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Abstract. Problems such as closed frequent subset mining, itemset min-
ing, and connected tree mining can be solved in a polynomial delay.
However, the problem of mining closed frequent connected subgraphs is
a problem that requires an exponential time. In this paper, we present
ECE-CloseSG, an algorithm for finding closed frequent unique edge
label subgraphs. ECE-CloseSG uses a search space pruning and applies
the strong accessibility property that allows to ignore not interesting
subgraphs. In this work, graph and subgraph isomorphism problems are
reduced to set inclusion and set equivalence relations.
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Graph/subgraph isomorphism · Set inclusion/equivalence

1 Introduction

The problem of interesting pattern mining is a main task in pattern mining and
has several application domains such as social network analysis [6], bioinformat-
ics [1,13] and Web mining [14]. It consists in finding patterns that satisfy a set of
constraints. The frequency is one of the most used constraints [4,5,7,10]. A fre-
quent pattern in a given collection/database D is a pattern that occurs at least
in δ structures of the database where δ is a given support threshold. In general,
the size of the set of frequent patterns is too large. This is due to the downward
closure property (all generalizations or sub-patterns of a frequent pattern must
be frequent). Thus, the enumeration and the analysis of such a big set of frequent
patterns is a challenging problem. To overcome this issue, many research works
have focused on special types of frequent subgraphs that allow to restore the set
of all frequent subgraphs. These particular patterns are closed and maximal fre-
quent subgraphs. In this context, many efficient algorithms for mining closed and
maximal patterns have been proposed such as CloseGraph [18], SPIN [9], Mar-
gin [16] and ISG [15]. While mining closed and maximal patterns like itemsets,
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keys and trees needs a polynomial delay [17], [11], and [12], the situation gets
more complicated when complex patterns such as graphs are considered. The
task of mining graph patterns is called frequent subgraph mining (FSM) and
includes two main phases: (1) generation of candidates and (2) frequency test.
Frequency test has a variable cost according to pattern complexity. For example,
itemsets use set inclusion relation to test frequency, whereas trees use subtree
isomorphism. In contrast to these cases that need only a polynomial delay, an
exponential delay is required for graph databases (using subgraph isomorphism,
which is an NP-complete problem).

Recently, there has been an increased interest to identify a practically relevant
tractable graph class. Well-behaved outer-planar and unique edge label graphs
have been encoded using itemset codes that preserve subgraph isomorphism
orders (i.e., comparability). These codes are Block and Bridge Preserving (BBP )
[8] and Edges and Converses Edges triplets (ECE) [15] that allow solving the
isomorphism problem in a polynomial time.

In this paper, we propose ECE-CloseSG (Edges and Converses Edges
Representation for Closed SubGraphs), a novel algorithm that investigates the
search space strong accessibility to reduce the number of generated subgraphs
and to find closed frequent unique edge label connected subgraphs. Moreover,
ECE-CloseSG uses a set-theoretical representation in the candidate genera-
tion step and ECE encoding in the frequency closeness computation step. The
strong accessibility property allows to jump from a closed subgraph to its imme-
diate closed successors, which allows a significant reduction on the visited candi-
dates. We notice that the set-theoretical representation facilitates the candidate
generation task, and the ECE encoding allows graph (respectively subgraph)
isomorphism problem to be reduced to set equivalence (respectively set inclu-
sion) where the problem can be solved in polynomial time in the worst case. We
compared the performance of ECE-CloseSG to a naive algorithm that tries to
visit all the frequent subgraphs and outputs only the closed ones.

This paper is organized as follows. The next section presents the used nota-
tions. In Section 3, the proposed approach for closed frequent subgraphs in
unique edge label graphs is presented. In Section 4, comparative results on syn-
thetic datasets are reported. In Section 5, a survey of closed and maximal fre-
quent subgraph mining algorithms is presented.

2 Preliminary

In this section, we present some basic notations and definitions.

2.1 Notations

Definition 1. (Graph) A graph G = (V,E) is a collection of objects where V
is the set of vertices, and E ⊆ V × V is the set of edges.

