boldsymbol{\nabla} \overline{\boldsymbol{B}}^k$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

solution unique, if

- N chosen appropriately
- test fields independent

Testfield method for axisymmetric mean fields

 \implies in spherical coords (r, θ, ϕ) :

$$\overline{\boldsymbol{B}} = \overline{B}_r(r,\theta) \boldsymbol{e}_r + \overline{B}_{\theta}(r,\theta) \boldsymbol{e}_{\theta} + \overline{B}_{\phi}(r,\theta) \boldsymbol{e}_{\phi}$$

$$\overline{\mathcal{E}}_{\kappa} = \widetilde{a}_{\kappa\lambda}\overline{B}_{\lambda} + \widetilde{b}_{\kappa\lambda r}\frac{\partial\overline{B}_{\lambda}}{\partial r} + \widetilde{b}_{\kappa\lambda\theta}\frac{1}{r}\frac{\partial\overline{B}_{\lambda}}{\partial \theta}, \quad \kappa, \lambda = r, \theta, \phi$$

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

ъ

Testfield method for axisymmetric mean fields

 \implies in spherical coords $(\mathbf{r}, \theta, \phi)$:

$$\overline{\boldsymbol{B}} = \overline{B}_r(r,\theta) \boldsymbol{e}_r + \overline{B}_{\theta}(r,\theta) \boldsymbol{e}_{\theta} + \overline{B}_{\phi}(r,\theta) \boldsymbol{e}_{\phi}$$

$$\overline{\mathcal{E}}_{\kappa} = \widetilde{a}_{\kappa\lambda}\overline{B}_{\lambda} + \widetilde{b}_{\kappa\lambda r}\frac{\partial\overline{B}_{\lambda}}{\partial r} + \widetilde{b}_{\kappa\lambda\theta}\frac{1}{r}\frac{\partial\overline{B}_{\lambda}}{\partial \theta}, \quad \kappa, \lambda = r, \theta, \phi$$

27 independent coefficients !

"effect-wise" $\overline{\mathcal{E}} = \alpha \cdot \overline{\mathbf{B}} + \gamma \times \overline{\mathbf{B}} - \beta \cdot \operatorname{curl} \overline{\mathbf{B}} - \delta \times \operatorname{curl} \overline{\mathbf{B}} - \kappa \cdot (\nabla \overline{\mathbf{B}})^{(\operatorname{sym})}$ $\uparrow \qquad \uparrow \qquad \uparrow$ turbulent turbulent " $\Omega \times J$ " pumping diffusivity effect $\alpha, \beta - \operatorname{symmetric}, \kappa - \operatorname{symmetric} \text{ in 2nd and 3rd indices}$ Warnecke et al.

simplest choice: linear, e.g.

Schrinner et al. 2007

Warnecke et al.

イロン 不得 とくほ とくほとう

3

simplest choice: linear, e.g.

Schrinner et al. 2007

- some irregular or not solenoidal
- violate boundary conditions
- yet suitable
- within class of linear functions: result independent of choice

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Equatorial symmetries in coefficients

 \exists special solutions of full MHD problem:

Warnecke et al.

$$\boldsymbol{U}, \rho, \boldsymbol{s}$$
 equatorially symmetric,

B {symmetric antisymmetric

・ロン・(理)・ ・ ヨン・

ъ

Equatorial symmetries in coefficients

∃ special solutions of full MHD problem:

$$\boldsymbol{U}, \rho, \boldsymbol{s}$$
 equatorially symmetric, \boldsymbol{B} {symmetric antisymmetric

1

- diagonal components of *α*, *α*_{rφ}, *γ*_θ antisymmetric all other symmetric
- diagonal components of β , $\beta_{r\phi}$, δ_{θ} symmetric all other antisymmetric

Time-averaged components of lpha and γ (normalized by $u'_{ m rms}$ /3)

Time-averaged components of eta and δ (normalized by $au u'^2_{ m rms}$ /3)

イロト イポト イヨト イヨト

ъ

Time-averaged components of eta and δ (normalized by $au u'^2_{ m rms}$ /3)

- α_{rr} dominating α
- next $\alpha_{\phi\phi}$, loosely similar to α_K
- $\beta_{\phi\phi}$ dominating β , next β_{rr}
- close to pure parities
- signatures of tangent cylinder (cf. Ω profile !)

