
BLADYG: A Novel Block-Centric Framework
for the Analysis of Large Dynamic Graphs

Sabeur Aridhi
∗

Aalto University, School of
Science, P.O. Box 12200,

FI-00076, Finland
sabeur.aridhi@aalto.fi

Alberto Montresor
University of Trento, Italy

alberto.montresor@unitn.it

Yannis Velegrakis
University of Trento, Italy
velgias@disi.unitn.eu

ABSTRACT
Recently, distributed processing of large dynamic graphs has
become very popular, especially in certain domains such as
social network analysis, Web graph analysis and spatial net-
work analysis. In this context, many distributed/parallel
graph processing systems have been proposed, such as
Pregel, GraphLab, and Trinity. These systems can be di-
vided into two categories: (1) vertex-centric and (2) block-
centric approaches. In vertex-centric approaches, each ver-
tex corresponds to a process, and message are exchanged
among vertices. In block-centric approaches, the unit of
computation is a block, a connected subgraph of the graph,
and message exchanges occur among blocks. In this pa-
per, we are considering the issues of scale and dynamism
in the case of block-centric approaches. We present bla-
dyg, a block-centric framework that addresses the issue of
dynamism in large-scale graphs. We present an implementa-
tion of bladyg on top of akka framework. We experimen-
tally evaluate the performance of the proposed framework.

Keywords
Distributed graph processing, Dynamic graphs, akka frame-
work

1. INTRODUCTION
In the last decade, the field of distributed processing

of large-scale graphs has attracted considerable attention.
This attention has been motivated not only by the increas-
ing size of graph data, but also by its huge number of
applications, such as the analysis of social networks [4],
web graphs [2] and spatial networks [10]. In this context,
many distributed/parallel graph processing systems have
been proposed, such as Pregel [8], GraphLab [7], and Trin-
ity [12]. These systems can be divided into two categories:

∗Work primarily done while the author was at the University
of Trento.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPGP’16, May 31, 2016, Kyoto, Japan
c© 2016 ACM. ISBN 978-1-4503-4350-3/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2915516.2915525

(1) vertex-centric and (2) block-centric approaches. Vertex-
centric approaches divide input graphs into partitions, and
employ a ”think like a vertex” programming model to sup-
port iterative graph computation [8, 13]. Each vertex cor-
responds to a process, and message are exchanged among
vertices. In block-centric approaches [16], the unit of com-
putation is a block – a connected subgraph of the graph –
and message exchanges occur among blocks.

In our work, we are considering the issues of scale and
dynamism in the case of block-centric approaches. Particu-
larly, we are considering big graphs known by their evolving
and decentralized nature. For example, the structure of a
big social network (e.g., Twitter, Facebook) changes over
time (e.g., users start new relationships and communicate
with different friends).

We present bladyg, a block-centric framework that ad-
dresses the issue of dynamism in large-scale graphs. bla-
dyg can be used not only to compute common properties
of large graphs, but also to maintain the computed proper-
ties when new edges and nodes are added or removed. The
key idea is to avoid the re-computation of graph properties
from scratch when the graph is updated. bladyg limits the
re-computation to a small subgraph depending on the un-
dertaken task. We present a set of abstractions for bladyg
that can be used to design algorithms for any distributed
graph task.

More specifically, our contributions are: (i) we introduce
bladyg and its computational distributed model; (ii) we
present an implementation of bladyg on top of akka [14],
a framework for building highly concurrent, distributed, and
resilient message-driven applications; (iii) we experimentally
evaluate the performance of the proposed framework, by ap-
plying it to the example problem of distributed k-core de-
composition of large graphs.

The rest of the paper is organized as follows. We present
bladyg in the following section. Sec. 3 presents some re-
search problems that can be solved using bladyg. Finally,
we describe our experimental evaluation in Sec. .

