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ABSTRACT

Many diseases are caused by hereditary mutations. So far,
most of the identified mutations affect the coded protein
sequence. However, an increasing number of the iden-
tified disease-related mutations occur in gene regulatory
sequences. These mutations pose a threat to influence the
mechanism by which a cell regulates the transcription of
its genes. Here we have studied the effect of mutations
on transcription factor binding affinity computationally.
We have compared our results with experimentally veri-
fied cases where a mutation in the gene regulatory region
either creates a new transcription factor binding site or
deletes a previously existing one. We have also investi-
gated the statistical properties of the changes on transcrip-
tion factor binding affinity according to mutation type. Al-
though accurate binding site prediction is difficult in gen-
eral, our results demonstrate that computational analysis
can provide valuable information about the effect of mu-
tations on transcription factor binding sites. The analysis
results also give a useful test set for the in vitro studies of
regulatory mutation effects.

1. INTRODUCTION

Millions of single nucleotide polymorphisms (SNPs) are
identified in the human genome. The majority of these
SNPs are neutral but some of them are linked to hereditary
diseases. Most of these disease-causing mutations alter
the protein sequence, but a set of mutations are identified
to occur in gene regulatory sequences. These mutations
may cause a significant change in individuals phenotype
by increasing or decreasing the gene expression levels.
Some examples of this have been verified experimentally.
The expression level of the gene for a 91-kD glycoprotein
component of the phagocyte oxidase (gp91-phox) are de-
creased because of promoter region mutations that are are
associated with X-linked chronic granulomatous disease
[1]. Moreover, with Alzheimer disease patients, abnormal
high expression levels of the amyloid precursor protein
(APP) were measured in vitro when studying three point
mutations in the APP promoter region [2].

Although all the mechanisms of gene expression reg-
ulation are not known, the mutations in the promoter re-
gions may cause wrong transcription factor (TF) bind-
ing and this may in turn have effect on transcription lev-

els. For instance, it has been shown experimentally that
the point mutation T→C at 77 nucleotides upstream of
the transcription starting site (TSS) of the δ-globin gene
(HBG) changes the binding affinity of the TF GATA-1 and
this also alters the expression levels of the gene. This mu-
tation is associated with a hereditary disease δ-thalassemia
[3]. Another example is described in [4] where a point
mutation in 292 nucleotides upstream of the TSS of the
reticulocyte-type 15-lipoxygenase-1 (ALOX15) gene cau-
ses a new transcription factor binding site (TFBS) for the
TF SPI1. This again causes three-fold expression levels
compared with wild type gene expression. ALOX15 has
a role in the development of asthma and some other dis-
eases.

Mutation effect on TF binding has been studied com-
putationally in [5], where authors have used the change of
a score computed based on position specific scoring ma-
trixes (PSSMs) to infer if the binding of some TF changes.
This can be problematic since a single nucleotide change
usually causes a very small change in score and one can-
not directly say that whether this change of score is signif-
icant or not. This fact was found when they compared the
scores of mutations that are known to affect TF binding
with the scores of background substitutions [5].

In this paper, we use a similar approach as in [5] to
analyze the regulatory mutations and how they affect the
TF binding. However, we use the p-values to compare the
wildtype and mutated cases and to get the results of dif-
ferent genes and TFs comparable. We also study if some
type of mutation is more significant than the others. This
is because the DNA bending ability is known to be dif-
ferent for separate dinucleotide steps [6], [7]. Further, it
has been found that contacts between TFs and purines are
especially important and because the bending of DNA has
an effect on TF binding [8], [9], [10].

2. METHODS

The mutations used in this study were the regulatory mu-
tations from Human Gene Mutation Database (HGMD)
[11]. The regulatory mutations dataset was filtered to con-
tain only those mutations that occur upstream from tran-
scription or translation starting sites. Altogether we used
474 mutations in 256 genes.

