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Abstract 

Detailed knowledge of the mechanisms of transcriptional regulation is essential in understanding 
the gene expression in its entirety. Transcription is regulated, among other things, by 
transcription factors that bind to DNA and can enhance or repress the transcription process. If a 
transcription factor fails to bind to DNA or binds to a wrong DNA region that can cause severe 
effects to the gene expression, to the cell and even to the individual. The problems in 
transcription factor binding can be caused by alterations in DNA structure which often occurs 
when parts of the DNA strands are mutated. An increasing number of the identified disease-
related mutations occur in gene regulatory sequences. These regulatory mutations can disrupt 
transcription factor binding sites or create new ones. We have studied effects of mutations on 
transcription factor binding affinity computationally. We have compared our results with 
experimentally verified cases where a mutation in a gene regulatory region either creates a new 
transcription factor binding site or deletes a previously existing one. We have investigated the 
statistical properties of the changes on transcription factor binding affinity according to the 
mutation type. Our analysis shows that the probability of a loss of a transcription factor binding 
site and a creation of a new one varies remarkably by the mutation type. Our results demonstrate 
that computational analysis provides valuable information about the effect of mutations on 
transcription factor binding sites. The analysis results also give a useful test set for in vitro 
studies of regulatory mutation effects. 
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Introduction 
One of the most important mechanisms of gene expression regulation happens at transcription 
level via binding of transcription factors (TFs) to DNA sequences. Understanding the gene 
expression process is important since this increases our knowledge of how organisms develop 



and how different diseases are caused. If these mechanisms are understood, it is easier to develop 
new drugs and other treatments for different diseases. Studying mutations that alter the TF 
binding can help us to understand the complex regulation system and yield useful information for 
both computational and experimental research topics. Millions of single nucleotide 
polymorphisms (SNPs) are identified in the human genome. The majority of these SNPs are 
neutral but some of them are linked to hereditary diseases. Most of these disease-causing 
mutations alter the protein sequence, but a set of mutations are identified to occur in gene 
regulatory sequences. These mutations may cause a significant change in individual's phenotype 
by increasing or decreasing gene expression levels. Some examples of this have been verified 
experimentally. The expression level of the gene for a 91-kD glycoprotein component of the 
phagocyte oxidase (gp91-phox) is decreased because of promoter region mutations that are 
associated with X-linked chronic granulomatous disease [1]. Moreover, with Alzheimer disease 
patients, abnormally high expression levels of the amyloid precursor protein (APP) were 
measured in vitro when studying three point mutations in the APP promoter region [2]. 
Although all the mechanisms of gene expression regulation are not known, some cases are 
identified where the mutations in the promoter regions cause binding of a wrong transcription 
factor, and this in turn have an effect on transcription levels. For instance, it has been shown 
experimentally that a point mutation T→C at 77 nucleotides upstream of the transcription 
starting site (TSS) of the δ-globin gene (HBG) changes the binding affinity of the TF GATA-1 
and this also alters the expression level of the gene (see Fig. 1a). This mutation is associated with 
a hereditary disease δ-thalassemia [3]. Another example is described in [4] where a point 
mutation at 292 nucleotides upstream of the TSS of the reticulocyte-type 15-lipoxygenase-1 
(ALOX15) gene causes a new transcription factor binding site (TFBS) for the TF SPI1 (see Fig. 
1b). This again causes three-fold expression levels compared with wild type gene expression. 
ALOX15 has a role in the development of asthma and some other diseases. 
Mutation effect on TF binding has been studied computationally in [5], where authors have used 
the change of a score computed based on position specific scoring matrices (PSSMs) to infer if 
the binding affinity of some TFs change. This can be problematic since a single nucleotide 
change usually causes a small change in the score and more importantly, one cannot directly say 
whether this change of the score is significant or not. This fact was found when the scores of 
mutations that are known to affect TF binding were compared with the scores of background 
substitutions [5]. 
 
Figure 1. Examples of point mutations that affect TF binding a) A mutation in the promoter of δ- 
globin gene destroys the binding site of TF GATA-1. b) A new TF binding site for TF SPI1 is 
caused by a mutation in the promoter of ALOX15 gene. 
 