2. THE BLADYG FRAMEWORK
Figure 1 provides an architectural overview of the bla-

dyg framework. bladyg starts its computation by par-
titioning the input graph into multiple partitions, each of
them assigned to a different worker. Each partition/block
is a connected subgraph of the input graph. This partition-
ing step is performed by a partitioner worker that supports
several types of predefined partitioning techniques. bladyg

39

Figure 1: bladyg system overview

users may also implement their partitioning methods. It is
important to mention that bladyg allows to process large
graphs that already distributed among a set of machines.
This is motivated by the fact that the majority of the ex-
isting large graphs are already stored in a distributed way,
either because they cannot be stored on a single machine
due to their sheer size, or because they get processed and
analyzed with decentralized techniques that require them to
be distributed among a collection of machines. Each worker
loads its block and performs both local and remote com-
putations, after which the status of the blocks is updated.
The master worked orchestrates the execution of bladyg in
order to deal with incremental changes on the input data.
Depending on the graph task, the coordinator builds an ex-
ecution plan which consists of an ordered list of both local
and distant computation to be executed by the workers.

Each worker performs two types of operations:

1. Intra-block computation: in this case, the worker
do local computation on its associated block (parti-
tion) and modifies the status of the block.

2. Inter-block computation: in this case, the worker
asks distant workers to do computation and after re-
ceiving the results it updates the status of its associ-
ated block.

bladyg framework for large dynamic graph analysis op-
erates in three computing modes:

• In M2W-mode, message exchanges between the master
and all workers are allowed. The master uses this mode
to ask a distant worker to look for candidate nodes
i.e., nodes that need to be updated depending on the
undertaken task. The worker uses this mode to send
the set of computed candidate nodes to the master.

• In W2W-mode, message exchanges between workers
are allowed. The workers use this mode in order to
propagate the search for candidate nodes to one or
more distant workers.

• In Local-mode, only local computation is allowed. This

mode is used by the worker/master to do local com-
putation.

A typical bladyg computation consists of an input graph,
a set of incremental changes, a sequence of worker/master
operations and an output. The input of bladyg frame-
work is an undirected graph. Each vertex is uniquely iden-
tified by a vertex identifier and each edge is identified by a
unique edge identifier and its associated vertices. Incremen-
tal changes or graph updates consists of edge/node inser-
tions and/or removals. A worker operation is a user-defined
function that is executed by one or many workers in paral-
lel depending on the logic of the graph task. Within each
worker operation, the state of the associated block is up-
dated and all the computing modes of bladyg are activated.
Within each master operation, a user defined function that
defines the orchestration mechanism of the master is exe-
cuted. During a master operation Local-mode and M2W-
mode are activated.

3. APPLICATIONS
In this section, we apply bladyg to solve some classic

graph operations such as k–core decomposition [9] and clique
computation [15].

3.1 Distributed k-core decomposition
Let G = (V,E) be an undirected graph with n = |V | nodes

and m = |E| edges. G is partitioned into p disjoint partitions
{V1, . . . , Vp}; in other words, V = ∪p

i=1Vi and Vi ∩ Vj = ∅
for each i, j such that 1 ≤ i, j ≤ p and i 6= j. The task of
k–core decomposition [3] is condensed in the following two
definitions:

Definition 1. A subgraph G(C) induced by the set C ⊆
V is a k-core if and only if ∀u ∈ C : dG(C)(u) ≥ k, and

G(C) is maximal, i.e., for each C ⊃ C, there exists v ∈ C
such that dG(C)(v) < k.

Definition 2. A node in G is said to have coreness k
(kG(u) = k) if and only if it belongs to the k-core but not
the (k + 1)-core.