We define a labelled graph by adding a set of labels Ψ and a function Γ : V ∪E →
Ψ that assigns for each vertex and for each edge a label of Ψ .
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Definition 2. (Labelled graph) A graph G = (V,E, Ψ, Γ ) is a labelled graph
where V is a set of vertices, E ⊆ V ×V is a set of edges, Ψ is a set of labels and
Γ is a labelling function for all edges and nodes.

An undirected graph is a graph in which edges have no orientation. An edge
e = (u, v) has two end-points u and v. Two edges are adjacent if they share the
same end points. The degree of a vertex v (denoted by degG(v)) is the number
of its incident edges.

Definition 3. (Unique edge label graph) A graph G = (V,E, Ψ, Γ ) is a
unique edge label graph if and only if each edge label occurs at most once.

Example 1. Figure 1 shows some examples of unique edge label graphs. The
graph G4 is not a unique edge label graph because edges (a, b) and (a, c) share
the same label.

Fig. 1. Example of undirected labelled connected graphs.

Definition 4. (Isomorphism) A graph isomorphism from G1 = (V1, E1) to
G2 = (V2, E2) is a bijective function ϕ from E1 to E2 such that: ∀ u, v ∈ V1 ⇐⇒
(ϕ(u), ϕ(v)) ∈ E2.

Definition 5. (Subgraph isomorphism) G1 = (V1, E1) is a subgraph isomor-
phism into G2 = (V2, E2) if there is a bijection function ϕ from G1 to G′

2 where
G′

2 is a subgraph (⊆sgi) of G2.

2.2 Closure Operator and Set System

Let P be a poset system (a set of subsets). A mapping σ : P → P is called a
closure operator if it satisfies for all X,Y ∈ P that

• X ⊆ σ(X)(extensivity);
• X ⊆ Y → σ(X) ⊆ σ(Y ) (monotonicity);
• σ(X) = σ(σ(X))(idempotence).

In data mining, a different closeness definition is used. The support-closed pat-
tern of a dataset is defined as follows. Given a transactional database, a pattern
is closed if there is no specific pattern that has the same support of the original
pattern.

In the following, we give a definition of a set system and we present some of
its properties.
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Definition 6. (Set system). A set system is an ordered pair (R,P), where R is
the ground finite set and P is a non-empty subset of the power set of R, P ⊆ 2R.
A non-empty set system (R,P) is:

• a closed system if R ∈ P, and X,Y ∈ P implies X ∩ Y ∈ P;
• accessible if for all X ∈ P\{∅} there is an e ∈ X such that X\{e} ∈ P;
• strongly accessible if for every X,Y ∈ P satisfying X ⊂ Y , there is an

e ∈ Y \X such that X ∪ {e} ∈ P;
• independent if Y ∈ P and ∀X ⊆ Y → X ∈ P;
• a confluent if ∀I,X, Y ∈ R with ∅ �= I ⊆ X and I ⊆ Y it holds that

X ∪ Y ∈ P.

3 Closed Frequent Subgraph Mining in Unique Edge
Label Graphs

In this section, we present ECE-CloseSG, an algorithm for closed frequent
subgraph mining in unique edge label graphs. We first present the subgraph
system, the ECE representation and the support closure operation. Then, we
present the basic steps of the ECE-CloseSG algorithm.

3.1 Connected Subgraph System

The main objective of the proposed approach is to restrict the search space. To
this end, the strong accessibility of the subgraph system, and non-redundancy of
the data D are required. A subgraph system considered in this work is the family
of edge sets that induce connected subgraphs of Gi ∈ D. A subgraph system Pi

of a given graph Gi(Vi, Ei) ∈ D satisfies Pi ⊆ P(Ei), where P(Ei) denotes
the power set of the set of edges Ei. Here, we study the strong accessibility of
a connected subgraph system Pi. A subgraph system Pi is strongly accessible
means that every X ∈ Pi can be reached from all Y ⊂ X with Y ∈ Pi via
extension with single edge inside Pi.

Theorem 1. A unique edge label subgraph system Pi is strongly accessible.