PSSMs are a widely used in predicting TFBSs and we



apply them in our analysis as well [12], [13]. PSSMs
were collected from Transfac (Release 10.3) [14] and Jas-
par [15],[16]. Only those matrixes that have been built (at
least partially) using human sequences were used. After
this selection, we had 496 matrixes for 343 different TFs.

The score for TF binding to the DNA sequence xn
1 was

computed by

S(xn
1 ) =

PTF (xn
1 )

Pbg(xn
1 )

, (1)

where PTF (xn
1 ) is the probability computed by PSSM

and Pbg(xn
1 ) is the background probability. We added

a small pseudo count (0.005) to all elements in PSSM
to prevent zero probabilities. As a background model,
we used a third order Markov model whose parameters
were computed from the promoter sequences of all hu-
man genes. As a promoter sequence, we considered com-
monly used 5000 bases upstream from the start of the first
(according to 5’ end) annotated mRNA sequence of the
gene. However, promoter sequences were not allowed to
overlap. The promoter sequences we used were collected
from annotated sequence files (gbk-files) of human chro-
mosomes. These files were downloaded from ftp-site of
National Center for Biotechnology Information.

We computed the scores for the wildtype and the mu-
tated sequences of our regulatory mutations dataset. Since
location of mutation in putative binding sites is not known,
we computed the scores for all locations within PSSM. In
view of the fact that the distributions were very different
for each PSSM, we did not compare the scores but com-
puted the p-values for each mutation. To get the reference
distribution for the p-value estimation, the scores were
computed for each position of each promoter sequence.

Nucleotides can be divided in purines (denoted by R,
consists of bases A and G) and pyrimidines (denoted by Y,
bases C and T). By these classifications the dinucleotides
can be divided into four classes, RR, YY, YR and RY. Fur-
ther, for single point mutation the mutations can be di-
vided into 8 groups whether the mutation is in the first
or second nucleotide. We divided mutations into these
classes, so that each mutation occurred both in the first
and in the second nucleotide. Each mutation class was
studied separately.

We made a literature search for known mutations af-
fecting TF binding. We collected 6 experimentally proven
mutations from articles and rSNP_DB [17]. These muta-
tions were used to set a threshold for a relevant change in
binding affinity.

3. RESULTS

We evaluated the effect of the experimentally verified mu-
tations on TF binding by PSSM scores. The list of mu-
tations and their p-values are at Table 1. All mutations
showed a big change in p-value (over 0.2) between the
wildtype and mutated sequence. However, the p-values of
the sequence which has stronger affinity to TF were quite
high in some cases i.e. the binding site was quite not sta-
tistically significant. Nevertheless, even weaker binding
sites can be important, since it has been recently shown
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Figure 1. Distributions of the p-value changes. a) All
changes. b) Only changes that exceeded the thresholds.

that models which include weak binding sites predict the
expression patterns better than those models from which
the weak binding sites are excluded [21].

For the experimentally verified mutations, big p-value
changes are found for several PSSMs of a single TF. For
example for the mutation in hemoglobin gamma G(HBG2)
promoter, the p-values corresponding to 4 out of 7 PSSMs
for TF SP1 showed a difference in binding affinity. How-
ever, one of the matrixes showed the change in two dif-
ferent matrix positions, which suggests that all of the ma-
trixes are not very specific to the binding site.

We computed the change in p-value for each muta-
tion (the wildtype sequence − the mutated sequence) for
each TF. This p-value change was considered as a score
to measure the change in TF’s affinity to bind. The distri-
bution of changes are shown in Figure 1a). Based on the
experimentally verified cases we considered the change
to be relevant if the p-value change (absolute value) was
over 0.3 or the change was over 0.2 and p-value of either
the wildtype or the mutated sequence was under 0.3. Ap-
proximately 11% of changes exceeded these boundaries.
The set of experimentally verified mutations is relatively
small and that prevents us from inferring more conserva-
tive thresholds without loosing too many verified cases.
Current knowledge does not allow us to discriminate true
and false changes more carefully (see e.g.[5]). This choice
of thresholds, however, results in a set of predicted bind-
ing changes that is enriched for true binding affinity chan-
ges. Consequently, despite some false positives, our anal-
ysis results provide insights into true mutation effects. Our
analysis provides a list of testable hypothesis, ordered ac-
cording to the significance of mutation effect, that can be
readily tested in laboratory to verify the real mutation ef-
fect in vitro. Besides, if a particular TF is known to reg-
ulate some gene and our analysis provides a big p-value
change for the affinity of that TF due to mutation, this
provides a strong evidence for the mutation effect and this
should be taken into account when studying the disease