In this paper, we use a similar but more fundamental approach as in [5] to analyze regulatory 
mutations and how they affect TF binding. Instead of analyzing the raw PSSM scores, we use the 
P-values to compare the wild type and mutated cases and to get the results of different genes and 
TFs comparable. We also use a larger set of regulatory mutations than in [5] and the mutations 
used in our analysis are disease-related so most of them are assumed to change the gene 
expression in some way, even though all are maybe not affecting the TF binding. We also 
distinguish the cases where a mutation causes the TF binding affinity to get weaker or stronger. 
A preliminary version of this work has been reported in our previous conference article [6]. 



As a novel aspect, we study the mutation effects on TF binding by dividing the mutation data 
into classes based on their type. This analysis is of great importance since it has been found that 
contacts between TFs and purines are important in TF-DNA complexes especially for some TFs 
[7]. Further, different dinucleotide steps vary in their ability to form kinks and bends of DNA 
and the bending of DNA has an effect on TF binding [7-10]. If the mutation changes the DNA 
structure in the position where TF is to bind, the binding affinity can change remarkably. 
 
Methods 
Datasets 
 
Experimentally verified mutations dataset 
We made a literature search for known mutations affecting TF binding. We collected 21 
experimentally proven mutations. We used the same dataset as in [5] but we excluded those 
cases where the TFBS could not clearly be measured by PSSMs as a result of spacer molecules 
in TFBS or other similar reasons. The rest of the mutations included in our dataset come from 
articles [3, 11, 12] and rSNP DB [13]. These experimentally verified mutations were used to set 
a threshold for a relevant change in TF binding affinity. 
 
Disease-related mutations dataset 
The disease-related mutations we used were the regulatory mutations from Human Gene 
Mutation Database (HGMD) [14]. The regulatory mutations dataset was filtered to contain only 
those mutations that occur upstream from transcription or translation starting sites. Altogether we 
used 474 mutations in 256 genes. 
 
Scores for binding affinity changes 
PSSMs are a widely used method in predicting TFBSs and we apply them in our analysis as well 
[15, 16]. PSSMs were collected from Transfac (Release 10.3) [17] and Jaspar [18]. Only those 
matrices that have been built (at least partially) using human sequences were used. After this 
selection, we had 496 matrices for 343 different TFs. We added a small pseudo count (0.005) to 
all elements in PSSM to prevent zero probabilities.  
The score for TF binding to the n-length DNA sequence  was computed by 

     

where  is the probability computed by PSSM and is the background probability. 
 for a particular PSSM  is computed with formula 

     

where  is the probability of nucleotide  in the column  of the matrix . 
As a background model, we used a third order Markov model whose parameters were computed 
from the promoter sequences of all human genes. As a promoter sequence, we considered 
commonly used 5000 bases upstream from the start of the first (according to 5' end) annotated 
mRNA sequence of the gene (altogether we had 23 784 promoter sequences). However, if some 
promoter sequences overlapped, the overlapping part was used only once. The promoter 
sequences we used were collected from annotated sequence files (gbk-files) of human 



chromosomes. These files were downloaded from the ftp-site of National Center for 
Biotechnology Information. 
We computed the scores for the wild type and the mutated sequences of our regulatory mutations 
data set. Since the location of mutation in putative binding sites is not known, we computed the 
scores for all locations within a PSSM. In view of the fact that the score distributions were very 
different for each PSSM, we did not compare the scores but computed the P-values for each 
putative binding position. To compute the P-value, we evaluated the null distribution for binding 
scores for each PSSM separately and thus we did not need to assume any particular distribution 
for binding scores. The distributions were obtained by computing the scores for each position of 
each promoter sequence for every human gene and the P-values were estimated based on this 
score distribution. To measure the change of the binding affinity of each TF we computed the 
change in P-value between wild type and mutated sequence (the wild type sequence - the 
mutated sequence). This P-value change was considered as a score to measure the change in TF's 
binding affinity. 
The mutation position in a TFBS was considered as the mutation position in a PSSM. Even 
though this might not be always the case since the PSSM may contain more or less bases than the 
actual binding site, this was the only way to measure the position. The positions were normalized 
according to matrix width so that the leftmost base got the position -1 and the rightmost the 
position 1. In analysis of mutation positions relative to TSS this information was known for 57 % 
of mutations. Only these cases were used in this analysis part.  
 