A k-core of a graph G = (V,E) can be obtained by recur-
sively removing all the vertices of degree less than k, until
all vertices in the remaining graph have degree at least k.
The issue of distributed k–core decomposition in dynamic
graphs consists in updating the coreness of the nodes of G
when new nodes/edges are added and/or removed.

bladyg solves the problem of distributed k–core decom-
position in two steps. The first step consists in executing a
workerCompute() operation that computes the coreness in-
side each of the blocks. Inside a block, each vertex is asso-
ciated with block(u), dG(u) and kG(u), denoting the block
of u, the degree and the coreness of u in G, respectively.
The second step consists in maintaining the coreness values
after considering the incremental changes. Whenever a new
edge (u, v) is added to the graph, bladyg first activates the
M2W-mode and computes the set of candidate nodes i.e.,
nodes whose coreness needs to be updated. This is done
by two workerCompute() operations inside the workers that
hold u and v. The workerCompute() operations exploit The-
orem 1, first stated and demonstrated by Li, Yu and Mao [6],
that identifies what are the candidate nodes that may need
to be updated whenever we add an edge:

40

Theorem 1. Let G = (V,E) be a graph and (u, v) be an
edge to be inserted in E, with u, v ∈ V . A node w ∈ V is
said to be a candidate to be updated based on the following
three cases:

• If k(u) > k(v), w is candidate if and only if w is k-
reachable from u in the original graph G and k = k(u);

• If k(u) < k(v), w is candidate if and only if w is k-
reachable from v in the original graph G and k = k(v);

• If k(u) = k(v), w is candidate if and only if w is k-
reachable from either u and v in the original graph G
and k = k(u).

A node w is k-reachable from u if w is reachable from
u in the k-core of G; i.e., if there exists a path between u
and w in the original graph such that all nodes in the path
(including u and w) have coreness equal to k = k(u).

We notice that the executed workerCompute() operations
may activate the W2W-mode since the set of nodes to be
updated may span multiple blocks/partitions. The nodes
identified as potential candidates are sent back to the coor-
dinator node that orchestrates the execution and computes,
by executing a masterCompute() operation, the correct core-
ness values of the candidate nodes.

3.2 Distributed maximal clique computation
Given an undirected graph G = (V,E), a clique is a subset

of vertices C ⊆ V such that every vertex in C is connected
to every other vertex in C by an edge in G. A clique C is
called to be maximal if any proper superset of C is not a
clique. The problem of maximal clique enumeration (MCE)
is to compute the set M(G) of maximal cliques in G. Con-
sidering the issue of dynamism, the problem of MCE in dy-
namic graphs [15] consists in incrementally update the set
of maximal cliques for every graph update.

bladyg deals with the problem of MCE in dynamic
graphs in the following way. Each edge of each block main-
tains ID(v), adj(u), Mu and Tu, which denote the iden-
tifier of u, the adjacent vertices of u, the set of maximal
cliques of u and a prefix-tree such that the root of Tu is
u and each root-to-leaf path represents a maximal clique
in Mu, respectively. We assume that adjacency list rep-
resentation of the graph G, the set V of vertices are or-
dered in ascending order of their IDs. We further de-
fine adj<(u) = {v : v ∈ adj(u), ID(v) < ID(u)} and
adj>(u) = {v : v ∈ adj(u), ID(v) > ID(u)}. When an
edge (u, v) is inserted into G, bladyg coordinator asks
workers containing u and v to update the set of maxi-
mal cliques. Each of the workers of u and v executes a
workerCompute() operation in order to remove existing max-
imal cliques that become non-maximal and insert maxi-
mal cliques that should be inserted. An existing maximal
clique C becomes non-maximal if C contains either u or
v, and verifies C ⊂ (adj(u) ∩ adj(v)) ∪ {u, v} [15]. Maxi-
mal cliques that need to be added to the existing ones con-
sists of new maximal cliques that contain u, v, w, for each
w ∈ ((adj<(u) ∩ adj<(v)) ∪ {u}) [15]. When an edge (u, v)
is deleted from G, bladyg coordinator notifies workers con-
taining the nodes u and v by the edge deletion. Workers
that hold u and v execute a workerCompute()operation that
deletes all the existing maximal cliques that contain both
u and v, where such maximal cliques appear in Tw, where
w ∈ ((adj<(u) ∩ adj<(v)) ∪ {u}) [15]. Then, we generate

