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ABSTRACT
Inference of causal relationships from gene ex-
pression data sets in order to identify possible
modes of gene regulation is arguably one of the
key problems in computational systems biology.
However, not much attention has been paid to how
the ever-increasing amount of data for inference
will be handled in a feasible manner. We tackle
this data expansion problem by proposing a prob-
abilistic Boolean logic model for steady-state and
time-course gene expression data that accounts
for large data sets. Furthermore, ranking of genes
with a novel measure of importance is proposed.

1. INTRODUCTION

With the growing availability of large-scale and
high-throughput experimental assays, methods
for identifying relationships between genes are
becoming increasingly important. However, re-
searchers are frequently faced with a situation in
which the assays can differ greatly, for instance,
in frequency of time sampling and the experimen-
tal platforms used. To be able to make use of all
available data in such situations, there is a need
for methods that characterize the observations in
a robust manner, independent of aforementioned
differences in experimental design, and draw in-
teresting relationships. In addition, such methods
should cope with large numbers of genes and ex-
periments.

Here we present a Probabilistic Boolean Net-
work (PBN) [1] inference framework in which
relationships among genes of interest are in-
ferred from multiple gene expression experiments

consisting either of steady-state or time-course
measurements, or both. For summarizing the
strengths of interactions between genes of inter-
est over multiple network models, we use the so-
called influence of a gene on another gene [2].
Furthermore, we propose a quantity called impor-
tance with which ranking of genes in a given in-
fluence network can be performed. Genes serving
as strong influence hubs (multiple incoming and
outgoing influence edges) in the network will re-
ceive large importance, and vice versa.

We utilize our framework with a publicly
available data set that consists of time-course
gene expression profiles of bone marrow-derived
macrophages (BMDMs), stimulated by a va-
riety of pathogen-associated molecular patterns
(PAMPs). We focused our analysis on cytokines
and transcription factors, functional groups that
play important roles in immune responses: cy-
tokines are communication molecules used by im-
mune cells and transcription factors are key play-
ers in the regulatory networks governing the im-
mune response. After data pre-processing, our in-
terest focused on 170 genes, falling into these two
functional categories, that were transcriptionally
activated by PAMPs, followed by further analy-
sis such as network visualization and gene set en-
richment analysis (GSEA) [3] with the computed
influences; importance is utilized for providing a
ranked gene list for GSEA.



2. METHODS

2.1. Constructing the PBN

At this point we assume that Boolean summary
variables for N genes under E experiments have
been extracted and stored in X 2 f0; 1gN⇥E ;
an example derivation of Boolean summary vari-
ables for the immunity data will be given in Sec.
3. With X we construct a set of functions, Fn,
for gene (node) n 2 f1; 2; : : : ; Ng, where to
each function fn;i 2 Fn a selection probability
sn;i 2 Sn is associated. Our inference algorithm
uses the best-fit criterion [4], whereas for having
model complexity embedded into the framework,
the minimum description length (MDL) [5] prin-
ciple will be used to control model complexity.

Upon splitting the function space into three
sub-categories according to the number of signifi-
cant inputs, m 2 f0; 1; 2g, we can then search for
the best-fit function f (m)

n;i for each gene n and in-
put combination i with the PBN toolbox http:
//personal.systemsbiology.net/

ilya/PBN/PBN.htm for Matlab (MathWorks,
Natick, MA) f (m)

n;i = BF (yn; Xn; Cn(i);Am)

for the input data Xn, output data yn, input
pair Cn(i) (out of I =

�N�1
2

�

combinations),
and Boolean functions Am with m significant
inputs. The estimated function is associated with
the best-fit error, ✏(f (m)

n;i ), which equals to the
number of misclassifications and which we use
for MDL estimation. For each best-fit function,
MDL becomes computed with [5]

MDL

⇣

f (m)
n;i

⌘

= 2

m
+log2(E)✏(f

(m)
n;i )+2; (1)

a mapping that balances with model complex-
ity (first summand) and prediction error (second
summand). For each triplet ff (0)

n;i ; f
(1)
n;i ; f

(2)
n;i g, we

select that one into Fn that has the smallest MDL:

fn;i = arg min

f(m)
n;i :m2f0;1;2g

n

MDL

⇣
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:

(2)
Each function fn;i 2 Fn is now associated with
an MDL, MDL(fn;i), which gives the minimum
number of bits to represent the data [5]. Thus,
an increase of MDL by one means that at least
two times more information is required for cod-
ing. Furthermore, existing theoretical work links

minimum code-lengths, i.e., MDLs, to probability
measures by the mapping [6]

P [MDL (fn;i)] / 2�MDL(fn;i); (3)

which basically states the same observation anal-
ogously with probabilities: an increase of one bit
in function coding decreases the probability of
that code-length by a factor of two. We exploit
that result by imposing sn;i = P [MDL (fn;i)],
i.e., the selection probabilities directly follow the
distribution given by Eq. (3).

2.2. Computing influence

The function sets F1; : : : ;FN and selection prob-
abilities S1; : : : ;SN are a representation of the
dependencies across genes in the PBN. To ex-
tract salient network features shared by the mul-
tiple possible networks, we computed a pairwise
measure called influence [2], which quantifies the
ability of one gene to affect a change in the level
of a gene it regulates directly. As a result we have
a G 2 [0; 1]N⇥N square matrix whose elements
are the influences (gi;j is the influence from gene
i to gene j).