Mutation classes 
Nucleotides can be divided into two bases containing classes in three different ways. The 
divisions are those for purines (denoted by R, consists of bases A and G) and pyrimidines 
(denoted by Y, bases C and T), those for bases containing amino-group (denoted by M, bases A 
and C) and those with keto-group (denoted by K, bases G and T), and division into bases 
forming strong base pairs in double stranded DNA (denoted by S, bases C and G) and those 
forming weak base pairs (denoted by W, bases A and T). For each division, there are four 
different mutation types, i.e. mutations R→R (where A mutates to G or G to A), R→Y, Y→R 
and Y→Y. If the dinucleotide steps are considered, then eight different mutation classes occur 
whether the mutation is in the first or in the second nucleotide, for mutations in the first 
nucleotide (underlined) the classes are RR→RR, RR→YR, RY→RY, RY→YY, YR→RR, 
YR→YR, YY→RY and YY→YY and similar mutation types are, when the mutation occurs in 
the second nucleotide. We divided mutations into these classes. Each mutation class was studied 
separately. 
 
Statistical testing 
The two-sample Kolmogorov-Smirnov test [19] was performed for two different testing 
strategies. First, the distributions of the relevant P-value changes of each mutation class were 
compared to the distribution of all relevant changes. The testing was performed at significance 
level α=0.01 and Bonferroni correction was used. Second, for each mutation class and for the set 
of all relevant mutations, we also tested whether the mutation type had an equal effect in 
increasing and decreasing the binding affinity. This was done by comparing the left and right 
sides of the distribution of P-value changes. The left side (negative P-value changes) of the 
distribution was mirrored around the origin by taking the absolute value of negative P-value 
changes and by re-computing the distribution, after which we can compare the two sides of the 



distribution in the standard way. For each mutation class, the equality of the distributions of the 
P-value changes with the distribution of the P-value changes of all relevant mutations was also 
tested with the two sample permutation test using the procedure described in [20]. The absolute 
differences between the distributions of the P-value changes of the mutation classes and the 
distribution of the P-value changes of all relevant mutations were computed by subtracting the 
weighted means of each distribution from each other. 
 
Results and Discussion 
 
Experimentally verified mutations data set  
We evaluated the effect of the experimentally verified mutations on TF binding by P-values 
derived from PSSM scores. The data set contained 21 mutations. The list of mutations, their 
scores for binding affinity changes (i.e. difference in P-value) and P-values for wild types are in 
Tab. 1. For each mutation, all big changes (P-value change over 0.2) are shown in Tab 1. If the 
mutation did not show any notable change in binding affinity score, the scores and P-values are 
not shown. Over two thirds of the verified mutations showed a notable change in P-value 
between the wild type and mutated sequence. However, the P-values of the sequences which 
have stronger affinity to TFs were quite high in some cases, i.e. the binding site would not be 
deemed as statistically significant. Nevertheless, even weaker binding sites can be important, 
since it has been recently shown that models which include weak binding sites predict the 
expression patterns better than those models from which the weak binding sites are excluded 
[21]. 
For the experimentally verified mutations, big P-value changes are found for several PSSMs of a 
single TF. For example for the mutation in hemoglobin gamma G (HBG2) promoter, the P-
values corresponding to 4 out of 7 PSSMs for TF SP1 showed a difference in binding affinity. 
However, one of the matrices showed the change in two different matrix positions, which reflects 
the fact that all of the matrices are not very specific to the binding site. 
Six mutations in the data set did not show change in binding affinity. This is most likely caused 
because of the inaccuracy of PSSMs. The TFBS can be formed of several DNA pieces or the 
mutation can disrupt the binding via other mechanisms than directly affecting the structure of the 
TFBS. For example, we did not include in our experimentally verified mutations data set the 
mutation C→T in the promoter region (position -677 relative to TSS) of the FLT1 gene since in 
the middle of the binding site of the TF p53 there is a spacer molecule that could not be modeled 
via ordinary PSSMs [22]. Even though we left similar cases of our data set out, the binding 
mechanism is not exactly known for every TF and thus analysis using PSSMs may fail in 
predicting the mutation effect. 
 
