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ABSTRACT

Bayesian networks (BNs) are frequently used for model-
ing genetic regulatory networks. The structure of a static
BN cannot in general be learnt unambiguously from ob-
servational data alone but interventions (i.e. knock-outs
or over-expressions) are also required. These interven-
tions can be difficult and costly to perform, thus calling for
careful planning of experiments. Active learning methods
can be used to suggest which interventions should be per-
formed in order to increase our knowledge about the net-
work structure maximally. Here, we utilize such a method
for the first time in a realistic setting with measured wild-
type and perturbed gene-expression and protein data and
show the applicability and usability of the approach for
designing biological experiments with maximal expected
utility.

1. INTRODUCTION

Choosing which biological experiments to perform in or-
der to benefit maximally from them is a highly non-trivial
problem. The solutions to such a problem are context de-
pendent: Trying to infer the dynamics of a system sets
different demands on experimental design than when in-
ferring the structure of a system, and will thus need to be
addressed by different methods. Here we are interested in
the problem of finding the structure of a biochemical sub-
network as efficiently as possible when the used model
class is (causal) Bayesian networks. For demonstration,
we consider learning both gene regulatory network and
signaling network structures. We demonstrate the usabil-
ity of a method to suggest maximally informative experi-
ments.

2. METHODS

2.1. Bayesian networks

Given a set of random variablesX = {X1, ..., Xn}, a
Bayesian network is defined as a pair(G, θ), whereG
is a directed acyclic graph (DAG), which is a graphical
representation of the conditional independencies between

variables inX , andθ is the set of parameters for the con-
ditional probability distributions of these variables. The
joint distribution overX factorizes according toG as

P (X1, ..., Xn|G, θ) =

n∏

i=1

P (Xi|PaG(Xi), θi), (1)

wherePaG(Xi) is the set of parents of nodeXi in G, and
θi the parameters for the distribution ofXi conditional on
its parents.

In searching for the structure that most probably gen-
erated the data, of main interest is the posterior probability
of a DAG given the dataP (G|D) = P (D|G)P (G)/P (D),
whereP (G) is the prior probability ofG,
P (D) =

∑
G′

P (D|G′)P (G′) is the prior probability of
data (sum goes over all possible DAG structures), and

P (D|G) =

∫

θ

P (D|G, θ) P (θ|G) dθ. (2)

In this paper we only consider BNs having all the vari-
ables observed, discrete-valued and have multinomial con-
ditional probability distributions (CPDs). We use uniform
Dirichlet parameter priors since Dirichlet distribution is
the conjugate prior of multinomials and makes it possible
to obtain the closed form solution for Equation (2), which
now becomes [1]

P (D|G) =

n∏

i=1

qi∏

j=1

Γ(N ′

ij)

Γ(N ′

ij + Nij)

ri∏

k=1

Γ(N ′

ijk + Nijk)

Γ(N ′

ijk)
,

(3)
whereNijk is the number of times the configuration
(Xi = k, PaG(Xi) = j) occurs in dataD, N ′

ijk are hyper-
parameters (a.k.a. pseudo-counts) of the Dirichlet distri-
butions,Nij =

∑
k Nijk andN ′

ij =
∑

k N ′

ijk, qi is the
number of different parent configurations, andri is the
number of different states that nodei can take.

Ideally, we would like to have the whole posterior dis-
tribution of DAGs and calculate our further analyses based
on that (i.e. perform full Bayesian analysis). But since
the number of different DAGs grows super-exponentially



with n, evaluating the score (Equation (3)) for all possible
structures is prohibitive for all but smallest ofn (n ≤ 6 or
so). Instead, one is forced to resort to taking a sample of
the posterior distribution with MCMC, as is done in this
study.

An assumption we have to make is that the data is
sampled from a probability distribution which can be rep-
resented with a Bayesian network (so called faithfulness
assumption). In many real cases, this assumption is not
likely to hold, especially for data from genetic networks
(like in this study), where feedback loops are present. Still,
we are obliged to make this approximation in order to be
able to use a rigorous modeling approach.

2.2. Equivalence classes and interventional data

Given only observational (i.e. no interventions) data, it is
generally impossible to learn the structure of a BN unam-
biguously because there is more than one structure pro-
ducing the same combined probability distribution. Such
sets of inseparable DAGs constitute equivalence classes,
each of which consists of all the DAGs having the same
v-structures1 and otherwise the same structure when edge
directions are ignored [2].

With interventions (i.e. forcing or ”clamping” a node
or set of nodes to a certain value) we can break these
classes, by inducing bias towards some of the alterna-
tively possible structure(s). Forcing the value of a node
determines the directions of edges adjacent to it and thus
splits the equivalence classes into transition sequence (TS)
equivalent structures [3]. With enough interventions, the
size of the most probable TS equivalent class should re-
duce to one.