Proof. Let X be a connected subgraph where X ∈ Pi, if X is a graph that
contains a cycle then we just drop an edge e from the cycle and the result
X\e ∈ Pi. Otherwise, if X does not contain a cycle (a tree), we just drop one of
its leaves. Given two graph X1,X2 ∈ Pi with X2 ⊂ X1. Assume that there is no
edge e ∈ X1\X2 such as X2 ∪ e ∈ Pi. So, X2 and X1\X2 are two disconnected
components in G[X1] which contradicting the choice of X2.

This property improves the enumeration process because any closed frequent
subgraph can be reached from anyone that has been already found by one edge
augmentation [2].
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Table 1. ECE 3-edge graph encoding

Graph ECE Items commonID typeID

G1 (a, 1, a), (a, 2, a), (a, 3, a), (1, a, 2), (2, a, 3), (1, a, 3) (1,2,3) ((1,2,3),150)

G2 (a, 1, a), (a, 2, a), (a, 3, a), (1, a, 2), (2, a, 3), (1, a, 3) (1,2,3) ((1,2,3),200)

G3 (a, 1, a), (a, 2, a), (a, 3, a), (1, a, 2), (2, a, 3) (1,2,3) ((1,2,3),100)

3.2 Edges and Converse Edges (ECE) Representation

Graph representation has a significant influence on memory usage and execution
time. In this work, ECE-CloseSG uses two different graph representations,
where the algorithm swings between: (1) a set-theoretical (vertices, and edges
sets) to facilitate the augmentation and the connectivity tasks, and (2) an ECE
codes to simplify the frequency tests.

The ECE encoding is a mapping of different parts of graphs to set of items.
Every edge e = (u, v) is represented by a 3-tuple (etu, ete, etv), where etu, etv
are the labels of the two vertices connected by e; ete is the label of e. Moreover,
each 3-edge connected substructure is represented by two sign items (i.e., items
that show the 3-edge connectivity and their structural form: a linear chain, a
triangle, or a spike). Thus, to ensure unambiguous decoding of an ECE code
to the right graph. Sign items can be presented by a first unique item that is
assigned to each three connected edges noted the commonID item, and a second
item noted typeID item to precise the type of the three edges code (i.e., triangle,
spike and linear chain). Table 1 presents ECE codes of the three edge graphs
(G1, G2, G3) illustrated in Figure 2.

Fig. 2. Example of connected graphs.

Table 1 shows an identical ECE code of two different graphs G1 and G2 where
the codes of G1 and G2 include the ECE code of G3. However, this encoding
allows preserving graphs’ equivalence relation. Additionally, it is trivial to note
that a graph ECE code is the union of the ECE codes of its 3-edge connected
subgraphs.

As mentioned earlier, we propose to use ECE codes to apply subset relation
that replaces the subgraph isomorphism test. This will reduce the frequency
test complexity. Unfortunately, there is a failure case, and ECE encoding does
not preserve incompatibilities and affects frequency test’s accuracy. Therefore,
two incomparable graphs can have two comparable ECE codes. This occurs
in graphs having more than two linear chains’ subgraphs. Figure 3 presents



48 N. El Islem Karabadji et al.

two connected incomparable graphs g1(i.e., g), and g2(i.g., g’) and their 3-edge
connected subgraphs (parts (a) E(g1) and (b) E(g2)). The two graphs are not
isomorphic, but g2 contains all 3-edge subgraphs of g1 (i.e., E(g1) ⊂ E(g2)). Thus,
g1 ECE code is included in g2 ECE code. According to this ECE failure, g1 is a
subgraph of all graphs Gi that include g2, but this is not the case when subgraph
isomorphism is used. Assume that the database D contains two graphs G1 and
G2. The two graphs contain g1 and g2 respectively. For a frequency threshold
=2, g1 is listed frequent, but it occurs only once at the first graph G1.

Fig. 3. Encoding failure example.