Table 1: Experimental data

Dataset Type] Nodes] Edges � Avg. CC Max(k)
DS1 Synthetic 50,000 365,883 4 0.3929 42
DS2 Synthetic 100,000 734,416 4 0.3908 46
ego-Facebook Real 4,039 88,234 8 0.6055 115
roadNet-CA Real 1,965,206 2,766,607 849 0.0464 3
com-LiveJournal Real 3,997,962 34,681,189 17 0.2843 296

Table 2: Experimental results

Dataset
AIT (ms) ADT (ms)

inter-partition intra-partition inter-partition intra-partition
DS1 42 10 32 8
DS2 30 10 25 8
ego-Facebook 38 15 32 10
roadNet-CA 30 12 26 10
com-LiveJournal 256 30 205 27

all new maximal cliques that contain only u or v, and in-
sert them into Tw, where w ∈ ((adj>(u) ∩ adj<(v)) ∪ {v})
or w ∈ ((adj<(u)∩ adj<(v))∪ {u}). A notification is sent to
bladyg coordinator when all the workers finish the update
process.

4. EXPERIMENTS
We have applied bladyg framework to the problem of dis-

tributed k-core decomposition in large dynamic graphs. We
have performed a set of experiments to evaluate the effec-
tiveness and efficiency of bladyg framework on a number
of different real and synthetic datasets.

Since the goal is to compute k-core decomposition, the
characteristic properties of our datasets (shown in Table 1)
are the number of nodes, edges, the diameter, the average
clustering coefficient and the maximum coreness. We have
used two groups of datasets: real-world ones, made available
by the Stanford Large Network Dataset collection [5], and
synthetic datasets, created by a graph generator based on
the Nearest Neighbor model [11].

We have implemented bladyg on top of the akka frame-
work, a toolkit and runtime for building highly concurrent,
distributed, resilient message-driven applications. In order
to evaluate the performance of bladyg, we used a cluster
of 17 m3.medium instances on Amazon EC2 (1 virtual 64-bit
CPU, 3.75GB of main memory, 8GB local instance storage).

In order to simulate dynamism in each dataset, we con-
sider two update scenarios. For each scenario, we measure
the performance of the system to update the core numbers of
all the nodes in the considered graph after insertion/deletion
of a constant number of edges:

• In the inter-partition scenario, we either delete or in-
sert 1000 random edges connecting two nodes belong-
ing to different partitions;

• In the intra-partition scenario, we either delete or in-
sert 1000 random edges connecting two nodes belong-
ing to the same partition.

Table 2 illustrates the results obtained with both the real
and the synthetic datasets. For each dataset, we record the
average insertion time (AIT) and the average deletion time
(ADT) over the 1000 insertions/deletions for both inter-
partition and intra-partition scenarios. To generate the re-
sults of Table 2, we randomly partition the graph dataset
into 8 partitions. As shown in Table 2, we observe that in
the intra-partition scenario, the values of the average inser-
tion/deletion time are much smaller than those in the inter-

41

Figure 2: Average insertion/deletion time

partition scenario. This can be explained by the fact that
the inserted/deleted edges in the intra-partition scenario are
internal ones. Consequently, the amount of data to be ex-
changed between the distributed machines in the case of
internal edges is smaller, in most cases, than the amount
of exchanged data in the case of edges of the inter-partition
scenario. During the k-core maintenance process after inser-
tion/deletion of an internal edge, there is always the chance
of not having to visit distributed workers/partitions other
than the partition that holds the internal edge.

Figure 2 presents a comparison of our bladyg solution
with the HBase-based approach proposed by Aksu et al. [1]
in terms of average insertion/deletion time. For our ap-
proach, we used 9 m3.medium instances on Amazon EC2 (1
acting as a master and 8 acting as workers). For the HBase-
based approach, we used 9 m3.medium instances on Amazon
EC2 (1 master node and 8 slave nodes). As stressed in Fig-
ure 2, our approach allows much better results compared
to the HBase-based approach for almost all datasets. It is
noteworthy to mention that the presented runtime values of
the HBase-based approach correspond to the maintenance
time of only one fixed k value core (k = max(k) in our ex-
perimental study). This means that, for each dataset, the
maintenance process of the HBase-based approach needs to
be repeated max(k) times in order to achieve the same re-
sults as our approach.

