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Abstract13

We investigate the problem of detecting toxicogenomic associations that generalize across14

organisms, that is, statistical dependencies between transcriptional responses of multiple organisms15

and toxicological outcomes. We apply an interpretable probabilistic model to detect cross-organism16

toxicogenomic associations and propose an approach for drug toxicity analysis based on the17

interactive retrieval of drugs with similar toxicogenomic properties. We show that our approach can18

give relevant information about the properties of a drug even when direct prediction of toxicity is19

not feasible. Moreover, we show that a search from a cross-organism database can improve20

accuracy in the analysis.21
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Introduction22

Evaluation of potential toxicity of new drugs and other chemical compounds is highly important for23

safety reasons. The toxic effects of new drugs cannot be tested directly on humans due to the24

obvious ethical issues, and new drugs thus go through a series of in silico and in vitro analyses, and25

then an animal experimentation phase. Organisms from yeast1 to the worm C. elegans2, zebrafish326

and murine animals4 are used in the drug development process, starting with simple organisms and27

moving towards organisms more similar to humans. Since all toxic effects do not generalize across28

the model organisms and setups, after the animal studies and even after the drug has entered the29

market, new toxic side effects are often discovered among the large population of consumers.30

31

The earlier the toxic responses can be detected, the more potential harm can be avoided and32

resources saved. Computational tools for predictive toxicity have been developed and applied at33

each stage of the drug development cycle5,6. Quantitative structure-activity relationship (QSAR)34

assessment has traditionally been the most prominent in silico toxicity prediction procedure, where35

toxicological profiles, such as lethal concentrations, are predicted based on structural descriptors of36

the compounds7. Recently, the focus has shifted to identification of critical perturbations in37

biological pathways that lead to adverse outcomes, based on high-throughput screening methods8.38

Toxicogenomics39

Toxicogenomics has emerged in the cross-section of toxicology and bioinformatics, with the aim of40

finding predictive associations between transcriptomic and toxicological responses9,10. The rationale41

is that drug-treatment transcriptional data consist of various response patterns, some of which are42

related to drug toxicity. The identification of these toxicity-associated transcriptional response43

patterns is essential for understanding the molecular mechanisms behind toxicity and for enabling44

the prediction of toxicity11. However, distinguishing toxic adverse effects from intended therapeutic45
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effects and from various types of noise factors, such as batch effects, is highly non-trivial. Moreover,46

transcriptomic response patterns vary over tissues and cell types, making this more complicated. As47

toxicogenomic studies are typically performed in vitro, it would be important to identify those48

toxicogenomic associations that generalize to humans as well.49

50

The ToxCast project12 is an example of large-scale high-throughput in vitro screening for predicting51

in vivo toxicity. The TG-GATEs database from the Japanese toxicogenomics project13 is another52

interesting toxicogenomic resource with transcriptional drug-treatment data available from53

organisms both in vitro and in vivo. Additionally, the database includes toxic outcome observations54

such as blood level measurements and observed liver injuries from rats in vivo.55

56

Liver toxicity is among the most common types of drug toxicity in humans5. The drug-induced liver57

injury (DILI) labelings14 have been designed to describe the risk of hepatotoxicity in humans: The58

labels are continuously updated as the Food and Drug Administration (FDA) acquires more59

information about the potential side effects of the drugs on the market. The DILI labels are60

available for most of the drug compounds with experimental data at the TG-GATEs database.61

Data translation with machine learning62

The next step that follows detection of responses to drug compounds in a model organism is63

translation of these responses to humans. In this work, we build on the hypothesis that responses64

shared across organisms are more likely to generalize to humans as well. This is analogous to65

searching for conserved genomic regions or responses, but on the more abstract level of statistical66

relationships in the response profiles.67

68
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To detect “conserved responses,” we need to examine databases of drug-response experiments from69

multiple model organisms, or domains. The conserved response patterns can then be utilized to70

make predictions about the human response based on experimental data from model organisms, that71

is, to carry out data translation from one domain to another.72

73

We define data translation as an analogue of language translation: of finding how a phenomenon in74

one domain or organism is expressed in another, assuming it generalizes across domains, and then75

predicting it. Data translation is a key part of translational medicine, which involves many76

additional aspects.77

78

In summary, our goal is to develop machine learning methods for discovering responses conserved79

across organisms and for generalizing the responses to humans. The generalization of the responses80

has so far been an unsolved problem. For discovering conserved responses, Le & Bar-Joseph15 have81

presented an approach for clustering genes across organisms based on their response patterns.82