For two incomparable graphs g and g′, we have an ECE encoding failure
when subgraphs E(g′) of g′ contain all subgraphs E(g) of g. Specifically, there
are two equal sized subgraphs s ⊆sgi g and s′ ⊆sgi g′ having the same edges and
E(s) ⊂ E(s′), but s and s′ are incomparable graphs. The first subgraph (i.e., s) is
a simple path (sequence of linear chains) that begins and ends with two distinct
vertices with an identical label. The second one (i.e., s′) is a circuit that shares
the same edges of s in the same order, but begins and ends with the same vertex.
Closing the last edge of a chain toward the initial vertex produces two new linear
chains’ subgraphs. Therefore, to detect a failure with respect to two graphs g and
g′, we first seek couples of suspicious edges. Then, the suspected pairs of edges are
tested. These edges are identified following characteristics: (1) two edges (e1, and
e2) are not connected if ECE(g) does not admit a converse edge that represents
a connection between e1 and e2, and (2) in ECE(g), there is no commonID item
that includes the two edges. Additionally, any edge expansion requires adding:
(a) one edge code item, (b) some edge converse codes (according to the degrees
of the vertices), and (c) some corresponding sign items. For instance, the graph
G4 in Figure 2 is an augmentation from G2 by adding the edge e = (a, 4, a).
The code of G4 (ECE(G4)) is constructed by appending ECE(G2, the code
of the edge e, one converse code and two sign items (ECE(G4)=ECE(G2) ∪
{(a, 4, a), (2, a, 4), (1, 2, 4), ((1, 2, 4), 100), (2, 3, 4), ((2, 3, 4), 100)}).

Moreover, the support set of X with respect to D, noted D[X], is a set of
transactions containing X set, where the support-closure operator is defined
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by σ(X) = ∩D[X]. According to this support-closure operator, the result
ECE(g) can be ambiguous, when it contains a 3-edge commonID item with-
out the presence of its typeID item. For example, let D′ = {ECE(G1),
ECE(G2), ECE(G3)}, σ((a, 1, a)) = {(a, 1, a), (a, 2, a), (a, 3, a), (1, a, 2), (2, a, 3),
(1, a, 3), (1, 2, 3)}, the three item sets share the three edge triplets (a, 1, a),
(a, 2, a), (a, 3, a), the converse edge triplets (1, a, 2), (2, a, 3), and the 3-edge com-
monID item ((1, 2, 3)), but they do not share any of the typeID items. The
∩D[(a, 1, a)] would form an ambiguous itemset which would form more than
one possible graph. A postprocessing phase is required for finding the maximal
frequent itemsets that form closed no conflicting itemsets. This phase begins
by forming an initial set of components based on the couple of edges that
belong to each converse edge triplet, and recursively extending these compo-
nents until they cannot be extended. According to our example, the components
are {(a, 1, a), (a, 2, a), (1, a, 2)} and {(a, 2, a), (a, 3, a), (2, a, 3)}.

Proposition 1. Let D and D′ two graphs, ECE(D) a set of sets, Gi ∈ D a
connected graph, g a subgraph of Gi such that g ∈ Pi. If y = σ(ECE(g)) is an
ambiguous itemset then it contains at least two maximal non-ambiguous itemsets
t0 and t1 such that D′[i] = D′[t0] = D′[t1].

Proof. Clearly for an unambiguous itemset y there exist at least one 3-edge
commonID item without its typeID item, and this commonID item refers to
at least two converse edges (in the case of a linear chain). This implies to start the
postprocessing by two components, which are recursively extended to generate
two maximal non-ambiguous itemsets t0, t1 such that D′[y] = D′[t0] = D′[t1].

Assuming the proposition 1, and the fact that ECE encoding with respect to
the failure detection test is a bijective function from Pi → ECE(Pi), we deduce
that for any connected graph g ∈ Pi, the set of closed connected graphs that
contain g is Cg={ECE−1(σ(ECE(g)))}.