2.3. Gene importance

To identify which genes are essential in the
network, i.e., those having multiple incoming
and outgoing, strong influences across genes, a
summary statistic called importance is proposed.
With such a measure it is possible to computa-
tionally identify strong members within cliques as
well as cliques themselves, and rank genes based
on the measure of importance; more important
genes will be ranked higher, and this ranked list
could be used for, say, GSEA [3]. Importance
of gene n,  n, takes into account the aforemen-
tioned features in the following, additive fashion:
 n = ↵n+ �n+ �n+ �n; ↵n is the standardized
sum of incoming influences; �n is the standard-
ized sum of outgoing influences; �n is the stan-
dardized maximum incoming influence; �n is the
standardized maximum outgoing influence.

3. RESULTS

3.1. Data pre-processing

The time-course gene expression profiles of
BMDMs were obtained from http://www.



systemsimmunology.org, and were then
normalized and grouped into biological repli-
cates to obtain median values for each dis-
tinct biological conditions. Arrays were orga-
nized into a total of E = 49 time-courses of
PAMP stimulation, each for a distinct cell type
(BMDMs), strain and PAMP stimulus. Values
from PAMP stimulated cells were compared with
un-stimulated values to yield ratios of expression
induction. Data were discretized such that each
time-course was assigned the value 1 if there was
a time point with ratio greater than 3 (induc-
tion only, not repression) and intensity exceed-
ing 300, and was otherwise assigned the value
0. Genes were restricted to those with Gene On-
tology (http://www.geneontology.org)
molecular function assignments of “Cytokine Ac-
tivity” (GO:0005125), and molecular function
“Transcription Factory Activity” (GO:0003700),
as obtained from the Mouse Genome Informatics
http://www.informatics.jax.org. A
final filter was applied to discard genes or condi-
tions in which no induction was observed, yield-
ing the final binary matrix X 2 f0; 1gN⇥E with
N = 170 genes and E = 49 time-courses.

3.2. Analysis

The analysis for the 170 genes was completed in
less than an hour. As a preliminary result, we
observed that the frequency with which we ob-
serve an inferred Boolean function with m ac-
tive inputs decreases as m increases (top-left his-
togram in Fig. 1), and not many of the 1702 gene-
gene interactions were associated with high in-
fluences (bottom-left histogram in Fig. 1), sup-
porting the assumption that regulatory connectiv-
ity among genes is relatively sparse. Histograms
of gene-specific, average incoming and outgoing
influences (top-right histogram in Fig. 1) suggest
that genes tend to be equally influenced (peak
around 0:06), whereas outgoing influences tend
to concentrate on values less than 0:06 (not many
genes are influencers). Histograms of gene im-
portances (bottom-right histogram in Fig. 1) show
that both transcription factors and cytokines are
equally “important” in the network.

3.2.1. GSEA

In addition to more or less qualitative anal-
ysis with gene influences and importances,
we searched for enriched KEGG pathways
and GO annotations with GSEA. Genes were
first ranked based on their importance, after
which enrichment was calculated with the ex-
isting web-application, “GeneTrail” (http://
genetrail.bioinf.uni-sb.de/). The
most highly enriched pathway was toll-like recep-
tor (TLR) signaling pathway (p = 0:0184847),
being the key link in the activation of immune
response to pathogens – here PAMPs. Further-
more, multiple GO categories related to both T-
cell activation and positive regulation of transcrip-
tion were observed (p < 0:05).

3.3. Visualization

Visualizing the inferred influence network is help-
ful for exploring individual hypotheses as well
as identifying which possible network structures,
e.g., cliques, should be targeted for further com-
putational exploration. Considering only influ-
ence edges exceeding an arbitrary threshold 0:2
(for reducing connectivity), we created a Cy-
toscape [7] visualization, in which influence and
importance control edge width and node size,
respectively (graph downloadable and viewable
at http://www.cs.tut.fi/~erkkila2/
under “Research” section).

4. CONCLUSION

With the proposed PBN framework, analysis of
large gene-sets in association with large number
of experimental conditions is made possible in a
feasible computation time. In order to account
for multiple possible network structures, we used
the notion of influence for summarizing pairwise
interactions across genes from the inferred PBN,
and further used the influences for graph visual-
ization purposes. An algorithmic way of ranking
genes in a given network structure was proposed,
using a ranking statistic termed importance. As a
proof-of-concept, our method identified relevant
GO categories and KEGG pathways significantly
enriched.



0 1 2
0

2

4

6

8

10

12

14
x 105

Number of significant inputs

C
ou

nt
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

InfluenceC
ou

nt
s 

(tr
un

ca
te

d 
< 

50
)

(a)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

100

200

300

400

Average incoming and outgoing influence

N
or

m
al

iz
ed

 c
ou

nt
s

 

 
Incoming influence
Outgoing influence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Importance

N
or

m
al

iz
ed

 c
ou

nt
s

 

 
Cytokines
Transcription factors

(b)

Figure 1. Statistics from the inference with PBNs. Top-left: Histogram of active inputs in the PBN.
Bottom-left: histogram of influences; the plot was truncated due to large frequency of small influences).
Top-right: histogram of average incoming and outgoing influences. Bottom-right: histogram of gene
importance.
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