Suvitaival et al.16 focused on quantifying the responses to external covariates, such as the drug83

treatment, that are conserved across organisms. Both of these approaches assume that a group of84

genes responds to the covariate in a coherent fashion.85

86

In this article, we assume that drug responses can be modeled as factors, each of which describes a87

biological process that is disturbed by the treatment. Individual genes may be members of many of88

these processes and the genes may be different across organisms. Also the level and direction of89

responses may vary across genes and organisms while still following the abstract conserved pattern.90
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Generative model for cross-organism toxicogenomics91

Inspired by the CAMDA challenge17, we address the following research questions: (1) Can we92

associate drug-induced toxicological responses observed in humans or rats to changes observed at93

the molecular level, and are these associations predictive? (2) Can we find toxicogenomic94

associations that are conserved across organisms? Could these associations be utilized to replace95

animal studies with in vitro assays?96

97

In other words, we seek simultaneous associations between transcriptional data and toxicological98

outcome data, and between transcriptional data from multiple organisms. Associations that99

generalize both across organisms and across levels of biological complexity have the potential of100

enabling data translation between the molecular level and the organ or population level.101

102

The biological properties and their resemblance to the human vary across the cells extracted from103

animals grown in vivo and cell lines grown in vitro. Even though this resemblance to the human is104

still largely unkown, they all are grown with the purpose of experimenting chemical compounds105

intended for human use. By taking a data-driven approach to identifying conserved responses, we106

do not make prior assumptions about the organisms’ similarity to the human. To stress these points,107

we refer to each of the types of biological sample as a model organism, even though a cell line is108

not an entire representation of the animal from which it is originally extracted from. Moreover, we109

view a cell line grown in vitro as a different model organism than what a cell extract from an animal110

of the same species grown in vivo is.111

112

We propose a generative model-based approach to answer the two research questions. To do this,113

we make the following modeling assumptions: (1) The data consist of drug-induced transcriptional114

responses patterns, that is, consistent gene expression changes for a subset of the drugs and genes,115
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and noise from various sources. (2) Drugs may activate multiple response patterns, and the patterns116

may be partially overlapping in terms of affected genes. (3) We are especially interested in response117

patterns that are associated with observed toxic outcomes and are conserved across organisms.118

119

It turns out that a recently introduced model family, group factor analysis18 (GFA), when applied to120

toxicogenomic data, matches these assumptions. It is a multi-view model that in an unsupervised121

fashion detects statistical dependencies between multiple data sets having co-occurring samples. In122

this context, samples correspond to drug treatments, which are the same in all the data sets. We call123

the data sets views, because they are matched by their samples.124

125

The associations found by the model are represented by factors that are interpretable in terms of126

factor loadings of the data variables, in this case genes. This interpretability allows the user to127

formulate testable hypotheses, for instance about the mechanisms of action of a drug and about their128

association to toxicological outcomes. The associations can also be used for predicting one data129

view based on another, for example, predicting toxic outcomes based on transcriptomic responses.130

131

For cross-organism toxicogenomic analysis, group sparsity is an especially useful feature of GFA.132

The model can distinguish patterns that are shared across all the data sources from patterns that are133

specific to a single source or shared by a subset of the sources. In this paper, we will apply GFA to134

studying biological responses that are conserved across organisms.135

Results136

We demonstrate the potential of the model to detect responses that generalize across organisms in137

two practical use cases with the TG-GATEs data13, consisting of three sets of transcriptional drug-138

treatment measurements: human in vitro, rat in vitro and rat in vivo. In Case 1, the task is to find139
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associations between transcriptional changes and pathological findings from in vivo rat livers. In140

Case 2, the task is to search for drugs having a similar risk of drug-induced liver injury (DILI) in141

humans at the population level, based on data about transcriptional changes in model organisms.142