In gene networks, interventions can be either over-
expressions, meaning that a gene is set to state ”on”, or
knock-outs, corresponding to setting the gene ”off”. Since
these interventions are based on biological mechanisms
that are inherently stochastic, there is uncertainty in how
well the intervention succeeds. However, here we take the
interventions to be ideal.

2.3. Active learning

Active learning methods are designed to suggest which in-
terventions should be made in order to maximally benefit
from their effect of breaking equivalence classes or, more
generally, to learn the structure of a BN with minimal cost
of experiments.

Basically, two different approaches to selecting the
perturbations have been presented: (i) those that break
equivalence classes [4] and (ii) decision theoretic that aim
to diminish our uncertainty (or increase information max-
imally) about some edges [5, 6]. These approaches are in
fact closely related and complementary, since within an
equivalence class the inability to say which direction an
edge takes is, in other words, uncertainty about that edge.

We use the method presented by Murphy [5], where
the expected utility of making an interventiona (which

1a v-structure is a triplet(a, b, c) wherea → b ← c anda ≁ c (i.e.
a andc are not joined).

can be a plain observation, i.e. ”empty” intervention, or
consist of setting the value of one or more nodes at a time)
is defined as

V (a) =
∑

G∈G

∑

y∈YG,a

P (y|G, a, D)P (G|D)U(G, a, y, D),

(4)
whereG is our set of possible DAGs,YG,a denotes the
set of possible observations thatG can produce given that
interventiona has been made. For the utility function
U(G, a, y, D) we use (assuming equivalent cost for each
intervention)log P (G|a, y, D).

The best action is chosen from the set of possible ac-
tionsA as the one with maximal utility
a∗ = arg maxa∈A

V (a). The optimal way of finding this
action is by exhaustive enumeration.

Since the number of DAGs grows super-exponentially
with the number of nodes, the exhaustive approach is prac-
tically unusable whenn > 6. Therefore, stochastic sam-
pling is used to obtain a sample from the posteriorP (G|D)
which is then used in the above calculations.

Also, since the number of different observations a BN
can produce is

∏n

i=1 ri (ri is the number of discretiza-
tion levels for nodei), it quickly becomes too expensive
to evaluate the above algorithm for all of them. Thus,
we must again resort to sampling to keep the computing
times reasonable. Sampling is done in this study in the
same way as discussed in [5], by using importance sam-
pling and drawing observations from a uniform distribu-
tion. The number of possible actions is rather small in our
case so sampling is not needed for them.

3. RESULTS

3.1. Data

Our first dataset, which we refer to as the Halo dataset,
consists of 242 gene expression measurements of 7 dif-
ferent transcription factors inHalobacterium salinarum
[7, 8]. These transcription factors form the core of the
transcriptional network inH. salinarumand are also be-
lieved to largely control the expression of each other, thus
forming a small regulatory subnetwork. The dataset con-
tains interventions (over-expressions) for all the 7 genes
as well as normal observations (i.e. expression measure-
ments without over-expressions). Therefore, this is an
ideal dataset for our purposes.

The data was discretized into ternary values using a
likelihood ratio statistic based model for detecting under-
and over-expressed genes (with significance level 0.15)
[9]. Some interventional measurements (8 in total) were
removed due to having wrong discretization levels, imply-
ing most probably unsuccessful interventions.

The second dataset, which we call the Sachs dataset,
consists of flow cytometry measurements from a signaling
network with 11 nodes, of which 5 have been perturbed
in some measurements [10]. These interventions contain
both inhibitions and activations of the nodes, which should
intuitively give the active learning a greater advantage over
non-active learning than with the Halo dataset. The data
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Figure 1. Using the Halo dataset,L1 error was calculated
for active and non-active learning methods by comparing
to the structure derived from the ”true” posterior by taking
edges with posterior probability> 0.5. Number of mea-
surements are in addition to the initial 20 observations.
Initial burn-in was4 · 105, between-measurement burn-in
was2 · 104, graph sample size104, and sampled observa-
tions 100. Results averaged from five different runs.

was discretized into ternary values in the same way as in
[10]. From the whole dataset we took a sample with 100
observational data points and 20 data points per interven-
tion, totaling 220 measurements.

3.2. Active learning and random interventions

Instead of using the particle filter based updating done in
[5], we used normal MCMC since it can be argued that
it is what one would preferably use when there is plenty
of computational time available between consequent mea-
surements, as in, e.g., performing studies involving mi-
croarray measurements.

To compare the performances of the active and non-
active learning methods, so calledL1 edge error was used
[5, 6]

L1(Pt) =
n∑

i=1

n∑

j=i+1

IG∗(Xi → Xj)(1 − Pt(Xi → Xj))

+ IG∗(Xi ← Xj)(1− Pt(Xi ← Xj)) (5)

+ IG∗(Xi ≁ Xj)(1 − Pt(Xi ≁ Xj)),

wherePt(·) = P (·|D1:t) is the posterior marginal prob-
ability of an edge given data points up to indext, and
IG∗(c) is the indicatior function which takes value 1 ifc is
present in the true structureG∗ and 0 otherwise. We also
used the normal Euclidean distance between edge poste-
rior probabilities as a measure of convergence towards the
”true” posterior distribution.