Table 1. Experimentally verified mutations and their effect on TF binding.1 
 

                                                            
1 P-values are presented only for those PSSMs that show relevant changes. For mutation in SP1 
gene, the position relative to TSS was not reported in reference, in addition, the mutation is not 
identified with any disease but the transcription of the SP1 gene is increased. MP=mutation 
position relative to TSS, MW=matrix width, POM= mutation position on matrix, wt=wild type,  
Δ P-value=(P-value of wt) -(p-value of mutated sequence), ref=reference. 



gene 
symbol 

muta- 
tion 

MP TF MW PO effect on 
binding 

ΔP- 
value 

P-value 
of wt 

disease ref 

AFP C→A -55 HNF-1 21 12 increase 0.349 0.626 hereditary persistence 
of alpha fetoprotein 

[23] 

AFP G→A -119 HNF-1 15 5 increase 0.319 0.611 “ [24] 
AFP G→A -119 HNF-1 21 15 increase 0.298 0.446 “ [24] 
AFP G→A -119 HNF-1 21 9 increase 0.212 0.277 “ [24] 

AGTRL1 G→A -154 SP1   decrease   risk of brain infarction [25] 
ALOX A→G -292 SPI1 6 2 increase 0.356 0.592 (anti)inflammatory effects [4] 
AGT A→C -20 ER1 19 14 decrease -0.422 0.488 hypertension [26] 
AGT A→C -20 ER1 11 2 decrease -0.316 0.530 “ [26] 
CETP C→A -629 SP1   increase   high high density lipo- 

protein cholesterol levels 
[27] 

F7 C→G -94 SP1    decrease   F7 deficiency [28] 
FECH G→C -250 SP1 10 8 decrease -0.373 0.280 erythropoietic porphyria [29] 
FECH G→C -250 SP1 10 4 decrease -0.274 0.203 “ [29] 
FECH G→C -250 SP1 13 4 decrease -0.250 0.250 “ [29] 
FECH G→C -250 SP1 13 5 decrease -0.361 0.228 “ [29] 
FECH G→C -250 SP1 13 4 decrease -0.347 0.434 “ [29] 
FECH G→C -250 SP1 13 3 decrease -0.306 0.434 “ [29] 
Gp1bβ C→G -133 GATA1   decrease   Bernard-Soulier Syndrome [30] 
HBD T→C -77 GATA1 13 12 decrease -0.386 0.553 δ-thalassemia [3] 

HBG2 C→G -202 SP1 10 4 increase 0.274 0.540 hereditary persistence  
of fetal hemoglobin 

[11] 

HBG2 C→G -202 SP1 10 5 increase 0.402 0.702 “ [11] 
HBG2 C→G -202 SP1 13 6 increase 0.658 0.861 “ [11] 
HBG2 C→G -202 SP1 10 4 increase 0.373 0.653 “ [11] 
HBG2 C→G -202 SP1 10 4 increase 0.206 0.420 “ [11] 
ITGA2 C→T -52 SP1 10 9 decrease -0.235 0.178 diminished expression of 

the integrin on platelets 
[31] 

ITGA2 C→T -52 SP1 10 7 decrease -0.363 0.217 “ [31] 
ITGA2 C→T -52 SP1 10 4 decrease -0.284 0.296 “ [31] 
ITGA2 C→T -52 SP1 10 3 decrease -0.408 0.217 “ [31] 
ITGA2 C→T -52 SP1 10 4 decrease -0.842 0.107 “ [31] 
LIPC C→T -480 USF 14 5 decrease -0.430 0.210 low hepatic lipase activity [32] 
LIPC C→T -480 USF 14 5 decrease -0.281 0.060 “ [32] 
LIPC C→T -480 USF 10 3 decrease -0.326 0.085 “ [32] 
LIPC C→T -480 USF 12 2 decrease -0.269 0.256 “ [32] 

NFKBIL1 T→A -62 USF1 8 5 decrease -0.386 0.420 rheumatoid arthisis [33] 
PROC T→C -14 HNF-1 15 7 decrease -0.216 0.265 protein C deficiency [34] 
PTGS2 G→A -1195 MYB   increase   risk of esophageal squa- 

mous cell carcinoma 
[35] 

SP1 A→C ? NFY 11 10 decrease -0.276 0.150 ? [36] 
Tcof1 C→T -346 YY1   decrease   Treacher Collins syndrome [37] 
TNF G→A -376 Oct-1 13 6 increase 0.303 0.492 cerebral malaria [38] 
TNF G→A -376 Oct-1 11 9 increase 0.414 0.787 “ [38] 
TNF G→A -376 Oct-1 11 3 increase 0.340 0.665 “ [38] 

UROS C→A -90 CP2 18 13 decrease -0.207 0.143 congenital erythro- 
poietic porphyria 

[12] 

UROS C→A -90 CP2 11 11 decrease -0.274 0.164 “ [12] 
UROS T→C -70 GATA1 14 8 decrease -0.317 0.085 “ [12] 
UROS T→C -70 GATA1 13 7 decrease -0.206 0.038 “ [12] 