Case 1: Finding associations between transcriptomic responses and143

pathological findings144

In the first case, we are interested in two types of associations to start with: First, associations145

between the molecular level and the organ-level, and second, molecular-level associations between146

the different organisms. In order to detect responses that are most likely to generalize to humans, we147

require both of these constraints to hold for the associations that we focus on. Focusing on these148

maximally conserved associations will also be beneficial for filtering out structured noise that arises149

from the laboratory effects and from the properties of the model organisms.150

151

Applying GFA to the combination of three transcriptomic data sets and pathological findings for rat152

in vivo, we obtain a set of factors that capture the required kind of associations. Each factor is153

interpretable as a biological process associated with specific pathological findings at the organ-level154

and is generalized across a subset of the organisms at the molecular level (Figure 1). This result155

indicates that the model learns biologically meaningful response structure in the transcriptomic data.156

For example, Factor B associates changes in metabolic processes to degeneration in the liver tissue,157

while Factor C associates changes in the cell-cycle to increased mitosis in the liver.158

159

Although the associations are biologically meaningful, given the small amount of available data,160

their predictive power is not significant (results not shown; the low power was not due to the161

method, which was tested additionally using a standard L1-regularized regression model). As more162

toxicogenomic data accumulates, the predictive power of the associations needs to be revisited.163
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Case 2: Modeling-based data retrieval for human drug toxicity analysis164

Direct prediction of toxicity for a new drug is not a trivial task, but we have demonstrated that the165

detected conserved associations are biologically meaningful. Predicting the toxicity of a drug on166

humans is even more difficult due to the lack of direct experimental data. Analyzing drug toxicity in167

humans is possible indirectly, using available drug toxicity classifications of approved drugs. These168

data are not perfect, however, as the toxic potential of many drugs has been over-estimated for169

increased safety14. Some drugs have been categorized as risky based on only indirect evidence of170

other drugs, with similar therapeutic potential or chemical properties, having shown toxic outcomes.171

Interactive toxicity analysis framework172

We propose an alternative approach for the risk-analysis of a novel drug by formulating the173

prediction task as an information retrieval problem. We assume that transcriptomic response data in174

existing databases of model organism experiments carries relevant information on drug toxicity in175

humans. The level of relevance may, however, vary across different experimental practices and176

model organisms. For instance, in vivo experiments are likely to be more informative than in vitro177

experiments.178

179

The interactive toxicity analysis takes place through a table-lookup procedure: Given a query180

compound and a measure of similarity, the expert receives a ranked list of database compounds in181

the order of the similarity of transcriptomic response. To the extent there are associations between182

the molecular level and the organ-level, the properties of the top-ranked database compounds are183

likely to be similar to the query compound. Based on the list, an expert user can then construct a184

hypothesis about the expected properties of the drug and about the uncertainty around these185

properties. In an illustrative example of the retrieval result for a query (Table 1), many of the top-186

ranked drug compounds retrieved from the database are shown to share toxic and therapeutic187

properties with the query.188
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189

The idea of searching for similar drugs has earlier been introduced as “connectivity mapping”19 and190

applied to drug discovery and drug repositioning20,21. It has also been applied to drug toxicity191

analysis22,23. Recently, Xing et al.24 introduced an online resource for making queries to the TG-192

GATEs database. We use the retrieval method behind that tool as one of the two baseline193

approaches in the experiments that follow. In the connectivity mapping approaches the similarity194

measure for the retrieval relevance is based on the gene set enrichment25 computed on the list of the195

most differentially expressed genes for the query drug. These approaches have either focused on a196

single cell type or simply averaged over multiple cell types, neglecting the likely differences197

between organisms.198

199

We propose to carry out toxicity analysis by modeling-based retrieval that takes into account the200

translatability of data between different organisms. In particular, we use the GFA to detect shared201

transcriptomic responses between the three model organisms in the database: human in vitro, rat in202

vitro and rat in vivo. Now, we can examine the similarity in the responses in the lower-dimensional203

latent space of the model. More importantly, we can focus our examination into the part of the204

latent space that is shared between the model organisms (details in the section Material and205

Methods). The shared latent factors describe the drug-responses that are conserved across the model206

organisms, and thus are likely to have potential for the generalization to humans as well.207

208

We evaluate the retrieval using as ground truth the drug-induced liver injury (DILI) label and209

concern classes14, as well as more detailed information about the drugs' mechanism of action based210

on the anatomical therapeutic chemical26 (ATC) classes. We compare with rank-based connectivity211

mapping19 and simple correlation between the differential expression profiles. As a measure of212

performance, we use mean average precision.213
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Retrieval from single-organism database214