Time-averaged components of κ (normalized by $\tau u_{ms}^{\prime 2}/3$)

★ Ξ → ★ Ξ →

æ

Main drivers of \overline{B} evolution

at maximum of "typical cycle":

< 口 > < 同

white – field lines of poloidal field \overline{B}_r , \overline{B}_{θ}

Cyclic modulation of transport coefficients

over "typical cycle", $\alpha' = \alpha - \langle \alpha \rangle_t$ etc:

< < >> < <</>

Cyclic modulation of transport coefficients

over "typical cycle", $\alpha' = \alpha - \langle \alpha \rangle_t$ etc:

- typical modulation by 2f_{cycle}
- $\alpha_{\theta\theta,\phi\phi}$, low latitudes: *only by* f_{cycle}
- conflict with quadratic Lorentz force?

consider *primary magnetic turbulence*, i.e. $b \neq 0$ for $\overline{B} \equiv 0$ = *small-scale dynamo* (u_0, b_0)

・ロン・(理)・ ・ ヨン・

3

consider *primary magnetic turbulence*, i.e. $\mathbf{b} \neq \mathbf{0}$ for $\mathbf{\overline{B}} \equiv \mathbf{0}$ = *small-scale dynamo* ($\mathbf{u}_0, \mathbf{b}_0$) mean EMF:

$$\boldsymbol{\mathcal{E}}_{\overline{\boldsymbol{B}}} = \overline{\boldsymbol{\boldsymbol{u}}_0 \times \boldsymbol{\boldsymbol{b}}_{\overline{\boldsymbol{B}}}} + \overline{\boldsymbol{\boldsymbol{u}}_{\overline{\boldsymbol{B}}} \times \boldsymbol{\boldsymbol{b}}_0} + \overline{\boldsymbol{\boldsymbol{u}}_{\overline{\boldsymbol{B}}} \times \boldsymbol{\boldsymbol{b}}_{\overline{\boldsymbol{B}}}}$$

consider *primary magnetic turbulence*, i.e. $b \neq 0$ for $\overline{B} \equiv 0$ = *small-scale dynamo* (u_0, b_0) mean EMF:

$${\boldsymbol{\mathcal{E}}}_{\overline{{\boldsymbol{\mathcal{B}}}}} = \overline{{\boldsymbol{\mathcal{U}}}_0 \times {\boldsymbol{\mathcal{b}}}_{\overline{{\boldsymbol{\mathcal{B}}}}}} + \overline{{\boldsymbol{\mathcal{U}}}_{\overline{{\boldsymbol{\mathcal{B}}}}} \times {\boldsymbol{\mathcal{b}}}_0} + \overline{{\boldsymbol{\mathcal{U}}}_{\overline{{\boldsymbol{\mathcal{B}}}}} \times {\boldsymbol{\mathcal{b}}}_{\overline{{\boldsymbol{\mathcal{B}}}}}}$$

consider lowest order of \overline{B} in transport coefficients fluctuating Lorentz force:

$$\operatorname{curl} \overline{\boldsymbol{B}} \times \boldsymbol{b}_0 + \operatorname{curl} \boldsymbol{b}_0 \times \overline{\boldsymbol{B}} \longrightarrow \boldsymbol{u}_{\overline{\boldsymbol{B}}}$$
 linear in $\overline{\boldsymbol{B}}$