Table 1. Experimentally verified mutations and their effect on TF binding. p-values are presented only for those PSSMs
that show relevant changes. wt=wildtype, ∆p-value=(p-value of wt) − (p-value of mutated sequence), mutation position
is relative to TSS, MW=matrix width, POM= mutation position on matrix

gene muta- mutation TF MW POM effect on ∆p- p-value disease refe-
symbol tion position binding value of wt rence
ALOX A→G -292 SPI1 6 2 increase 0.356 0.592 (anti)inflammatory effects [4]
HBD T→C -77 GATA1 13 12 decrease -0.386 0.553 δ-thalassemia [3]
HBG2 C→G -202 SP1 10 4 increase 0.274 0.540 hereditary persistence [18]

of fetal hemoglobin

HBG2 C→G -202 SP1 10 5 increase 0.402 0.702 " [18]
HBG2 C→G -202 SP1 13 6 increase 0.658 0.861 " [18]
HBG2 C→G -202 SP1 10 4 increase 0.373 0.653 " [18]
HBG2 C→G -202 SP1 10 4 increase 0.206 0.420 " [18]
PROC T→C -14 HNF-1 15 7 decrease -0.216 0.265 protein C deficiency [19]
UROS C→A -90 CP2 18 13 decrease -0.207 0.143 congenital erythro- [20]

poietic porphyria

UROS C→A -90 CP2 11 11 decrease -0.274 0.164 " [20]
UROS T→C -70 GATA1 14 8 decrease -0.317 0.085 " [20]
UROS T→C -70 GATA1 13 7 decrease -0.206 0.038 " [20]
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Figure 2. Distributions of the p-value changes in three
different dinucleotide mutation types. a) YY→YY b)
RR→RY c) YR→YR, Y=pyrimidine, R=purine

mechanisms on molecular level.
The distribution of the p-value changes of the relevant

dataset can be seen in Figure 1b). It can be seen that the
left side of the bimodal distribution has somewhat larger
area than the right side i.e. the mutations cause more often
the loss of TF binding affinity than create a new TFBS.

We computed the distributions of the p-value changes
for each mutation type (16 dinucleotide classes). The dis-
tributions for different classes varied remarkably. In the
Figure 2 is the distribution of the p-value changes in three
different cases where mutation is in the second nucleotide.
In all of the three plots there is also the distribution of the
all p-value changes that exceeded the thresholds, as a ref-

erence distribution. It can be inferred based on the plots
that the mutation type affects the binding affinity change
differently. For mutations YY→YY (Figure 2a), the prob-
ability of formation a new TFBS is as probable as a disrup-
tion of an old binding site. This was also the case for mu-
tation type RR→RR when mutation occurred in the sec-
ond nucleotide and for RY→YY, RY→RY, YR→YR and
YY→YY, if the mutation was in the first nucleotide. For
mutations RR→RY and YY→YR, RR→YR and YY→RY
the mutation more often caused a new binding site than
disrupted an existing one (Figure 2b)). The rest of the mu-
tations caused more likely the removal of an old binding
site than making a new one as can be seen in an example in
Figure 2c). The results suggest that purine-pyrimidine and
pyrimidine-purine dinucleotides are in important roles in
TF binding. It has been previously shown that pyrimidine-
purine steps are flexible allowing the DNA strands to form
sharp kinks [6]. This is important for TF which usually
bends the DNA or binds to a bent DNA. Nevertheless,
such flexibility is not shown to occur with all purine-py-
rimidine steps. However, an RY step GC can also form
more conformations than for example the AA and TT steps
[7].