3.3 Support Closure Operation

While the strong accessibility guarantees the existence of a chain between each
consecutive closed connected subgraphs pair, calculating closure allows to jump
directly from an immediate successor of a closed one g to its closed subgraph
successor g∗ [2]. We notice that the itemsets closure of an itemset I is the inter-
section of the transactions containing I as a subset [17]. Unfortunately, for con-
nected subgraphs, the result of a subgraph closure is not unique and can be a
disconnected graph that does not even belong to the system. Therefore, we con-
clude that there is no closure operator in Pi, and we define the closure support
operation within Pi with respect to D as follows:

Definition 7. Let Pi be a subgraph system and D be a dataset. The support
closure of Pi with respect to D is defined by:

σ(i) = max Σ(i)
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Algorithm 1. | ECE-CloseSG

Input: a graph Gj ∈ D, support closure operator σ.
Output: σ(Fj): closed frequent subgraphs of Gj .

1: EF ← All frequent 1-edge graphs in Gj

2: i ← 0
3: Ci ← ∅
4: σ(Fj) ← C0

5: INi ← get-ind-generator (Ci, EF , Gj)
6: while INi �= ∅ do
7: Ci+1 ← get-closed (INi, EF , Gj)
8: σ(Fj) ← σ(Fj) ∪ Ci+1

9: INi+1 ← get-ind-generator (Ci+1, EF , Gj)
10: i ← i + 1
11: end while

return σ(Fj)

where Σ(i) = {i′ ∈ Pi : i ⊆ i′ et D[i] = D[i′]}
i.e., the set of subgraphs Σ(i) may have more than one maximal.

From this definition, we clearly notice that the closure of a connected graph
g ∈ Pi consists of all connected subgraphs of maximal size in Pi and having g
as predecessors and similar occurrences in D.

The set-theoretical representation simplifies the augmentation and connectiv-
ity test operations. However, the main motivation to use it is the transformation
facility of graphs to ECE codes; that reduces the graph/subgraph isomorphism
complexity to equivalence sets and inclusion sets tests. We recall that the clo-
sure of a graph g consists of a set of ECE codes. These ECE codes are the
result of a post-processing of an ambiguous ECE code X calculated by inter-
secting graphs Gi ∈ D ECE codes that contain the graph inductive generator
g code (i.e., X = ∩D[ECE(Gi)] s.t ECE(g) ⊆ ECE(Gi)). The post-processing
phase consists in replacing an ambiguous ECE code by the largest connected
and not ambiguous itemsets I included in ECE(g). Moreover, the code X may
correspond to an unconnected subgraph g′ �∈ Gi. To avoid this latter problem,
only the sub-code I ⊆ X that contains ECE(g) is considered. We note for the
best case, where there is a unique closed subgraph Y (i.e., an unambiguous
ECE code), calculating closure needs at least |D| inclusion tests and generation
operations.

3.4 The ECE-CloseSG Algorithm

The main objective of our proposed subgraph mining algorithm is to restrict the
number of visited subgraphs and to reduce the complexity of graph/subgraph
isomorphism tests. Algorithms 1, 2 and 3 illustrate our algorithm.
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Algorithm 2. | get-ind-generator
Input: a graph Gj ∈ D, a set of closed graphs Ci, and a set of frequent edges EF .
Output: IN : a set of ECE codes of inductive graph generators.

1: IN ← ∅
2: for each c ∈ Ci do
3: for each e ∈ EF do
4: if c ∪ e is connected then
5: g′ ←augmentation (c, e)
6: ECE(g′) ← encode (g′)
7: if is-frequent (ECE(g′), D′) then
8: IN ← IN ∪ ECE(g′)
9: end if

10: end if
11: end for
12: end for

return IN

Starting from the closed set C0 that contains only an empty subgraph (i.e., ∅)
that still considered closed frequent when the data D is non-redundant [2]. Then,
for each set of closed frequent subgraphs Ci, each closed c ∈ Ci is extended
to generate all possible inductive generator subgraphs (i.e., using get-ind-
generator function). Thus, a level INi of inductive generator subgraphs is
generated from each level of closed frequent subgraphs Ci. Next, closure of each
subgraph in INi is calculated to generate the next level of the closed frequent
subgraphs Ci+1 (i.e., using get-closed function). In order to avoid redun-
dancy, all closed and inductive subgraphs already visited at previous levels are
eliminated. Finally, these steps are repeated until no new generator inductive
subgraph is generated (i.e., INi = ∅).