 



Disease-related mutations data set 
We computed the change in P-value for each mutation in the disease-related mutations dataset 
for each TF. This P-value change was considered as a score to measure the change in TF's 
binding affinity. The distribution of the changes is shown in Fig. 2a. Based on the experimentally 
verified cases we considered the change to be relevant if the P-value change (absolute value) was 
over 0.3 or the change was over 0.2 and P-value of either the wild type or the mutated sequence 
was under 0.3. Approximately 11% of the changes exceeded these boundaries. We tried different 
thresholds, too, but they did not result in any notable changes in the characteristics of the set of 
relevant changes and hence the conclusions were similar. The set of experimentally verified 
mutations is relatively small and that prevents us from inferring more conservative thresholds 
without losing too many verified cases. However, the experimentally verified mutation set was 
significantly enriched in the set of relevant mutations, when testing was performed with 
hypergeometric test (P-value 9.261e-10). Further, current knowledge does not allow us to 
discriminate true and false changes more carefully (see e.g. [5]). This choice of thresholds, 
however, results in a set of predicted binding changes that is enriched for true binding affinity 
changes. Consequently, despite some false positives, our analysis results provide insights into 
true mutation effects. The analysis provides a list of testable hypothesis, ordered according to the 
significance of mutation effect, which can be readily tested in a laboratory to verify the real 
mutation effect in vitro. Besides, if a particular TF is known to regulate some gene and our 
analysis gives a large absolute P-value change for the affinity of that TF due to mutation, this 
provides a strong evidence for the mutation effect and this should be taken into account when 
studying the disease mechanisms at the molecular level. 
 
Figure 2. Distributions of the p-value changes. a) All changes. b) Only changes that are 
considered relevant. 
 
The distribution of the P-value changes that are considered relevant and are further studied here 
can be seen in Fig. 2 b). It can be seen that the left side of the bimodal distribution has somewhat 
larger area than the right side i.e. the mutations seem to cause more often the loss of TF binding 
affinity than create a new TFBS. The statistical analyses of the significance of the results are in 
the end of the Results and Discussion section. 
We analyzed whether the mutation position in a TFBS affects the change in TF binding affinity. 
In Fig. 3 are the distributions of the mutation positions in PSSMs. The positions are normalized 
since the widths of the PSSMs varied from 8 to 30 nucleotides. As expected, the positions are 
uniformly distributed in all changes (Fig. 3a). For the set of the  relevant changes in TF binding 
affinity the mutation occurs more likely in the central parts of TFBS (Fig. 3b). This result is 
expected since in PSSMs the nucleotides in the middle of the binding sites are more conserved 
than those in the sides. However, a part of the effect may be caused because of the quality of 
PSSMs, too. Besides, in the widest matrices, the side nucleotides may not present the TFBS at 
all, but the areas near the binding site that are important only by providing right binding 
environment. We also separately analyzed the relevant changes that either increased or lowered 
the TF binding affinity but the distributions of mutation positions in PSSMs were similar to all 
relevant changes. 
Next, we analyzed the effect of mutation position according to TSS. We used the same division 
as in [5] to get comparable result. The distributions of the relevant P-value changes for different 
mutation positions relative to TSS can be seen in Fig. 4. In the plots there is also the distribution 



of all P-value changes that exceeded the thresholds, as a reference distribution. It can be seen that 
there are only slight variations in the distributions. This was the case when all P-value changes 
were studied, too. Our analysis confirms the result of [5] that the position of regulatory mutation 
relative to TSS does not correlate with the strength of mutation effect. This is natural since as a 
result of DNA looping, a TF that bounds to thousands of base pairs upstream from the target 
gene can attach the TSS [39]. Our results can also reflect the fact that most genes have several 
TSSs. 
 
Figure 3. Distributions of the normalized mutation positions in PSSMs. a) All changes. b) Only 
changes that are considered relevant. 
 
Figure 4. Distributions of the p-value changes according to mutation position in promoter. a) 0-
100 bases upstream from TSS b) 0-500 bases upstream from TSS c) 500-2000 bases upstream 
from TSS d) 2000-10000 bases upstream from TSS e) over 10000 bases upstream from TSS. 
 