4. CONCLUSION

We have shown that regulatory mutations can change the
TF binding affinity remarkably. This does not originate
only from a single nucleotide mutation but also the type
the surrounding nucleotides.

PSSMs are a widely used method to model TF bind-
ing. A big problem of PSSMs is, however, the number of
false positives in predicting TFBSs. As our studies with
experimentally verified TFBSs and the mutations affect-
ing them showed, the PSSM modeling does not assign
an extremely high p-values to TFBSs. This can be be-
cause of PSSM matrixes which does not have any corre-



lation between different bases. Our studies have shown
that the dinucleotides in TFBSs affect the binding signif-
icantly. This is most likely caused by the ability of DNA
strands to bend. Since different DNA-binding domains of
TFs have different binding mechanisms and demands for
DNA bending it could be more appropriate to study each
TF family separately.

In the future it is important to incorporate additional
knowledge into TF binding prediction. Previously, mod-
els that combine the nucleosome positions or Chromatin
ImmunoPrecipitation on chip (ChIP-chip) data are shown
to predict TF binding better than pure PSSMs [22], [23].
Other additional data sources can be also combined to
models, for example DNase hypersensitive sites or con-
servation data. It should be also taken into account that
in the cell, there is not just a single TF type present at a
certain time, but the situation can be thought to be a com-
petition between different TFs and other molecules to bind
the DNA strand [21]. Thus, the TF binding differs in dif-
ferent states of the cell depending on the TFs present and
their concentrations.

5. REFERENCES

[1] P. E. Newburger, D. G. Skalnik, P. J. Hopkins, A. A. Ek-
lund, and J. T. Curnutte, “Mutations in the promoter re-
gion of the gene for gp91-phox in x-linked chronic granu-
lomatous disease with decreased expression of cytochrome
b558,” J Clin Invest, vol. 94, pp. 1205–11, Feb 1994.

[2] J. Theuns, N. Brouwers, S. Engelborghs, K. Sleegers, V. B.
V, E. Corsmit, T. de Pooter, C. M. van Duijn, P. P. de Deyn,
and C. van Broeckhoven, “Promoter mutations that in-
crease amyloid precursor-protein expression are associated
with Alzheimer disease,” Am J Hum Genet, vol. 26, pp.
936–46, Jun 2006.

[3] M. Matsuda, N. Sakamoto, and Y. Fukunaki, “δ-
thalassemia caused by disruption of the site for an
erythroid-specific transcription factor, GATA-1, in the δ-
globin gene promoter,” Blood, vol. 80, pp. 1347–51, 1992.

[4] J. Wittwer, J. Marti-Juan, and M. Hersberg, “Functional
polymorphism in ALOX15 results in increased allele-
spesific transcription in macrophages through binding of
the transcription factor SPI1,” Hum Mutat, vol. 27, no. 2,
pp. 78–87, 2006.

[5] M. C. Andersen, P. G. Engström, S. Lithwick, D. Arenillas,
P. Eriksson, B. Lenhard, W. W. Wasserman, and J. Ode-
berg, “In silico detection of sequence variations modifying
transcriptional regulation,” PLoS Comput Biol, vol. 4, pp.
e5, Jan 2008.

[6] M. Suzuki, D. Loakes, and N. Yagi, “DNA conformation
and its changes upon binding transcription factors,” Adv
Biophys, vol. 32, pp. 53–72, 1996.

[7] A. A. Travers, “The structural basis of DNA flexibity,”
Philos Transact A Math Phys Eng Sci, vol. 15, pp. 1423–
38, Jul 2004.

[8] A. Sarai and H. Kono, “Protein-DNA recognition patterns
and predictions,” Annu Rev Biophys Biomol Struct, vol. 34,
pp. 379–98, 2005.

[9] R. E. Harrington, “DNA curving and bending in protein-
dna recognition,” Mol Microbiol, vol. 6, pp. 2549–55, Sep
1992.