Transcriptomic drug response data are informative about both the toxicity and mechanisms of215

action (Figure 2), resulting from off-target and on-target effects of the drug, respectively. For all216

organisms, types of validation classes and used similarity measures, retrieval based on the217

transcriptomic database lead to a higher performance than expected by chance. This indicates that218

the transcriptomic response data on model organisms is informative of the toxicity of the drugs on219

humans at the population level. However, the results are not conclusive of the relative performance220

of the individual organisms. Retrieval performance is observed to be almost as sensitive to the221

choice of the similarity measure as it is to the choice of the organism.222

Retrieval from cross-organism database223

We study the potential of cumulating biological information from existing model organism224

experiments to increase the amount of knowledge that can be extracted from human in vitro225

experiments. We focus on human in vitro experiments, because they are more ethical and less226

expensive than in vivo experiments and could potentially replace in vivo animal studies in the future.227

228

We examine model-based retrieval performance from a cross-organism database of transcriptional229

measurements, given a human in vitro sample as a query. The results show that retrieval230

performance is improved by using the cross-organism database of experiments compared to single-231

organism retrieval, when the retrieval is based on responses conserved across the model232

organisms (Figure 3). The outcome is consistent on all the three validation classes. This is indirect233

evidence for the hypothesis that compared to organism-specific responses, conserved responses of234

model organisms are more likely to generalize to humans at the population level.235
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Discussion236

We have analyzed drug toxicity using a new machine learning approach that identifies cross-237

organism toxicogenomic associations. This is a key step towards developing methods for predictive238

toxicology. The identification of associations that generalize reliably across multiple organisms,239

especially from in vitro to in vivo, is essential for toxicity analysis. This approach has potential for240

predicting drug toxicity in humans based on in vitro experiments, thus reducing the need for animal241

studies in vivo.242

243

The TG-GATEs data set with experiments on three model organisms has given us the opportunity244

to take a data-driven approach for cross-organism toxicogenomics. The group factor analysis model245

for toxicogenomic responses is flexible about the type of responses: neither genes nor biological246

pathways are restricted to be the same between the organisms. Minimum two model organisms are247

needed for identifying conserved responses. A new experiment in one organism can then be248

generalized via retrieval. The model can operate in the “small n, large p” regime thanks to the249

probabilistic approach and the sparsity assumptions.250

251

We have shown how our probabilistic model finds biologically relevant associations between252

transcriptomic drug responses and pathological findings from rats, and that many of these253

associations generalize across in vivo and in vitro organisms. However, the predictive performance254

of these linear associations is very limited, probably due to limited amount of data, as the255

pathological findings have been observed only for a few rat samples.256

257

Since quantitative linear prediction of toxicological outcomes is limited in performance, we propose258

an alternative toxicity analysis scheme. It is based on information retrieval, where the task is to259

search for the most relevant drugs from the database of existing experiments, given a new query260
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drug. Based on the most relevant drugs retrieved, the user can then construct a hypothesis of the261

toxicity and other properties of the query drug. This can support expert decision making.262

263

We first studied the retrieval performance using the differential gene expression data only, and264

confirmed earlier findings22,23 about the suitability of the retrieval approach to the task of265

identification of toxic drug compounds. We then showed that when we do retrieval based on cross-266

organism associations, we were able to improve the retrieval performance, as compared to single-267

organism retrieval. This indicates that the cross-organism associations detected by the model are268

relevant for human toxicity and give hope that the in vivo animal studies could be replaced with in269

vitro studies in the future.270

Materials and Methods271

We report the pre-processing done for the data before modeling, the model description, and the272

technical details of the two experiments (Cases 1 & 2). The details of Cases 1 and 2 are described in273

the subsections Model-based exploratory analysis and Retrieval of relevant experiments,274

respectively.275

Data pre-processing276

The data set of the Japanese Toxicogenomics Project (TGP) includes transcriptional data from three277

model organisms: primary hepatocyte cells from humans and rats grown in vitro, and similar cells278

extracted from rats in vivo. The conditions of the experiment can be summarized as three279

experimental factors: administered drug compound, its dosage and time from the administration of280

the compound. For the analysis in this work, we selected the subset of experimental factor levels281

that are observed in all three organisms. This set includes 119 drug compounds administered at two282

dosage levels (middle & high) and measurements made at two time points after the283

treatment (8/9 h & 24 h). Histopathology of the liver had been examined from the extracted livers in284