 
Effects of different mutation classes 
 
We divided the mutations by the three common ways to distinguish the nucleotides and analyzed 
the effects of different mutation types separately. Fig. 4 shows how mutations in 
purines/pyrimidines affect the TF binding in relevant binding affinity changes. Distribution of all 
relevant changes is again included as a reference distribution. It can be seen that when mutation 
changes the type of the base from pyrimidine to purine (Fig. 5c), then the TF binding affinity is 
more likely to be increased than decreased (that is, a new binding site for TF is more likely to be 
formed than existing one is disrupted). Otherwise, if the mutation does not change the type of 
base the effect is contrary (Fig. 5a and 5d). For mutation from purine to pyrimidine the 
probability of forming a new binding site is the same as that of disrupting an existing one (Fig. 
5b). 
For base division into strong and weak pairing bases the phenomenon is of the same kind as with 
division into purines and pyrimidines. However, for mutation from base with weak pairing to a 
similar base there is no difference whether mutation more often causes weaker or stronger 
binding of TF. In division into bases with amino groups and keto groups one cannot see similar 
effects than for other divisions but if the mutation changes the base type the binding affinity 
more often gets weaker than stronger. Nonetheless, differences exist only for mutations K→K 
and K→M and they were smaller than for other divisions. For mutations divided by nucleotides 
the strongest effects were for mutations A→C (stronger affinity for TF binding), C→T (weaker 
affinity for TF binding) and G→A (weaker affinity for TF binding). The results indicate that type 
of the mutation is important. Formation of a new binding site naturally requires bigger changes 
in the structure of DNA than the loss of an existing one. So, by substituting a base of different 
size or different number of hydrogen bonds in double stranded DNA, the binding affinity can 
often be increased remarkably. Further, if there is a mutation in already existing TFBS, even 
smaller changes in DNA can cause a loss of the binding site. 
 
Figure 5. Distributions of the p-value changes in different mutation types. a) R→R b) R→Y c) 
Y→R d) Y→Y. 
 



We also computed the distributions of the P-value changes for each mutation type for different 
dinucleotide steps (16 dinucleotide classes for each base division). The distributions for 
diffeerent classes varied remarkably. In Fig. 6 are the distributions of the P-value changes for 
dinucleotide division purine-pyrimidine when a mutation is in the second nucleotide. Fig. 6 also 
shows the distribution of all P-value changes that exceeded the thresholds, as a reference 
distribution. As in the analysis of single nucleotide steps, one can find interesting features on 
distributions of dinucleotide steps, too. For mutation RR→RR (Fig. 6a, mutated nucleotide 
underlined), the probability of generating a new TFBS is approximately as probable as a 
disruption of an existing binding site. This was also the case for the mutation type YY→YY 
(mutation in either nucleotide). For mutations RR→RY (Fig. 6b) and YY→YR (Fig. 6g), 
RR→YR and YY→RY the mutation considerably more often caused a new binding site than 
disrupted an existing one. The rest of the mutations caused more likely the removal of an old 
binding site than making a new one as can be seen for example in Fig. 6c. 
 
Figure 6. Distributions of the p-value changes in different dinucleotide mutation types. Mutated 
nucleotide underlined. a) RR→RR b) RR→RY c)RY→RR d) RY→RY e) YR→YR f) YR→YY 
g) YY→YR h) YY→YY. 
 
The above results suggest that purine-pyrimidine and pyrimidine-purine dinucleotides play an 
important role in TF binding. It has been previously shown that pyrimidine-purine steps are 
flexible allowing the DNA strands to form sharp kinks [9]. This is important for TF binding that 
usually bends the DNA or TF binds to a bent DNA. Some TFs also recognize particular bends or 
kinks in DNA or flexible DNA regions. Different TFs are known to bind to bent DNA sites and 
in these cases dinucleotides play a critical role [7]. Nevertheless, such flexibility is not shown to 
occur with all purine-pyrimidine steps, even though an RY step GC, for example, can also form 
more conformations than the AA and TT steps [10]. This can affect the phenomena seen in our 
analysis. As one property of the DNA flexibility, the different dinucleotide steps have different 
effect on the width of the major and minor grooves [10]. If there exists a mutation that changes 
particularly the width of the major groove, this can cause a strong effect on TF binding since it is 
known that contacts between bases in major groove and amino-acids in TF-DNA complex are 
especially important [7]. 
One very insightful result is that mutations for opposite directions caused clear contrary effects 
in three cases: RR→RY and RY→RR (Fig. 6b and 6c), YY→YR and YR→YY (Fig. 6g and 6f) 
and RR→YR and YR→RR. For the fourth case (YY→RY and RY→YY) an effect of the same 
kind can be seen but for the mutation RY→YY the difference was smaller. This analysis 
indicates the great importance of the surrounding nucleotides of the mutation and the mutation 
type.  
The division for strong and weak bond forming bases in dinucleotide steps resulted in similar but 
weaker effects than the purine-pyrimidine division. The effects were visible only for mutations 
SS→SW, WS→WS, SS→WS, WS→WS and WW→WW where the binding affinity was more 
likely to become lower than stronger and for mutations WS→SS, SW→SS, SW→SW (mutation 
in either nucleotide) and SS→SS where binding affinity was more probable to strengthen than to 
get smaller. Thus, the effect of contrary mutations did not occur in all pairs but can be seen only 
in pairs SS→SW and SW→SS and SS→WS and WS→SS. The mutations in the dinucleotide 
WW and when a nucleotide was mutated to WW showed only little or no difference in the 
affinity changes between a new binding site and a loss of an existing one which suggests that this 