[10] C. O. Pabo and R. T. Sauer, “Transcription factors: Struc-
tural families and principles of DNA recognition,” Annu
Rev Biochem, vol. 61, pp. 1053–95, 1992.

[11] P. D. Stenson, E. V. Ball, M. Mort, A. D. Phillips, J. A.
Shiel, N. S. Thomas, S. Abeysinghe, M. Krawczak, and
D. N. Cooper, “The Human Gene Mutation Database
(HGMD R©): 2003 update,” Hum Mutat, vol. 21, pp. 577–
581, 2003.

[12] G. D. Stormo, “DNA binding sites:representation and dis-
covery,” Bioinformatics, vol. 16, pp. 1416–23, Jan 2000.

[13] R. Staden, “Computer methods to locate signals in nucleic
acid sequences,” Nucleic Acids Res, vol. 12, pp. 505–519,
Jan 1984.

[14] V. Matys, E. Fricke, R. Geffers, E. Gossling, M. Haubrock,
R. Hehl, K. Hornischer, D. Karas, A. E. Kel, O. V. Kel-
Margoulis, D. U. Kloos, S. Land, B. Lewicki-Potapov,
H. Michael, P. Munch, I. Reuter, S. Rotert, H. Saxel,
M. Scheer, S. Thiele, and E. Wingender, “TRANSFAC:
transcriptional regulation, from patterns to profiles,” Nu-
cleic Acids Res, vol. 31, pp. 374–8, 2003.

[15] A. Sandelin, Walkema, P. Engström, W. Wasserman, and
B. Lenhard, “JASPAR: an open access database for eukary-
otic transcription factor binding profiles,” Nucleic Acids
Res, vol. 32, pp. D95–7, 2004.

[16] B. Lenhard and W. Wasserman, “TFBS: Computational
framework for transcription factor binding site analysis,”
Bioinformatics, vol. 18, pp. 1135–6, 2002.

[17] J. V. Ponomarenko, G. V. Orlova, M. P. Ponomarenko,
S. V. Lavryushev, and T. I. Merkulova, “rSNP_Guide: a
database documenting influence of substitutions in regula-
tory gene regions onto their interaction with nuclear pro-
teins and predicting protein binding sites, damaged or ap-
peared de novo due to these substitutions,” in Proceedings
of BGRS’2000, 2000, pp. 69–72.

[18] F. S. Collins, C. J. jr Stoeckert, G. R. Serjeant, B. G. Forger,
and S. M. Weissman, “G gamma beta+ hereditary persis-
tence of fetal hemoglobin: cosmid cloning and identifica-
tion of a specific mutation 5’ to the G gamma gene,” Proc
Natl Acad Sci U S A, vol. 81, pp. 4898–8, Aug 1984.

[19] L. P. Berg, D. A. Scopes, A. Alhaq, V. V. Kakkar, and D. N.
Cooper, “Disruption of a binding site for hepatocyte nu-
clear factor 1 in the protein C gene promoter is associated
with hereditary thrombophilia,” Hum Mol Genet, vol. 3,
pp. 2147–52, Dec 1994.

[20] C. Solis, G. I. Aizencan, K. H. Astrin, D. F. Bishop, and
R. J. Desnick, “Uroporphyrinogen III synthase erythroid
promoter mutations in adjacent GATA1 and CP2 elements
cause congenital erythropoietic porphyria,” J Clin Invest,
vol. 107, pp. 753–62, Mar 2001.

[21] E. Segal, T. Raveh-Sadka, M. Schroeder, U. Unnerstall,
and U. Gaul, “Predicting expression patterns from regu-
latory sequence in Drosophila segmentation,” Nature, vol.
451, pp. 535–540, Jan 2008.

[22] L. Narlikar, Raluca, and A. J. Hartemink, “A nucleosome-
guided map of transcription factor binding sites in yeast,”
PLoS Comput Biol, pp. 2199–208, 2007.

[23] H. Kim, K. J. Kechris, and L. Hunter, “Mining discrimi-
native distance context of transcription factor binding sites
on ChIP enriched regions,” in ISBRA, 2007, pp. 338–49.