5. CONCLUSIONS
This paper deal with the problem of graph processing in

large dynamic networks. We presented bladyg framework,
a block-centric framework that addresses the issue of dy-
namism in large scale graphs. The presented framework can
be used not only to compute common properties of large
graphs but also to maintain the computed properties when
new edges and nodes are added or removed. We imple-
mented bladyg on top of akka, a framework for building
highly concurrent, distributed, and resilient message-driven
applications. We applied bladyg to the problem of dis-
tributed k-core decomposition in large dynamic graphs. By
running some experiments on a variety of both real and
synthetic datasets, we have shown that the performance
and scalability of the proposed framework are satisfying for
large-scale graphs.

In the future work, we aim at studying data communica-
tions, networking and scalability of bladyg framework with
respect to the number of distributed machines.

6. REFERENCES
[1] H. Aksu, M. Canim, Y.-C. Chang, I. Korpeoglu, and

O. Ulusoy. Distributed k -core view materialization
and maintenance for large dynamic graphs. Knowledge
and Data Engineering, IEEE Transactions on,
26(10):2439–2452, Oct 2014.

[2] J. I. Alvarez-Hamelin, A. Barrat, A. Vespignani, and
et al. k-core decomposition of internet graphs:
hierarchies, self-similarity and measurement biases.
Networks and Heterogeneous Media, 3(2):371, 2008.

[3] V. Batagelj and M. Zaveršnik. Fast algorithms for
determining (generalized) core groups in social
networks. Advances in Data Analysis and
Classification, 5(2):129–145, 2011.

[4] C. Giatsidis, D. Thilikos, and M. Vazirgiannis.
Evaluating cooperation in communities with the k-core
structure. In Proc. of the Int. Conf. on Advances in
Social Networks Analysis and Mining, July 2011.

[5] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[6] R. Li, J. X. Yu, and R. Mao. Efficient core
maintenance in large dynamic graphs. IEEE Trans.
Knowl. Data Eng., 26(10):2453–2465, 2014.

[7] Y. Low, D. Bickson, J. Gonzalez, and et al.
Distributed graphlab: A framework for machine
learning and data mining in the cloud. Proc. VLDB
Endow., 5(8):716–727, Apr. 2012.

[8] G. Malewicz, M. H. Austern, A. J. Bik, and et al.
Pregel: A system for large-scale graph processing. In
Proc. of the 2010 ACM SIGMOD Int. Conf. on
Management of Data, pages 135–146. ACM, 2010.

[9] A. Montresor, F. D. Pellegrini, and D. Miorandi.
Distributed k-core decomposition. IEEE Trans.
Parallel Distrib. Syst., 24(2):288–300, 2013.

[10] R. Patuelli, A. Reggiani, P. Nijkamp, and F.-J. Bade.
The evolution of the commuting network in Germany:
Spatial and connectivity patterns. Journal of
Transport and Land Use, 2(3), 2010.

[11] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and
B. Y. Zhao. Measurement-calibrated graph models for
social network experiments. In Proc. of the 19th Int.
Conf. on World Wide Web (WWW’10). ACM, 2010.

[12] B. Shao, H. Wang, and Y. Li. Trinity: A distributed
graph engine on a memory cloud. In Proc. of the Int.
Conf. on Management of Data. ACM, 2013.

[13] Y. Tian, A. Balmin, S. A. Corsten, and et al. From
”think like a vertex” to ”think like a graph”. Proc.
VLDB Endow., 7(3):193–204, 2013.

[14] D. Wyatt. Akka Concurrency. Artima Inc., 2013.

[15] Y. Xu, J. Cheng, A. W. Fu, and Y. Bu. Distributed
maximal clique computation. In Proc. of the IEEE
Int. Congress on Big Data, pages 160–167, 2014.

[16] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A
block-centric framework for distributed computation
on real-world graphs. Proc. VLDB Endow.,
7(14):1981–1992, Oct. 2014.

42