kind of mutation does not have any specific effects on TF binding. However, it seems clear that 
change in the number of hydrogen bonds from one to two consecutive strong base pairs has a 
clear effect on TF binding. For example, importance of hydrogen bonds is demonstrated in a case 
where arginine in zinc fingers 1 and 2 in transcription factor EGR1 (Early Growth Response 
Protein 1) site binds to the keto-oxygen of guanine and to the nitrogen of the imidatsole ring of 
guanine [7]. One could deduce that changing this nucleotide to another keto-oxygen containing 
base thymine would be destructive to the binding site since the other hydrogen bond with 
nitrogen could not be formed. 
For division into bases with keto and amino groups, the big effects were in mutations KK→MK, 
KM→MM, MM→MM and slight effects on mutation KM→KM and mutations happening in 
dinucleotide MM, where affinity is more likely to get stronger. Further, affinity is more likely to 
get weaker in mutation types KM→KK, KK→KM and if mutation happened in dinucleotide 
MK. The other mutation classes showed only minor or no differences in binding affinity 
changes. 
 
Statistical significance of mutation class differences 
We performed the statistical tests to see if the effects of different mutation classes are real. We 
tested the cases with two different testing strategies: by the two-sample Kolmogorov-Smirnov 
test and by the two-sample permutation test and the results for these were similar. Most of the 
mutation classes appeared to have some kind of effect on distribution, since only in 2 of 12 
single nucleotide mutation cases and in 5 of 48 dinucleotide cases the Kolmogorov-Smirnov test 
did not reject the null hypothesis that the distribution of changes in the mutation class was the 
same as the distribution of all changes (with significance level 0.01 and after Bonferroni 
correction). The cases where the mutation did not affect the distribution were M→K, W→W, 
KM→KM, MM→KM, WW→WS, WW→WW and SW→SW. When using permutation tests 
and comparing the means no additional mutation classes showed any statistically significant 
change in the distribution of scores. The distributions of changes for different mutation positions 
were all similar to the distribution of all relevant changes with risk level 0.01 when compared 
with the Kolmogorov-Smirnov test. 
We also tested by the Kolmogorov-Smirnov test whether the absolute values of the two sides of 
the bimodal distributions were the same. We first compared the two sides of the distribution of 
all relevant changes. The hypothesis that the absolute value of left side of the distribution equals 
to the right side could be rejected with P-value 0 (with Matlab's computing accuracy). When 
testing the similarity of the sides of distributions of different mutation classes with risk level 
0.01, the sides were the same (i.e. no statistically significant difference was found) for mutation 
classes R→Y, M→M, W→W, RR→RR, YY→YY, YY→YY, KK→KK, MK→MK, 
MM→MK, KK→KK, SS→SS and WW→SW. 
After two testing procedures, we see that for 9/12 mutation classes, when mutation is considered 
in one nucleotide, and for 34/48 dinucleotide mutation classes, the effect of mutation was 
statistically significant. Even though so many mutation classes show consistent effects on 
transcription factor binding affinity, some of the influences are remarkably stronger compared to 
the others. We computed the differences between distributions of P-value changes and the 
biggest values (over 0.2) are shown in Tab. 2. These results confirm our findings of the effects of 
mutations discussed in previous section. For example, the distribution of changes in mutation 
class RR→RY differ remarkably from the distribution of all changes (See Tab. 2). 
 