Suvitaival et al. Cross-organism toxicogenomics with group factor analysis 15/28

the rat in vivo experiments at the same time points and dosage levels, providing a pathological285

finding class and severity grading for each sample. The data were downloaded from the website of286

the CAMDA challenge27, where the transcriptional observations were provided in a FARMS-287

summarized28 format.288

289

For the modeling task, we considered each treatment – a combination of compound, dose and time –290

as a single sample in the model. We selected transcriptomic probes, which have non-zero variance291

across the samples and which appear in all the three transcriptomic microarray data sets. This was292

done to make the data sets from different organisms balanced in their size in order to allow a fair293

comparison between the relevant information content in them. However, the model itself does not294

require the variables of the data sets to be matched and the analysis could alternatively be done on295

all probes as well.296

297

We computed the average differential expression of the treated samples against the corresponding298

control samples. We represented the pathological finding classes for each sample as a grade-299

weighted count. As the four data matrices (differential gene expression ,  and300

, as well as pathological findings ) are now matched by their samples, we call the301

matrices different views of the data.302

Model303

We have N observation vectors ( ), corresponding to measured transcriptional and toxicological304

responses to drug treatments indexed as = 1, … , . Observations from one measurement type m305

are concatenated as columns of a data set ( ). All data sets are matched by co-occurring306

observations, that is, they can be regarded as views. We assume the transcriptomic data contain307

complex drug-induced response patterns embedded in measurement noise. We are interested in308
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finding these patterns and, more importantly, in associating them to toxic outcomes. Response309

patterns that are present in multiple views provide valuable information for interpretation and data310

translation. The task suits well to the problem formulation of group factor analysis18 (GFA), which311

learns associations between matched data sets.312

313

GFA is formulated as a Bayesian latent factor model, where the data are explained by factors. Each314

observation ( ) from the mth view is generated from a multivariate normal distribution315

( ) ( ) , ( ) , (1)

where  are the latent factors for the nth observation, ( ) are the factor loadings for the mth316

view, and the noise covariance matrix is assumed to be diagonal, ( ) = , with a view-specific317

precision . The main task is to learn how factors are associated with the views: each factor318

describes associations between any combination of the views. Thus, some factors are shared across319

all the views, some are shared by a subset of the views, and the rest are specific to a single view.320

For a view m that is not associated with factor k, the kth column of ( ) is automatically set to321

zero by the model. With variables from each view seen as groups, this is equivalent to group-sparse322

factor loadings.323

324

GFA learns the associations by employing a group-sparse prior distribution for the factor loadings.325

That is, each column of ( ) is generated from a normal distribution326

:,
( ) 0, ( ) , (2)

where precision ( ) is drawn from a gamma prior distribution,327

( )
,  , (3)

with small values for the shape parameters  and . Gamma distribution is conjugate to normal328

distribution with a known mean. When the prior and the likelihood are conjugate, posterior329
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inference through Gibbs sampling is possible, as the posterior is of the same form as the likelihood330

and the parameters of the posterior distribution can be directly calculated based on the parameters331

of the prior and the likelihood. The model learns the sought-for associations for factor k by setting332

the ( ) of non-associated views m close to zero, thus pushing all the elements in the factor333

loadings  for those views jointly to zero. To complete the model description, a conjugate gamma334

prior,335

( , ) , (4)

 is set for the noise precisions, and the latent variables are generated from a normal distribution336

( , ). (5)

337

Factors capture response patterns in the observed data, for instance, sets of genes in the338

transcriptomic views that respond to sets of drug-treatments in a coherent fashion. Some of these339

patterns are shared across views. Each factor and the corresponding loadings are assumed to340

represent a biological process and we are interested in interpreting them. Thus, each factor is341

assumed to be related to a sparse set of drugs and each loading to a sparse set of variables, for342

example genes. Further, we assume that each drug induces a sparse set of response patterns343

corresponding to sparsity of . Motivated by these assumptions, we modify the priors for GFA in a344

way that leads to a more easily interpretable model.345

346

We extend the plain GFA by assuming that, in addition to the group sparsity, both the factors and347

the factor loadings are element-wise sparse. With this extension, the GFA model becomes a multi-348

view biclustering model, generalizing the factor analysis-based multiplicative biclustering model349

(FABIA)29 to multiple views of the data. Further, FABIA and GFA with the element-wise sparsity350

structure extend the Bayesian plaid model30 from additive responses to multiplicative responses.351

352
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We modify the priors of the GFA model to achieve the element-wise sparsity for the factors and the353

factor loadings by drawing them both from a two-component mixture distribution. In the mixture,354

the first component corresponds to a delta distribution  with a peak at zero, and the second to a355

normal distribution with a zero mean and an unknown precision. This construction corresponds to a356

spike-and-slab prior31,32, where the spike is a delta distribution and the slab is a normal distribution.357

358

Mathematically, the spike-and-slab prior for the factors is written as359

, ,
( ) 0, ,

( ) + 1 ,
( ) , (6)

and for the factor loadings as360

,
( )

,
( ) 0, ,

( ) + 1 ,
( ) . (7)

Binary variables ,
( ) and ,

( )  indicate whether ,  and ,
( ), respectively, are set to zero or361

drawn from a normal distribution. The ,
( ) are drawn from a Bernoulli distribution,362

,
( ) ( ) , (8)

where the expectation ( ) is specific to each factor k and view m. The ( ) is drawn from a beta363

distribution364

( )
, (9)

with shape parameters and . The beta prior distribution is conjugate to the Bernoulli365

distribution, leading to a posterior, which is Bernoulli-distributed. A similar construction is used for366

the ,
( )  but now the expectation is shared across observations. When ( ) is close to zero, the kth367

column of ( ) is suppressed to zero jointly, implementing group sparsity. We also find shared368

noise for each view too limiting and instead allow variable-wise independent noise by assuming a369

non-isotropic diagonal ( ) whose elements are drawn independently from a gamma distribution.370

371
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Since all the priors are conjugate, we implement inference using Gibbs sampling. The sampler372

learns the model for the TG-GATEs data set overnight on a standard desktop computer. A373

variational Bayesian approximation, presented for the vanilla GFA model earlier18, may be useful374

for larger data sets.375

Model-based exploratory analysis376

We study the biological interpretability of the learned associations which are represented by factors377

of the model. More specifically, we focus on factors that are shared across all the views. In order to378

do that, we need to define a threshold for a factor to be considered shared by the views. We379

consider the kth factor as shared, if in each of the m views there exists at least one non-zero value in380

the loadings vector :,
( ) of the kth factor. In Case 1, we study associations that generalize across381

the transcriptomic views ,  and , and the pathology view .382

383

For the interpretation of the model, we want to study the importance of individual variables of the384

observed data to the detected association. For the kth factor representing an association between the385

views, we do this by examining its loadings :,
( ) across the m views.386

387

For biological interpretation, we rank variables of the observed data for each factor-view pair (k,m).388

The ranking is done by sorting the loadings :,
( ) by their magnitude. For the transcriptomic data389

views, this procedure leads to a ranked list of transcriptomic microarray probes. The drug-response390

behavior of the top-ranked probes can be seen as being explained by the factor based on which the391

ranking was done.392

393



Suvitaival et al. Cross-organism toxicogenomics with group factor analysis 20/28

To detect biological processes, whose changes in the mth transcriptomic view are explained by394

the kth factor, we computed the hyper-geometric enrichment test25 for gene ontology (GO) terms of395

the transcriptomic probes for the factor-transcriptomic view pair. The p-values of the test were396

controlled for false discovery with the Benjamini-Hochberg correction33 at the level 0.05.397

Associations between the enriched pathways and pathological findings were reported in Figure 1398

based on factor loadings of the pathology view.399

Retrieval of relevant items400

Retrieval means the search of relevant items given a query item. Given the query, the relevance of401

the items in the database is computed based on a similarity measure, and the items are retrieved in402

the ranked order of similarity.403

404

In Case 2, the items are drug-treatments. We retrieved drug-treatments relevant to the query405

treatment from the database based on their similarity in transcriptomic responses, either using a406

single-view database ,  or , or using a multi-view database consisting of407

all the three transcriptomic views.408

409

For single-view retrieval, we considered two similarity measures. In the first measure410

(“correlation”), similarity is defined simply as the correlation between the transcriptomic profiles of411

the query and the database from the organism in question. As the second measure (“rank-based”),412

we used a ranked-based approach, also known as connectivity mapping19. To compute the similarity413

of the items, we followed the procedure by Iorio et al.20 In brief, we used a signature of the 250414

most differentially expressed genes, and computed the average enrichment score similarity between415

the query signature and the entire ranked list of genes of each of the database items.416
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Multi-view database417