More specifically, ECE-CloseSG algorithm consists of four steps:

1. the graph data D is encoded to a transactional database D′ containing a list
of itemsets.

2. starting at the closed set C0 which contains only an empty subgraph ∅, all
codes of inductive generator subgraphs are generated from C0. Algorithm 2
illustrates the pseudo-code of the get-ind-generator function that allows
generating inductive generator subgraphs. This function receives as input a
set of closed graphs Ci, the frequent edges EF and the graph Gi, and generates
all the codes of the inductive generator graphs IN . For each closed subgraph
g ∈ Ci, all extensions that generate connected subgraphs are applied and
encoded as an ECE code. The frequent ones are added to the set IN .

3. for each set of ECE codes INi, the closure is computed. Algorithm 3 shows
the pseudo-code of computing the closure function (noted get-closed). This
function receives as input a set of ECE codes, the frequent edges EF and
the graph Gj . It generates the set of closed connected graphs Ci+1. For each
of the ECE codes (ECE(X) ∈ INi), the intersection of all codes in D′ that
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Algorithm 3. | get-closed
Input: a graph Gj ∈ D, a set of ECE codes INi, and a set of frequent edges EF .
Output: Ci: a set of closed connected subgraphs.

1: for each ECE(X) ∈ INi do
2: ECE(Y ) ← ∩D′[ECE(X)]
3: if ECE(Y ) is an ambiguous code then
4: MaxECE ← get-sub-codes (ECE(Y ))
5: for each ECE(Z) ∈ MaxECE do
6: g′′ ← reconstruct (ECE(Z), Gj)
7: Ci ← Ci ∪ g′′

8: end for
9: else

10: g′′ ← reconstruct (ECE(Y ), Gj)
11: Ci ← Ci ∪ g′′

12: end if
13: end for

return Ci

contain the code ECE(X) with respect to a negative test of an encoding
failure test. Further, for each code ECE(X) a new code ECE(Y ) is gener-
ated (ECE(Y ) = ∩D[ECE(X)]). This code may correspond to an ambigu-
ous and/or disconnected graph. Then, the ambiguity and the connectivity of
each newly generated code ECE(X) are checked. If it is an ambiguous code,
ECE(X) will be replaced by a set of unambiguous sub-codes MaxECE, and
for each of these codes a graph g′′ is reconstructed. If the code is unam-
biguous, then the corresponding graph g′′ is generated. Finally, each graph is
reconstructed and added to the set of closed subgraphs Ci.

4. each set of closed subgraphs Ci is added to the global closed set σ(Fj) and
both step 2 and step 3 are repeated until no new inductive subgraph generator
is generated. The global closed set σ(Fj) is returned.

4 Experimental Study

The proposed closed frequent subgraph mining algorithm is implemented in Java
and tested on synthetic datasets, which are generated by GraphGen [3], a graph
generator that generates graph data based on five parameters: T (the number of
graphs), S the size (i.e., the number of edges) of each graph. The size is defined
as a normal distribution with the input as the mean and five as the variance.
ETE (respectively ETV ) represents the number of distinct edges (respectively
the number of the labels of the vertices), L represents the density of each graph.
The latter is defined as the number of edges in the graph divided by the number of
edges in a complete graph, i.e., L = |E|/(|V |(|V | − 1)/2). After data generating,
a post-processing step is invoked, the edge labels of each graph are randomly
modified such that graph satisfies the constraint of unique edge labels.
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Table 2. Experimental results with frequency support=2% and ETV=20.

Dataset Runtime (s)

|D| S ETE L |F| |C| ECE-CloseSG NAIVE

20 20 0.1 2867 1420 1.76 10.32
T = 100 20 20 0.4 5032 1660 4.86 20.59

20 20 0.7 6058 1059 12.44 28.31
20 20 0.1 4961 2004 5.43 62.07

T = 200 20 20 0.4 6342 2207 9.05 43.97
20 20 0.7 7224 1897 15.08 63.38
30 40 0.1 5690 3364 29.37 199.86

T = 300 30 40 0.4 7351 4144 60.87 338.92
30 40 0.7 7731 3954 124.12 439.60
30 40 0.1 5692 3590 77.75 1129.30

T = 400 30 40 0.4 8395 5585 183.29 1199.69
30 40 0.7 8909 5149 440.35 1291.04
30 40 0.1 6045 4243 153.05 3488.83

T = 500 30 40 0.4 9234 6721 487.61 2481.30
30 40 0.7 9693 5982 944.77 3591.94

We run our experiments on a 2.9 GHz Intel i7 PC with 8 GB of RAM.
Running times of ECE-CloseSG are analyzed for frequency support value of
2%. The set of graphs are generated by varying the parameters of the graph
generator as follows: (1) the number of graphs T from 100 to 500; (2) S as
20 and 30 that overlap with a high probability the intervals [10,30] and [15,45]
respectively; (3) Vertex and edge labels: ETV 20, ETE 20 and 40; (4) density
ranges from 0.1 to 0.7. This variation of parameters aims to prove a picture of
ECE-CloseSG behaviour over different graph datasets.

Table 2 lists the results of the proposed algorithm on synthetic datasets. It
presents:

1. the number of frequent connected subgraphs generated by NAIVE, a naive
algorithm that explores all the search space to find all frequent ones first, and
then filters them to list only the closed ones.

2. the runtime and the number of closed frequent connected subgraphs listed by
ECE-CloseSG.

3. the runtime of the NAIVE algorithm.

The presented results show a significant difference in the size of the set of
frequent subgraphs F compared to the closed frequent ones C. Moreover, Table 2
illustrates a total domination of the proposed algorithm compared to the NAIVE
algorithm. ECE-CloseSG performs 10 times faster than the NAIVE algorithm.
In addition, we observe that increasing the graph size and the densities allow
to increase the runtime of ECE-CloseSG to list the closed subgraphs. Finally,
ECE-CloseSG requires more important runtime with respect to the value of
the density, which increases the number of triples in a graph, where the encoding
and decoding, as well as inclusion and equivalence tests, will be more complex.
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5 Related Works

Mining only closed and maximal frequent subgraphs is the common way to
reduce the huge number of frequent subgraphs. A typical closed and maximal
frequent subgraph mining task consists of two steps. The first step lies in finding
all frequent subgraphs F . The second step consists in filtering the frequent sub-
graphs in order to keep only the closed and maximal ones. This approach seems
to be not efficient due to the huge number of subgraphs to be visited in order
to find the maximal frequent ones. To avoid exploring all frequent subgraphs,
existing closed and maximal frequent subgraph mining algorithms use pruning
techniques to reduce the search space. In this section, we discuss most popular
algorithms that were proposed to solve this problem.

CloseGraph [18] is a closed frequent subgraph mining algorithm that uses
adjacency lists to store graphs and to test frequency, whereas an ordered
sequence’s edges code (called DFS lexicographic order) is used to generate can-
didates and to detect redundancy. CloseGraph adopts a pruning technique to
restrict the search space. This pruning technique uses an equivalent occurrences
property based on an early termination condition. This property allows to decide
whether a descendant super-graph of a given graph is a closed one or not. The
early termination condition means that the search process will be completely
stopped for some descendant branches, which effectively reduces the search
space.

In the case of maximal frequent subgraph mining, several algorithms such as
SPIN [9], Margin [16] and ISG [15] have been proposed.

SPIN [9] is based on the fact that most of the frequent subgraphs are trees
(acyclic graphs). In order to reduce the computation cost, SPIN mines all fre-
quent trees from a graph database and then built groups of frequent subgraphs
from the mined trees. Each group of frequent subgraphs consists in an equiva-
lence class, where each class is composed of subgraphs that share the same canon-
ical spanning tree. We mention that this grouping step is not efficient because we
still need to list all frequent subgraphs to construct maximal and frequent ones.
To avoid this problem, some optimization techniques (i.e., Bottom-Up Pruning,
Tail Shrink, and External- Edge Pruning) could be integrated to speed up the
mining process.

Margin [16] is a subgraph mining algorithm that mines only maximal frequent
subgraphs. Margin is based on the fact that maximal frequent subgraphs lie in
the middle of the search space, which implies a high computational cost. To
overcome this problem, Margin restricts the search space by visiting only the set
of promising subgraphs ̂F that encloses the frequent and infrequent subgraphs
lie on the border. For each graph Gi ∈ D, Margin works as follows. First, it
explores the search space (the subgraph system) in a depth-first way to find the
representative subgraph Ri. Then, it applies a method called ExpandCut on
the cut CRi and Ri where CRi is a super infrequent graph of Ri. ExpandCut
finds the nearby cuts and recursively calls itself for each newly found cut, until
no new cut can be found. Given a set of cuts (C|P ) in which ExpandCut is
applied, the frequent subgraphs P for each cut is reported as promising frequent
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subgraphs ̂F , and then only maximal local frequent subgraphs ML are kept
from the promising ones ( ̂F). Finally, the maximal global frequent subgraphs
M in the database D are listed by removing the set of graphs in ML, which are
proper subgraphs of other frequent graphs in ML.

ISG [15] is an algorithm for mining maximal frequent subgraphs over a graph
database with unique edge labels. In order to list these maximal frequent sub-
graphs, an itemset mining technique is used. The idea of ISG is to transform the
problem of maximal graph mining to maximal itemset mining. First, the graph
database D is transformed to a list of itemsets D′, where each graph in D is
encoded as a set of items. These items represent the edges and the converse edges
of the graph and 3-edge substructure that are contained in the graph (i.e., trian-
gle, spike, and linear chain). These 3-edge blocks are called secondary structures
and are added to avoid the problem of edge triplets and converse edge triplets
conversion to a graph. The edge triplets and converse edge triplets together do
not guarantee that the given maximal frequent itemset can be converted into a
graph. Each secondary structure is assigned to a unique item identifier in addi-
tion to the unique identifiers of the edge and the converse edge triplets that
compose the 3-edge block. Second, the transaction database D′ is used as input
to a maximal itemset mining algorithm. The set of the maximal code itemsets
MI is enumerated. Generally, there is no guarantee that all these codes corre-
spond to unique connected subgraphs (i.e., there is no bijection between MI

and a subgraph in P). The main problem over MI is that there are codes for
which the conversion generates disconnected graphs. To avoid these problems, a
post-processing step after the conversion of the codes that can not be converted
unambiguously is required. This step consists in converting a disconnected code
to a set of its connected graphs, and for the case of conflicting maximal frequent
itemset, it is broken to form non-conflicting subsets. After this post-processing
step, the set of generated subgraphs is filtered, and the subgraphs that are con-
tained in other subgraphs are pruned. Finally, the set of maximal connected
unique edge label subgraphs is mined. We mention that the ECE encoding does
not preserve the incomparability of subgraphs in a particular case. Thus, we
have noticed a failure that affects the frequency test, which explains the incom-
plete output. This phenomenon leads to produce false frequency results when
two incomparable graphs encoding can be comparable.

Besides the fact that subgraph mining related tasks are complex, and
graph/subgraph isomorphism test is a hard problem; current works do not show
up a significant optimization in the size of visited subgraphs during the mining
process.

6 Conclusion

In this paper, we have illustrated that the pattern search space system and
the complexity of frequency test affect the enumeration process of closed and
maximal frequent pattern mining algorithms. We proposed ECE-CloseSG, an
algorithm that mines the unique edge label connected subgraphs based on an
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encoding of the input graphs into a set of ECE items. This encoding allowed us
to reduce graph and subgraph isomorphism problems to set-equivalence and set-
inclusion tests, respectively. We investigated the strong accessibility property in
order to restrict the search space. The efficiency of the ECE-CloseSG algorithm
depends on the position of the border between infrequent and frequent nodes of
the search space. For a dense (respectively sparse) search space, the border lies
in the higher (respectively lower) levels.

In future works, we plan to do a comparative study of our approach with
existing closed frequent subgraph mining algorithms.
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