イロト イポト イヨト イヨト

consider *primary magnetic turbulence*, i.e. $\boldsymbol{b} \neq \boldsymbol{0}$ for $\boldsymbol{B} \equiv \boldsymbol{0}$ = *small-scale dynamo* ($\boldsymbol{u}_0, \boldsymbol{b}_0$) mean EMF:

$${\boldsymbol{\mathcal{E}}}_{\overline{{\boldsymbol{\mathcal{B}}}}} = \overline{{\boldsymbol{\mathcal{U}}}_0 \times {\boldsymbol{\mathcal{b}}}_{\overline{{\boldsymbol{\mathcal{B}}}}}} + \overline{{\boldsymbol{\mathcal{U}}}_{\overline{{\boldsymbol{\mathcal{B}}}}} \times {\boldsymbol{\mathcal{b}}}_0} + \overline{{\boldsymbol{\mathcal{U}}}_{\overline{{\boldsymbol{\mathcal{B}}}}} \times {\boldsymbol{\mathcal{b}}}_{\overline{{\boldsymbol{\mathcal{B}}}}}}$$

consider lowest order of \overline{B} in transport coefficients fluctuating Lorentz force:

$$\operatorname{curl} \overline{\boldsymbol{B}} \times \boldsymbol{b}_0 + \operatorname{curl} \boldsymbol{b}_0 \times \overline{\boldsymbol{B}} \longrightarrow \boldsymbol{u}_{\overline{\boldsymbol{B}}}$$
 linear in $\overline{\boldsymbol{B}}$

fluctuating induction term:

 $\boldsymbol{u}_0 \times \overline{\boldsymbol{B}} + \boldsymbol{u}_{\overline{\boldsymbol{B}}} \times \overline{\boldsymbol{B}} \longrightarrow \boldsymbol{b}_{\overline{\boldsymbol{B}}}$ quadratic in $\overline{\boldsymbol{B}}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

consider *primary magnetic turbulence*, i.e. $b \neq 0$ for $\overline{B} \equiv 0$ = *small-scale dynamo* (u_0, b_0) mean EMF:

$${\boldsymbol{\mathcal{E}}}_{\overline{{\boldsymbol{\mathcal{B}}}}} = \overline{{\boldsymbol{\mathcal{U}}}_0 \times {\boldsymbol{\mathcal{b}}}_{\overline{{\boldsymbol{\mathcal{B}}}}}} + \overline{{\boldsymbol{\mathcal{U}}}_{\overline{{\boldsymbol{\mathcal{B}}}}} \times {\boldsymbol{\mathcal{b}}}_0} + \overline{{\boldsymbol{\mathcal{U}}}_{\overline{{\boldsymbol{\mathcal{B}}}}} \times {\boldsymbol{\mathcal{b}}}_{\overline{{\boldsymbol{\mathcal{B}}}}}}$$

consider lowest order of \overline{B} in transport coefficients fluctuating Lorentz force:

$$\operatorname{curl} \overline{\boldsymbol{B}} \times \boldsymbol{b}_0 + \operatorname{curl} \boldsymbol{b}_0 \times \overline{\boldsymbol{B}} \longrightarrow \boldsymbol{u}_{\overline{\boldsymbol{B}}}$$
 linear in $\overline{\boldsymbol{B}}$

fluctuating induction term:

$$\boldsymbol{u}_0 \times \overline{\boldsymbol{B}} + \boldsymbol{u}_{\overline{\boldsymbol{B}}} \times \overline{\boldsymbol{B}} \longrightarrow \boldsymbol{b}_{\overline{\boldsymbol{B}}}$$
 quadratic in $\overline{\boldsymbol{B}}$

E ▶ ★ E ▶ ...

 $\longrightarrow \overline{u_0 \times b_{\overline{B}}}$ quadratic in $\overline{B} \longrightarrow$ coefficients *linear* in \overline{B}

Conclusions

- plausible turbulent transport coefficients found
- influence of small-scale dynamo action detected

ъ

Conclusions

- plausible turbulent transport coefficients found
- influence of small-scale dynamo action detected
- next steps:
 - use in a mean-field model → verification (?)
 - investigation into role of individual mean-field effects

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 extension to scale-dependent coefficients ⇒ non-local EMF

Conclusions

- plausible turbulent transport coefficients found
- influence of small-scale dynamo action detected
- next steps:
 - use in a mean-field model → verification (?)
 - investigation into role of individual mean-field effects
 - extension to scale-dependent coefficients ⇒ non-local EMF
- farther away:
 - transport coefficients for momentum & heat transport
 - identification of the \overline{B} dependence \implies predictive models

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの