
Dependencies between stimuli and spatially independent fMRI sources: Towards
brain correlates of natural stimuli

Jarkko Ylipaavalniemi a,⁎,1, Eerika Savia a,b,1, Sanna Malinen c,d, Riitta Hari c,d,
Ricardo Vigário a, Samuel Kaski a,b
a Adaptive Informatics Research Centre, Department of Information and Computer Science, Helsinki University of Technology, P.O. Box 5400, FI-02015 TKK, Finland
b Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Helsinki University of Technology, P.O. Box 5400, FI-02015 TKK, Finland
c Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 5100, FI-02015 TKK, Finland
d Advanced Magnetic Imaging Centre, Helsinki University of Technology, P.O. Box 3000, FI-02015 TKK, Finland

a b s t r a c ta r t i c l e i n f o

Article history:
Received 28 February 2008
Revised 22 December 2008
Accepted 18 March 2009
Available online 1 April 2009

Keywords:
Canonical correlation analysis (CCA)
Functional magnetic resonance imaging
Human
Independent component analysis
Natural stimuli

Natural stimuli are increasingly used in functional magnetic resonance imaging (fMRI) studies to imitate
real-life situations. Consequently, challenges are created for novel analysis methods, including new machine-
learning tools. With natural stimuli it is no longer feasible to assume single features of the experimental
design alone to account for the brain activity. Instead, relevant combinations of rich enough stimulus features
could explain the more complex activation patterns.
We propose a novel two-step approach, where independent component analysis is first used to identify
spatially independent brain processes, which we refer to as functional patterns. As the second step, temporal
dependencies between stimuli and functional patterns are detected using canonical correlation analysis. Our
proposed method looks for combinations of stimulus features and the corresponding combinations of
functional patterns.
This two-step approach was used to analyze measurements from an fMRI study during multi-modal
stimulation. The detected complex activation patterns were explained as resulting from interactions of
multiple brain processes. Our approach seems promising for analysis of data from studies with natural
stimuli.

© 2009 Elsevier Inc. All rights reserved.

Introduction

The focus of functional magnetic resonance imaging (fMRI) studies
has been in rather simple block designs aimed to optimize stimulus
control and signal-to-noise ratio. When genuinely natural stimuli are
used, block designs are no longer appropriate. The aim of this paper is
to take the first step forward by inferring brain correlates of natural
stimuli with possibly overlapping stimuli. In such uncontrolled setups,
it is extremely difficult to differentiate the stimulus-related processes
from ongoing brain activity and, analogously, brain activity-related
stimulus properties from all other aspects of the natural environment.
The statistical hypotheses are no longer self-evidently derived from
the experimental setup, which has conventionally constrained the set
of possible hypotheses. Instead, identifying the correct statistical
hypotheses is a goal of the analysis in itself. Therefore, we propose a
data-driven analysis to define testable research questions.

Purely hypothesis-driven methods have been used extensively in
neuroimaging studies. Earlier, the most typical setup of an fMRI
experiment has consisted of alternatingly repeating blocks of rest and
controlled stimulation, often using only one type of stimuli (see, e.g.,
Worsley and Friston, 1995). The hypothesis-driven methods are well
suited for these setups. However, the situation gets quickly more
complicated when one infers correlates of more complex brain
processes. Currently, the focus is starting to shift from simple unimodal
stimuli towards integration ofmultiple sensory stimuli to study cognitive
processes and, generally, brain activation related to natural stimuli. The
recent interest in more real-life-like experimental setups has triggered
the first experiments with natural stimuli, such as movies (see, e.g.,
Hasson et al., 2004; Bartels and Zeki, 2005a; Damoiseaux et al., 2006).

Purely data-driven independent component analysis (ICA, Hyvä-
rinenet al., 2001) is able to separate underlying sources of brain activity,
or functional patterns (see, e.g., McKeown et al., 1998; Bartels and Zeki,
2005b). ICA looks for spatially independent patterns of activity
without any prior knowledge on the location or temporal dynamics
of the activity. It has quickly become a common tool to analyze fMRI
data. The majority of the found independent patterns are typically left
without an explanation in terms of the stimulus features (see, e.g.,
Bartels and Zeki, 2005a; Damoiseaux et al., 2006;Malinen et al., 2007).
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Some of the unexplained components can actually be unrelated to the
stimulation. It is possible, however, to extend the analysis to identify
some of the components as stimulus-related, by considering temporal
relations between them (see, e.g., Calhoun et al., 2002).

In addition to ICA, other statistical machine-learning methods,
such as support vectormachines (Vapnik, 1998) and Gaussian-process
classifiers (Rasmussen and Williams, 2005), have recently been used
to find brain correlates of individual stimulus features (see, e.g.,
Kamitani and Tong, 2005; Haynes and Rees, 2005). It has even been
possible to predict the stimulus features from the brain activity with a
trained predictive model (see, e.g., Schneider et al., 2006; Sona et al.,
2007). After training, the methods can be very accurate, but they
require training data with correct target classes. Thus, they are best
suited for repeatable studies where the experimental design readily
defines the target classes of interest, such as, visual object categories
in a multiple regression analysis.

Regression analysis is based on pre-selected regressors, typically
the stimulus time courses, that are used to fit a regression function to
explain the response variables, e.g., the brain measurements. In
contrast to regression approaches, it is also possible to search for
dependencies between stimuli and brain measurements without pre-
specifying target classes, by data-driven analysis that is able to find the
most relevant target classes automatically. In some suggested
approaches the aim has been to search for statistical dependencies
between brain activations, inferred from fMRI data and features of the
applied stimuli (cf., Friman et al., 2001; Hardoon et al., 2007;
Ylipaavalniemi et al., 2007). Even dependencies between fMRI and
other measurements, such as EEG, have been studied (Mantini et al.,
2007). A classical linear method capable of detecting such dependen-
cies is canonical correlation analysis (CCA, see, e.g., Timm, 2002).
These approaches have, however, been hampered by the huge
dimensionality of the fMRI data in contrast to the dimensionality of
the available stimulus data. Without regularization, the methods
would find strong correlations with all sorts of noise structures. In
many cases the problem has been solved by constraining the methods
to manually-selected brain regions of interest. In our approach, ICA
can be seen as a kind of regularization that imposes a well-justified
constraint to the findings.

We propose a two-step approach for finding stimulus-related
brain activity. The method assumes information only about the
measured brain activity and about the stimuli. In controlled setups,
the experiment has been designed so that the stimulus sequence
defines how the value of each experimental variable changes. We
call these variables labels. Additional physical features can be
extracted from the stimuli to augment the expressiveness of the
designed labels. These additional features are also available in
uncontrolled or natural setups. Both brain activity and stimuli
contain aspects or parts that are not mutually related, as well as
parts that are related. Canonical correlation analysis identifies the
correlated parts that we call functional combinations. It is particularly
attractive that the result is invariant to any aspects of the stimuli
that are not reflected in brain activity, and to any brain activity
unrelated to the stimuli.

As the first step we search for spatially independent brain regions,
which we will call functional patterns. We assume them to represent
independent subunits of more complex activity. As the second stepwe
look for combinations of the functional patterns that are temporally
correlated with combinations of the stimulus features. We assume
these functional combinations to represent complex stimulus-related
processes involving several functional patterns. As a result, each
functional combination exhibits temporal correlation between its
spatially independent patterns and, on the other hand, the different
combinations are uncorrelated with each other.

We target answering the following three questions: First of all,
are we able to identify reasonable functional patterns describing
brain activity with ICA? Second, do the features extracted from the

stimuli explain the found functional combinations well, or even
better than the original labels of the experimental design? Finally,
and most importantly, do the functional patterns bind to reasonable
combinations as a result of our analysis?

Materials and methods

The analysis consisted of two steps. First, the data were
decomposed into spatially independent sources with a variant of
ICA, see Independent component analysis section. In the second
step, the temporal interactions of the sources were modeled with
the help of stimulus labels and features using CCA. The approach is
illustrated schematically in Fig. 1; for details see Canonical
correlation analysis section.

Imaging and preprocessing

The analyzed fMRI data are the same as used in a previous
publication by Malinen et al., (2007). In that study, the data were
successfully analyzed by means of ICA that identified spatial brain
activation patterns related to various aspects of the stimuli. Six healthy
young adults participated in two identical sessions, in which they
received a continuous 8-min sequence comprising of auditory, visual
and tactile stimuli in blocks of 6–33 s. The stimuli of different senses
never overlapped.

Whole-head volumes were acquired with a Signa VH/i 3.0 T
MRI scanner (General Electric, Milwaukee, WI) using a gradient
EPI sequence (TR=3 s, TE=32 ms, FOV=20 cm, flip=90°,
64×64×44 voxels with resolution 3×3×3 mm3). In each session,
165 volumes were recorded with the 4 first time points excluded
from further analysis. For further details, see Malinen et al., (2007).
Preprocessing of the fMRI data included realignment, normaliza-
tion with skull stripping, and smoothing. For additional details
on the measurements and applied preprocessing, see Malinen
et al., (2007).

In this study, the measurements of all subjects and all trials were
further normalized and temporally concatenated, resulting in single
set with 6×2×161=1932 volumes.

Labels and features of the stimuli

The stimulation sequence consisted of seven different types of
stimuli, summarized in Table 1.

In contrast to traditional artificial setups, for natural stimuli the
designed labels of the experimental setup may not be expressive
enough. We therefore augmented the labels by extracting six
features, as an example, from the spectrogram of the actual auditory
stimuli. Hence, we had time courses for altogether 13 stimulus labels
and features. The spectrogram was calculated using time windows
that matched the fMRI acquisition times. The acoustic features we
extracted from the spectrogram are commonly used, e.g., in speech
recognition (see, e.g., ISO, 2002; Zolnay et al., 2007). Table 2
describes the six extracted acoustic features in terms of qualitative
sound properties. Due to the nature of the stimuli, some of the
extracted features share a strong resemblance with the original
labels; compare for example tones and kurtosis. However, since
kurtosis is a physical feature based on the sound signal, it is not
identical with any of the designed labels. Including the extracted
features brings in more information about the stimuli and,
potentially, makes more refined matching with brain processes
possible.

Time courses of the stimulus labels were taken as binary-valued
functions, whereas the extracted acoustic features had continuous-
valued time courses. All label and feature time courses were normal-
ized to the range 0–1 and convolved with a standard hemodynamic
response function (HRF) using default latency values of SPM2 toolbox
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(SPM2, 2002). Fig. 2 shows the resulting time courses of the original
labels of the experiment and extracted features of the auditory parts.

Independent component analysis

Independent component analysis (ICA, Hyvärinen et al., 2001) is
one of the most popular methods for solving the blind source
separation (BSS) problem in a purely data-driven manner. BSS
consists of finding solutions to the mixture X=AS, when only the
observed data X are known. ICA assumes only statistical indepen-
dence of the sources S and full rank of the mixing matrix A. In fMRI
analysis, independence is typically considered in the spatial domain
(McKeown et al., 1998), and mixing reveals the temporal dynamics of
the identified independent patterns.

We analyzed the fMRI measurements with a reliable ICA method
(Ylipaavalniemi and Vigário, 2008), available in the Matlab toolbox

Arabica (Ylipaavalniemi and Soppela, 2009). The inherent stochasti-
city of the ICA algorithm leads to variability between ICA runs. Arabica
takes into account the algorithmic variability and the uncertainty of
the sources in the data by performing multiple runs of ICA.
Components that are consistent across several runs are considered
reliable. Their mean time courses, and the corresponding source
volumes, are retained for the second step. We refer to these reliable
components as functional patterns. The functional patterns were also
ranked according to their consistency over the trials. Fig. 3 shows an
example of such an independent component (IC) and its time course.
In the rest of the figures we will omit the time courses of the ICs and
show only the spatial activation patterns. See the online Supplemen-
tary material for all the time courses.

Parameter values for Arabica were derived from testing several
alternative values to avoid under- and overfitting themodel parameters.
The method requires more degrees of freedom than regular ICA and
good performance is typically seenwith a whitened space having twice
the number of dimensions than ICs. In each run, 38 ICs were sought in a
76-dimensionalwhitened space. The dimensionality of 76was chosen to

Table 1
Labels derived from the original stimulus sequence.

Sense Description
Label

Tactile
Touch 4-Hz tactile pulses delivered bilaterally to the 2nd–4th fingers of

both hands in a random order
Auditory
Tones Binaural 100-ms tones with 5 different pitches presented in a

random order
History A male voice reading a chapter on the history of the local

university
Instruction The same voice reading about guitar fingering for beginners

Visual
Faces Video clips containing close-ups of people's faces
Hands Video clips containing close-ups of people's hands
Buildings Video clips with slow movement through outdoor scenes

For the corresponding time courses, see panel a in Fig. 2.

Table 2
Features extracted from the spectrum of the auditory stimuli.

Sense Description
Feature

Auditory
Amplitude Total sound energy
Mean Centroid pitch of the sound
Standard deviation (std) Spread of sound energy across all frequencies
Skewness Concentration of sound energy to lower frequencies
Kurtosis Concentration of sound energy

to only a few frequencies
Spectrumderivative feature (sdf) Amount of increase or decrease

of total sound energy

For the corresponding time courses, see panel b in Fig. 2.

Fig. 1. Illustration of the analysis framework. As the first step, ICA is applied to the fMRI measurements (V=number of voxels, N=number of measurement time points) to find
spatially independent patterns of brain activity, which we call functional patterns (p=number of reliable ICA components). The second step uses CCA to identify functional
combinations based on the temporal dynamics of both the stimuli and the ICA components (q=number of stimulus time courses).
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match the automatically estimated value used in the original study
(Malinen et al., 2007). Thefinal resultswere computed in 100 runs using
tanh nonlinearity in the symmetric mode (FastICA, 1998), producing
altogether 64 different ICs. Finally, the 40 most replicable components
across the three trials were retained. All the above mentioned
dimensionalities resulted from criteria within the Arabica approach,
explained in (Ylipaavalniemi and Vigário, 2008).

Canonical correlation analysis

In this setup, we have two multi-dimensional datasets, the
functional patterns and the stimulus sequence data. They both have
data values for the same time points, in other words, the datasets are
paired through their time series. Our goal is to find the underlying

dependencies between the datasets by analyzing the common
variation of the paired datasets. Naturally, both datasets contain
variation that is not shared, and our aim is to distinguish between the
shared and the unshared variation. A classical method for this task is
the canonical correlation analysis (CCA2, see Timm, 2002), which
maximizes the mutual information for normally-distributed data
(Kullback, 1997). With a sufficiently large sample size, CCA is quite
robust to violations of the normality assumption (Stevens, 2001).

In brief, the method tries to find such linear projection vectors wA

and wY for the two data sets A and Y that the correlation ρ between

Fig. 2. Time courses of the original labels and the extracted stimulus features. In panel a, labels derived from the original stimulus sequence and, in panel b, features extracted from the
spectrograms of the auditory stimuli.

2 The abbreviation CCA can have different meanings in other context, e.g., cross-
correlation analysis, curvilinear component analysis.
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Fig. 3. An illustrative example of one independent component (IC). Panel a shows the mean time course of the IC, averaged across the two trials of all six subjects. The mean time
courses of the IC's were used as input for CCA, together with the stimulation time courses of Fig. 2. The gray band around the trace shows the 95% confidence interval given by the
Arabica approach. The three auditory stimulus labels are shown as colored blocks behind the time course (red= tones, blue= instruction, green= history). The changes in the IC do
not exactlymatch any of the labels although the activity of the IC is correlated with them. Panel b illustrates sagittal, coronal and axial slices of the average brain, centered on themost
active voxel of the superimposed IC. The bar on the right shows the used color range based on the z-score; the upper end of the scale depicts positive weights and the lower end
negative weights. The left edge of the bar shows the shape of the distribution of the weight values. The more non-Gaussian the shape is, the more independent the IC is.

Fig. 4. Overview of 40 independent components representing spatially independent functional brain regions. The index number of each component is shown in the upper left corner
of each panel, indicating the reliability ranking of the component. See caption of Fig. 3 for other details. For a complete version, including the corresponding time courses, see the
online Supplementary material.
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the projected data is maximized; the target correlation is defined
as follows:

ρ =
wT

A A−umT
A

! "T
Y − umT
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Here mA and mY denote the mean vectors of the data sets, and u is
a column vector of ones with a matching number of elements. In
our case A would correspond to the ICA mixing matrix and Y to the
stimulus time series. The maximization leads to an eigenvalue

problem, which implies that successive results can be retrieved and
they can be ordered according to how much of the between-data-
set variation they explain. The resulting canonical components are
orthogonal in the space where the within-data-set correlations
have been removed.

The CCA components are conventionally interpreted in terms of
their factor loadings, that is, the correlations between the CCA
component and each of the original dimensions. In our analysis the
original dimensions are the functional patterns and the stimulus
labels and features.

Reliability of ICA and CCA

Theoretically, the number of components found by both ICA and
CCA is limited by the smallest dimensionality of the datasets, in our
case 1932 for ICA and 13 for CCA. Some weak components may be
indistinguishable from noise because of limited amount data. We will
assess the replicability of both ICA and CCA using bootstrap techniques
(Efron and Tibshirani, 1994).

For Arabica, the bootstrapping has been defined to use 100%
sampling, correlation threshold of 0.85, and link power of 4; see
Ylipaavalniemi and Vigário (2008) for further details on the
parameters of the reliable ICA approach.

The variability of CCAwas controlled with bootstrapping using 50%
sampling. The result figures show the 99% confidence intervals over
1000 bootstrap iterations. Five out of all 13 CCA components (i.e.,
functional combinations) were replicable in bootstrap, and were
retained for further analysis.

Fig. 5. The 1st functional combination (CCA component) with canonical correlation
ρ=0.82. Panel a shows the factor loadings for the stimuli. Panel b depicts the
corresponding set of functional patterns (ICA components) with their factor loadings
in decreasing order. The shown factor loading values have been rounded. Five
functional patterns (ICs 5, 3, 6, 2 and 1) are the most responsible for the observed
correlation in this functional combination. Positive factor loadings in panel a
correspond to positive factor loadings in panel b. Analogous correspondence holds
for negative factor loadings.

Fig. 6. The 2nd functional combination with the highest canonical correlation ρ=0.87.
Other details as in Fig. 5.
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Results

Arabica decomposed the measurements into 40 components that
are sorted in Fig. 4 according to their consistency across trials. The
index numbers refer to the ranking by Arabica. As expected, the
majority of the individual functional patterns were not directly related
to the stimuli. The functional patterns agree well with previous
applications of ICA, and with the results reported by Malinen et al.
(2007). The components represent different spatially independent
patterns of brain processing, including, e.g., the temporal-lobe
auditory cortex (IC 1), superior temporal sulcus (STS; IC 2), and
several functional patterns on the sensorimotor regions (e.g., ICs 5, 26
and 32), the visual cortices (e.g., ICs 3, 4, 6, 8 and 10), and the frontal
lobe (e.g., ICs 14, 17, 21, 22 and 25).

CCA found five reliable functional combinations between the 40
functional patterns and the 13 stimulus labels and features. Figs. 5–9

visualize the combinations. In panel a of each figure, the gray bars
illustrate the experimental labels and the white bars the extracted
stimulus features. The error bars depict the 99% confidence intervals
from the reliability analysis. Panel b of each figure shows the set of
independent components that build 85% of the total canonical
correlationwith the stimulus features. The ICs are grouped according
to the sign of their factor loadings. In all figures, positive factor
loading(s) of the stimulus features correspond to positive factor
loading(s) of the ICs, and vice versa for negative factor loadings.

The factor loadings in Fig. 5 discriminate the touch label from all
the other labels and features. Thus, this CCA component does not
reveal a novel combination of functional patterns, but a discrimination
of a single label from all the others. The negatively signed set of
functional patterns (ICs 3, 6, 2 and 1) represents all auditory and visual
stimuli combined together. The only positively correlated component
(IC 5) shows activity in the hand representation area of the

Fig. 7. The 3rd functional combinationwith canonical correlation ρ=0.66. Other details
as in Fig. 5.

Fig. 8. The 4th functional combinationwith canonical correlation ρ=0.58. Other details
as in Fig. 5.
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sensorimotor cortex, with weaker activation just above the Sylvian
fissure, likely in the region of the second somatosensory cortex SII.

Fig. 6 shows the functional combinationwith the highest canonical
correlation. On the stimulus side, all the auditory labels and features
have become grouped together, all with positive factor loadings, in
contrast to labels from tactile and visual stimuli that all have negative
factor loadings. Correspondingly, there is a strong positive factor
loading for the auditory cortex (IC 1) and STS (IC 2), against the
negative factor loading for the visual cortex (IC 3). Additionally, the
STS component (IC 2) includes negative weights for a region just
above the Sylvian fissure, near the region in the sensorimotor
component (IC 5) shown in Fig. 5.

The next functional combination, shown in Fig. 7, discriminates
between buildings, with positive factor loading, and other visual
labels, with negative factor loadings. Some of the auditory labels and
features have small negative loadings, but they have large error bars.
The corresponding functional patterns include two with positive
factor loading in the posterior visual cortices, likely including the
primary visual cortex (IC 3) and the fusiform gyri (IC 8). Strong
negative loading is seen for IC 4 that coincides with the V5/MT region.
Less strong negative loading exists for IC 20.

The fourth functional combination, shown in Fig. 8, discriminates
between two auditory labels: tones and verbal instructions. The
contributing functional patterns coincide with activation posterior of
the Sylvian fissure (IC 20), near the Wernicke's region, and the
supratemporal auditory cortex (IC 1) with a positive loading. The STS
component (IC 2) has a negative factor loading in this combination.
The combination also groups the visual images of hands together with
the auditory instruction for guitar fingering. This cross-modal
dependency is also supported by the functional pattern V5/MT region
(IC 4) with a negative factor loading that could result from brain
activity related to movement of hands.

The last functional combination, shown in Fig. 9, represents a clear
discrimination between the visual labels hands and faces. Other labels
and features have small factor loadings and large error bars. In this case,
there were altogether 11 contributing functional patterns, six with
positive factor loadings (ICs 26, 16, 10, 21, 3 and 7) and five with
negative factor loading (ICs 2,15, 9,12 and6). The factor loadings varied
between −0.2 and 0.3, which can be considered weak dependencies.
Therefore, speculations of the roles of the individual ICswould not help
to understand the whole combination. The contributing functional
patterns are shown in the online Supplementary material.

Discussion

We aim to develop methods for studies of brain activity in more
complex experimental settings, where several stimuli overlap. In real-
life-like experimental conditions and with natural stimuli, the
conventional stimulus labels may need to be replaced by physical or
other measurable features that can be derived from the stimuli, such

as the extracted acoustic features we used in this work. Our aimwas to
find patterns of the fMRI signal explainable by features of the stimuli,
both by the original labels and by the less salient features extracted
from the stimuli.

We proposed a two-step approach to find related combinations of
functional patterns of brain activity and stimulus labels or features.
We first used ICA to detect functional patterns of brain activity and
then CCA to search for combinations of the individual patterns. We
found combinations comprising several ICs, which could support
involvement of widely distributed stimulus-related neuronal circui-
tries. The functional relevance of the combinations can be inferred
from the constituent functional patterns (ICs). Furthermore, the
functional patterns also have their individual interpretations regard-
less of the functional combinations.

Interpretational considerations

As shown in the original study (Malinen et al. 2007), it is possible
to find ICs that discriminate between stimulation of different senses
and even find details within one sensory modality, such as speech vs.
other auditory stimuli. All the ICs discussed in the original paper
(1 tactile, 2 auditory, 5 visual and 7 stimulus-unrelated) have highly
similar counterparts among our 40 ICs, see Table 3. The main novel
contribution in our method is that it automatically identifies the
functional combinations responsible for the dependencies between
the stimuli and the functional patterns.

We found several different types of functional combinations, all in
agreement with the findings of the original study. Some combinations
segregated sensory modalities (auditory or tactile) or represented
intra-modal structure (buildings vs. the other visual labels; faces vs.
hands). Finally, some combinations highlighted possible cross-modal
dependencies, for example auditory instruction for guitar fingering
and videos of hands that both were related to hands or hand actions,
either imagined or real.

One combination focused on distinguishing a single stimulus label
(touch) from all the others. However, as will be discussed in more
detail in the following section, a stimulus sequence that includes
mutually exclusive stimuli can force all other labels to have a negative
correlation with the time course of one label. With our current
measurements, it is therefore impossible to rule out the possibility
that the difference effect is caused, or strongly enforced, by the
stimulus design.

Methodological considerations

The 40 functional patterns agree well with previous applications of
ICA, as well as with the results reported by Malinen et al. (2007). The

Table 3
The correspondence between originally reported ICs and our reliable components.

Original component Our IC

ACx IC 1
STS IC 2
V1/V2 central (lf) IC 6
V1/V2 central (uf) IC 3
V1/V2 peripheral IC 9
Posterior convexial IC 10
V5/MT IC 4
SI IC 5
Fig. 7a) IC 18
Fig. 7b) IC 29
Fig. 7c) IC 32
Fig. 7d) IC 30
Fig. 7e) IC 26
Fig. 7f) IC 21
Fig. 7g) IC 14

The “original components” refer to Figs. 3, 4, 6, and 7 in Malinen et al. (2007) and the
component names there-in, and they are grouped accordingly.

Fig. 9. The 5th functional combination with canonical correlation ρ=0.45. The factor
loadings for the stimuli. The corresponding 11 ICs are given in the online
Supplementary material.
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components represent different spatially independent patterns of
brain activity, and the activity is concentrated in focal areas. As
expected, the majority of the individual functional patterns were not
directly related to the stimuli. Some of the ICs (e.g., 2 and 5) contained
a spatial activation pattern resembling a combination of several
regions of activation with positive or negative weights. In our
framework this is not a problem, since it only means that even ICA
alone is sometimes able to combine brain activations having strong
temporal correlation.

Our extracted acoustic features corroborated with the stimulus
labels. Whenever the experimental auditory labels became grouped
together, the extracted acoustic features became grouped with them.
Moreover, when a functional combination discriminated between the
different auditory labels (e.g., tones vs. instruction), each original label
was grouped together with the related acoustic features. Finally, when
the factor loadings of the original auditory labels were close to zero,
the extracted acoustic features behaved accordingly.

We noticed that the factor loadings of some of the extracted
features were higher than those of the stimulus labels, suggesting that
they did match the true brain activity better than the original labels.
The extracted features might also help to explain the underlying
causes for the observed groupings of labels. In this study, we focused
on acoustic features and otherwise the original labels were taken as
given. Ultimately, we would naturally want to do the same treatment
to all sensory modalities. As a feasibility check we repeated the
analysis without the augmented audio features for comparison, and
found the same five reliable combinations. In conclusion, the results
support the idea of using features extracted from the stimuli as
surrogates of experimental labels in natural settings, when descriptive
labels are not available.

Our primary question was whether our approach can find reason-
able combinations of functional patterns and corresponding combina-
tions of stimulus labels and features. The functional combination
related to touch (Fig. 5) shows that when the observed brain activity
can be represented by a single stimulus label, our method behaves
similarly as the conventional analysis methods that use this single
feature as a reference (e.g., generalized linear model in SPM2, 2002).
The other results show that whenever a combination is available that
explains the observed data better than a single label, the method
identifies it.

Thus our method constructs combinations of stimulus labels and
features, as well as combinations of functional patterns that together
are more strongly correlated than any one of them alone. In
conclusion, the observed functional combinations seem to be well-
justified, and encourage to develop the approach further.

Effects of experimental design

Under strict laboratory control, it is often possible to design the
experiment so that all relevant combinations of experimental
variables (stimuli and tasks) are presented well balanced and in
adequate quantities. However, in natural settings we cannot rely on
controlled designs but instead the data analysis has to do the
balancing. However, no data analysis can insert useful information
to the data, and thus balancing can only be done within the given
variation in brain processes triggered by the stimuli. Hence, adequate
design of the experimental setups to include rich enough stimuli is
important in natural settings, too.

The CCA analysis, which is invariant to linear transformations of
the stimulus features, is able to compensate for unbalanced or
imperfect choice and encoding of stimulus features. In principle
then, if the stimuli were rich enough to include all relevant
combinations of the unavailable but desirable experimental vari-
ables, the analysis would be able to compensate for imbalances. We
will next discuss what happens if the stimuli are not rich enough in
this sense; it may be worth emphasizing that the consequences

would be similar for any method used for analyzing brain activity
during natural stimulation.

If the actual trigger for the measured brain activity cannot be
represented with the stimulus labels or features, the brain correlates
can be missed or misinterpreted in terms of the available features.
However, if the set of stimulus features is expressive enough, our
method could find a novel kind of combination of the stimuli that
would give a hint of the missing label.

When the experimental design binds certain stimuli to always co-
occur, it is not possible to distinguish the corresponding brain
correlates from each other. This ambiguity is not a misinterpretation,
but rather a straightforward consequence of the selected level of detail
of the experimental design. However, true dependencies between the
labels are also possible, e.g., some of the extracted auditory features
naturally co-occur during any auditory stimulation.

Somewhat surprisingly, similar confusion may happen with
stimuli that never co-occur. When the intention is to design
uncorrelated labels by creating a stimulation sequence without any
overlap, the regularity of the setup can lead to unexpected negative
correlations between labels. Such correlations that reflect the
experimental design cannot be distinguished from true negative
correlations between the stimuli. Thus one might find functional
combinations that represent characteristics of the experimental
design, rather than of the observed brain responses. More generally,
the effects of spurious correlations seem to be an emerging topic of
scientific interest (see, e.g., Aguirre et al., 1998; Murphy et al., 2008).

In our data, such a dependency is visible and it naturally affects the
statistical analysis. A possible example in our current results is the
functional combination, where tactile stimulation had a negative
correlation with both visual and auditory stimulation. In the analysis,
touch-related brain activity was negatively correlated with brain
signals related to other senses. The same phenomenon might be
expressed in the functional combination, where all auditory features
correlate negatively with both visual and touch labels.3

Such correlations can be avoided to some extent in the experi-
mental design by delivering the stimuli in some blocks simultaneously
and in some blocks separately. See the online Supplementary material
for elaborated discussion with an example of the phenomenon of
spurious correlations arising from the experimental design.

Current limitations and future improvements

Both the strengths and limitations of our two-step approach
stem from the assumptions of spatial independence of functional
patterns, as well as covariation between stimuli and the
functional patterns. Spatially dependent patterns of brain activity
cannot be separated from each other by ICA and hence the same
holds for the new approach as well. In addition, if some
phenomenon does not express itself as a correlation between
stimulus features and functional patterns, we cannot find it with
our method. The same limitation applies to any other method
relying on correlation between experimental labels and observed
brain activity. Stimulus-unrelated activity patterns are a crucial
part of studying resting-state networks (for a review, see, Raichle
and Mintun, 2006).

The canonical correlation analysis implicitly assumes normally-
distributed data. Especially if the data are very far from normally-
distributed, improvements can be made by developing more
advanced dependency exploration methods.

3 The current experimental design is unable to differentiate negatively correlated
and uncorrelated stimulus blocks of different sensory modalities, since the occurrence
of stimuli of any sensory modality was fully determined by the absence of stimuli of all
the other senses. See the online Supplementary material for details about the
correlation between stimuli to different sensory systems.
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