Table 2 – The biggest absolute differences between p-value change distributions of different 
mutation classes and the set of all relevant changes. 2 
 
mutation difference 
RR→RY 0.302 
YR→YR 0.214 
YY→YR 0.259 
YY→RY 0.320 
KK→MK 0.257 
KM→MM 0.255 
MK→MK 0.213 
SS→SS 0.237 
SS→SW 0.207 
SW→SS 0.299 
SW→SW 0.233 
SW→SW 0.285 
WS→SS 0.257 

 
 
Conclusion 
Although accurate binding site prediction is difficult in general, our results demonstrate that 
computational analysis can provide valuable information about the effect of mutations on 
transcription factor binding sites. Our tests also offer a useful test set for in vitro studies of 
regulatory mutation effects.  
We have shown that regulatory mutations can change the TF binding affinity remarkably. This 
does not originate only from a single nucleotide mutation but also the type of the surrounding 
nucleotides which should be taken into account when studying the effects of a new point 
mutation on gene expression regulation. We would like to acknowledge that all regulatory 
mutations in the HGMD are not verified as causative and to affect TF binding mechanisms. Our 
results, however, are not likely to be affected by these "false positives" as we look for general 
trends (differences in histograms) over mutation types and positions. Further, additional data 
sets, that will become available in the future, will be useful to refine our findings. 
PSSMs are a widely used method in modeling TF binding. A problem with PSSMs is, however, 
the number of false positives in predicting TFBSs, which concerns our analysis as well. 
Depending on both the chosen threshold (p-value cut-off) and the specificity of PSSM, 
predictions can report TFBSs in every 500-5000 bases. It is estimated that only about 0.1% of 
these TFBSs may be functional even though many can be bound by TF in vitro studies [40]. As 
our studies with experimentally verified TFBSs and the mutations affecting them showed, the 
PSSM modeling does not always assign extremely small P-values to TFBSs. This can be a result 
of the structure of PSSMs which does not have any correlation between different bases. This is 
not very realistic since the structure of TFBS is built by many successive nucleotides that are not 
independent of each other. The quality of PSSMs affects also the application of computational 
method for hypothesis generation as variability in binding predictions depends directly on the 

                                                            
2 Mutated nucleotide is underlined. Only those differences that exceed 0.2 are tabulated. 



sequence specificity models. Fortunately, recently developed experimental techniques, such as 
protein binding microarrays, make it possible to measure TF binding specificities in high-
throughput manner and will thereby improve computational analysis of regulatory mutations as 
well [41]. Our studies have also shown that the dinucleotides in TFBSs affect the binding 
significantly. This is most likely caused by the ability of DNA strands to bend. If the mutation 
changes DNA structure considerably, then the mutation effects may be stronger than if the 
mutation has a smaller effect on DNA structure. This is natural since the structure of TFBS has a 
vital role in DNA recognition [7]. Since different DNA-binding domains of TFs have different 
binding mechanisms and demands for DNA bending it could be more appropriate to study each 
TF family separately. 
In the future it is important to incorporate additional knowledge into TF binding prediction. For 
example, models that combine the nucleosome positions or chromatin immunoprecipitation on 
chip (ChIP-chip) data are shown to improve TF motif discovery [42, 43]. Other additional data 
sources, such as DNase hypersensitive sites or protein-protein interactions, can also be 
incorporated into computational analysis. One possible method for modeling TF binding by 
combining different data sources is a Bayesian method presented in [44]. Studying mutation 
effects on models of this kind integrated with several data sources can provide additional 
insights, since the mutation can disrupt the TF binding not only by occurring directly in the 
binding site but also causing another molecule to change its binding. For example, if the 
mutation disrupts the binding of a TF that interacts with another TF the mutation can prevent the 
binding of both TFs. In addition, the TF binding differs in different states of the cell depending 
on the TFs present and their concentrations which can change the strength of mutation effect. 
The effects of mutations on TF binding could also be studied in a more detailed manner by 
dividing TFs into different classes as it is known that different TF protein families have different 
DNA-binding characteristics [45]. Also, some additional knowledge about mutations could be 
used. For example predictors such as presented in [46] could be used for this purpose to filter the 
data set to those regulatory mutations that are most likely to be functional.  
As noted above, transcriptional regulation can occur also by a number of different mechanisms, 
including e.g. chromatin modifications. Neither the currently available data nor the analysis 
carried out in this study can account for these additional regulation mechanisms. Understanding 
the role of mutations on other transcription mechanisms will be an important future direction. 
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