Each trial was initiated by taking a set of observations
as initial data and, using this data, by running two MCMC
chains in parallel for a long initial burn-in period. After
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Figure 2. Euclidean distance between edge posterior prob-
abilities calculated from the ”true” posterior distribution
and either active or non-active learning methods when us-
ing the Sachs dataset. Number of measurements are in
addition to the initial 40 observations. Initial burn-in was
2 · 105, between-measurement burn-in was 5000, graph
sample size 5000, and sampled observations 300. Results
averaged from four different runs.

this, samples were taken from both chains and the con-
vergence of the chains was checked by comparing dis-
tributions of edge posterior probabilities calculated from
both samples. When the distributions were similar, either
sample was used as the initial sample for both active and
non-active learners.

The active learning method proceeds by making at each
step the measurement (intervention or observation) sug-
gested by the active learning algorithm based on the sam-
pled graphs, available measurements, sampled observa-
tions, and data collected so far. After each new measure-
ment the chain is run for a between-measurement burn-in
period and a new sample of graphs is taken. The non-
active learning proceeds in the exact same way but instead
of using an algorithm to suggest the next measurement, it
just makes one randomly without replacement (i.e. takes
one of the available measurements from the dataset).

To approximate the true posterior distributions, nor-
mal batch-style MCMC chains were run for the whole
datasets and using very long burn-ins (8 ·105 for the Sachs
dataset and2 · 106 for the Halo dataset) and big sample
sizes (2 · 105 for the Sachs dataset and5 · 105 for the Halo
dataset).

Figure 1 shows the results when using the Halo dataset.
L1 edge errors for both non-active and active learning
methods were calculated by using as the reference struc-
ture the graph obtained by including only edges with pos-
terior probability over 0.5 in the ”true” posterior distribu-
tion. Parameter values (sample sizes etc.) used are shown
in the caption. Figure 2 shows the same using the Sachs
dataset, except now Euclidean distances to the edge poste-
rior probabilities of the ”true” posterior distribution were



calculated for non-active and active learners. In this ex-
periment we also took two similar measurements simulta-
neously instead of just one.

4. DISCUSSION

As can be deduced from Figures 1 and 2, the convergence
towards the final results is faster with active learning than
with non-active learning. Thus, using an active learning
method to guide experimentation can result in savings in
time and costs.

The performance of active learning methods has usu-
ally been assessed with simulated data. As shown here,
the methods do not perform as convincingly with real data,
due to possibly existing factors outside the targeted sub-
system and the real systems containing cyclic regulatory
relationships. Thus, it would be one step closer to reality
if, e.g., simulated data from systems with hidden variables
were used when comparing the methods.

Looking at the sequence of actions suggested by the
active learning algorithm tells us what is probably intu-
itively clear: The most beneficial way is to mostly make
interventional measurements rather than obtaining a lot of
observational data. In the beginning of the investigations,
however, it pays off to acquire (usually less costly) obser-
vations in order to get a solid basis for deciding which in-
terventions to make. Even though part of the better perfor-
mance of active learning over non-active can be explained
by the fact that active learning suggests mostly interven-
tions in the beginning while non-active learning samples
uniformly from the set of interventional and observational
measurements, the active learning should still (in the long
run) overperform non-active due to choosing the order in
which to make the interventions. This was also validated
using simulated data (results not shown).

In order to be able to tell how many experiments to
perform and when making more experiments produces no
more benefit, a stopping criterion should be developed. A
simple heuristic could be checking for the changes in pos-
terior distribution between measurements and if there is
no trend or bigger jumps in change, then it can be con-
cluded at that point that more measurements tell us noth-
ing new.

An alternative method of active learning by Pournara
[4] approaches the problem by considering how to split
the equivalence classes most efficiently. Although this is
much faster than Murphy’s method [5], the latter can per-
haps be deemed to be more Bayesian, since it takes into
account the distributions of generating observations. It
is also not restricted to splitting equivalence classes but
aims to minimize the conditional entropy of the posterior
(or any other utility function). This reason, in particular,
makes this method more general and precise by allowing
it to, for example, suggest particular interventions several
times if needed, instead of only suggesting the node with
which to intervene without saying anything about how
many measurements to take. However, because Murphy’s
method is computationally demanding and since sampling
can affect the reliability/precision of the method, using the

equivalence class based method becomes more attractive
after aboutn > 12.

The active learning methods could also be developed
towards better realistic applicability by making the cost
of actions uneven and especially making the observations
cheaper than interventions. The methods should also take
into account the possibility of imperfect interventions. The
idea of extending the methods to being able to suggest
measurements from multiple different sources in an active
learning fashion (for example by encoding them in priors)
is also worth exploring.
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