The simple approach used to compare the query against a single-view database is not directly418

applicable, when the database and query come from different views or from a different set of views.419

In either of the cases, we can utilize GFA to detect cross-view associations that then enable the data420

translation between the query and the database domains and allow us to retrieve relevant items421

across views.422

423

 The database contains data matrices ( ) ×  representing views = 1, … , . In each view,424

items are organised as rows and variables as columns. Items are co-occurring between the views.425

The query item ( ) may be observed in a subset of the database views. In the experiment of426

this article, the query item is an observation vector from the human in vitro transcriptomic view,427

while the database consist of all the three transcriptomic views.428

429

Since the data domains of the query and the database now are different, similarity search cannot be430

done in the original data domain as it was done with a single-view database. Latent representation431

of GFA allows us to carry out the similarity search between items that are observed in different432

domains. First, we learn a GFA model for the database items. Then, using the learned factors, we433

learn a latent representation for the query item. Having a latent representation for both the query434

item and the database items, we can carry out the similarity search in the latent space of the model.435

Again, we use correlation as a similarity measure, but now in the latent space instead of the original436

data domain.437

Validation438

We validate the retrieval outcome using external information for the items. First, we use the drug-439

induced liver injury (DILI) label and concern classes14, which describe the toxic risks of the drugs440
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observed for the large population of consumers. Second, we use the anatomical therapeutic441

chemical (ATC) codes26 at level 4 to give more detailed information about the drugs' mechanisms442

of action.443

444

We measure the retrieval performance in terms of mean average precision at retrieving items with445

the same class with the query. We compare the retrieval performance to the performance that446

follows the randomization of the class information. For the randomization, we report the mean and447

confidence intervals with the width of two standard deviations.448
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Figure legends457

Figure 1: The model detects drug response patterns that generalize across organisms and are458

associated to organ-level changes driven by toxicity. Also the biological interpretation of the459

associations represented by a factor generalizes across organisms: changes at the molecular level460

are interpretable as a biological process. The “eye diagram” shows identified associations between461

pathological findings (left) and enriched gene ontology (GO) terms (right), represented by factors of462

the model (middle). Line widths between pathological findings and factors indicate the magnitude463

of factor loadings learned by the model. Line widths between factors and GO terms indicate the464

strength of the enrichment. Associations are shown individually for each organism and factor:465

organisms are indicated as small nodes attached to the nodes of the factors. Factors are named466

alphabetically from A to H; organisms are human in vitro (1), rat in vitro (2) and rat in vivo (3).467

468

Figure 2: All model organisms are informative of the human population-level risk of toxicity. The469

figure shows how much information the retrieved similar drugs give about the DILI concern, DILI470

label and ATC level four class, of the query drug. The figure shows the top-10 mean average471

precision (y-axis) for each organism (x-axis) when used for the retrieval. Retrieval based on472

differential expression data gives above-random results for each organism using both the correlation473

and rank-based similarity measure. For the randomized results, shaded areas indicate the 95 %474

confidence intervals.475

476

Figure 3: GFA-based cross-organism approach leads to a higher performance in the retrieval of477

similar compounds to a human in vitro query. The figure shows the top-k mean average precision as478

a function of the number k of retrieved highest-ranking samples. GFA utilizes the cross-organism479
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associations learned from the database while the other methods rely on the human in vitro data only.480

For the randomized results, shaded areas indicate the 95 % confidence intervals.481

Tables482

Table 1: An example retrieval result shows notable similarity to the query both by toxic and483

therapeutic properties. Using imipramine as a query, the five most similar compounds are retrieved484

based on the GFA model. The table shows the class labels of the retrieved compounds.485

Rank Compound DILI

concern

DILI label ATC code

Query Imipramine Less Adverse reaction Non-selective monoamine

reuptake inhibitors

1 Chlorpheniramine No No mentioned

2 Amitriptyline Less Adverse reaction Non-selective monoamine

reuptake inhibitors

3 Ranitidine Less Adverse reaction H2-receptor antagonists

4 Hydroxyzine No No mentioned Diphenylmethane derivatives

5 Tacrine Most Warning and precaution Anticholinesterases

486
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