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In this work, the problem of real-time monitoring of products’ properties from spectrophotoscopic

measurements is presented. Light absorbance spectra are used as inputs to software sensors that

estimate outputs otherwise difficult to measure on-line. We approached the problems associated to

calibrating the estimation models from very high-dimensional inputs and a reduced number of

observations by selecting only a subset of relevant inputs emerging from the topological structure of the

data. The topologically preserving representation is performed using the self-organizing map (SOM)

where the input significance to the output is computed with the measure of topological relevance (MTR

on SOM). As a result, we found that spectral inputs with a topology that is close to the output’s are also

associated to the wavelengths that chemically explain the influence of the spectra to the property of

interest. Being based on a selection of original spectral variables, the resulting models retain the

chemical interpretability of the underlying system. Moreover, the selection approach is independent on

the regression model to be embedded in the soft sensors. To support the presentation, the utility of the

MTR on SOM is discussed on full-scale problems from pharmaceutical and refining industry. Based on

our results, the approach leads to accurate and parsimonious models that can be efficiently

implemented in industrial settings.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Real-time monitoring has become an essential component of
modern process industry for optimizing the production toward
high-quality products while reducing operating costs. The tools of
on-line analytical chemistry and chemometrics fulfill the neces-
sary requirements for real-time analysis of key chemical and
physical properties for a broad variety of materials. This paper
focuses on monitoring products’ properties from non-invasive and
non-destructive measurements obtained by light spectroscopy
analysis.

The principle underlying process monitoring from infrared (IR),
near- and medium-infrared (NIR and MIR) spectroscopic mea-
surements is the existence of a relationship between the light
absorbance spectrum of a given product and the property of
interest. In fact, the spectrum is conditioned by the composition of
the product and, in turn, the composition determines the property
of interest. This relationship is rarely known a priori and it is
ll rights reserved.

a).
usually reconstructed by calibrating specific data-derived models,
without an explicit regard to first-principle criteria. The resulting
spectrophotoscopic models are used to generate interesting
insights on the underlying chemistry. Moreover, the wide
availability of continuous-flow spectrophotometers makes the
modeling approach suitable for the design of soft sensing devices
that monitor the key properties of the products starting from the
measured spectra [1].

However, the problem of estimating the property (the output)
is defined from very high-dimensional and intrinsically redundant
inputs (the spectrum). Redundancy is observed as the inherent
collinearity existing between the spectral inputs. Furthermore, it
is not unusual to calibrate models on a number of observations
(the product’s samples) that is radically smaller than the number
of input candidates. To address these problems, two approaches
are commonly used. One standard solution is to rely on full-
spectrum methods for dimension reduction coupled with regres-
sion: principal components regression (PCR) and partial
least-squares regression (PLSR) are reference models [2]. The
natural refinement of such an approach is to perform a
preliminary selection of relevant spectral ranges [3]. However,
PCR and PLSR models are intrinsically limited by their linear
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structure and, because based on combinations of the original
variables, are not trivial to interpret. When ‘‘kernelized’’ [4] or
other nonlinear [5,6] generalizations of methods are considered,
the insight can be further reduced [7]. Analogous considerations
apply to the functional extensions of the methods [8,9]. The
alternative solution consists of selecting, among all spectral
candidates, only those inputs that truly contribute to a correct
estimation of the output and, that are as much as possible not
collinear. Thus, variable selection is understood as the limit
extension of range selection where the chemical interpretability of
the system is explicitly retained. Some recent advances in
spectroscopic modeling are based on such an idea. In the absence
of a chemical model, the approach is either based on model
properties [10] or on relevance indexes [11]. In both cases,
however, the computational burden associated to variable selec-
tion can be demanding and the approach unpractical because of
the large number of input candidates.

In this study, variable selection is approached by exploiting the
metric structure of the spectral data, leading to a method that
identifies only the spectral inputs with a topology that best
matches the output’s. The topology preserving modeling of the
data is carried out with the self-organizing map (SOM, [12]) over
which the measures of topological relevance (MTR on SOM,
[13,14]) between the inputs and the output are estimated from
Unified-distance matrices (U-matrices, [15]). We found that the
inputs with a topology that is maximally similar to the output’s
are usually associated to the wavelengths that chemically explain
the influence of the spectral inputs to the property of interest.
Thus, suggesting a simple strategy for wavelength selection that
leads to only few inputs still interpretable to the domain experts.
Moreover, being the selection performed before building the
estimation model, the approach is also model independent; in the
sense that, once the inputs are selected, any regression model can
be used to reconstruct their relationship with the output. The
regression technique preferred in our applications is the least
squares formulation of the support-vector machine (LS-SVM,
[16]). For completeness and with simplicity in mind, we also
considered classical linear models for ordinary least squares (OLS)
and ridge regression. When appropriate, the meta-parameters of
the models were validated with standard resampling methods to
estimating the prediction accuracy; the leave-one-out cross-
validation (LOO-CV) is here adopted [17].

The presentation is organized as follows. Section 2 introduces
the monitoring problem and briefly overviews the adopted
approach to variable selection using the MTR over the SOM. In
Section 3, the applications to real-world problems in process
monitoring from the pharmaceutical and oil refining industry are
presented and discussed.
2. Methodology

The problem of monitoring product properties from light
absorbance spectra can be reformulated within the context of
variable selection and associated function estimation. That is,
given observations fðxi; yiÞg

N
i¼1—where xi ¼ ½xi1; . . . ; xid�

> and yi are
the inputs (on-line spectrum) and output (off-line analysis)
variables for the i-th observation, respectively—the task consists
of modeling the underlying functionality y ¼ f ðxÞ that is assumed
to exist between the observations. Because of the very high
dimensionality d of x (several hundreds, up to thousands) and the
small number N of observations (several tens, up to few
hundreds), it is appropriate to operate in a reduced data space
whose dimensionality is circumscribed by the intrinsic complex-
ity of the system. Formally, being x 2 Rd the given set of candidate
input variables, it is necessary to select a subset x̌ 2 Rs, with s5d,
that builds the best model for f, according to some predefined
criterion [18].

Here, a three-stage methodology stemming from [19,13] is
adopted. The methodology summarizes as follows:
(1)
 the first stage models the input and output observations onto
a self-organizing map where the topological structure of the
data is preserved;
(2)
 the second stage investigates, from the SOM, how the output’s
topology is related to the topology of the input;
(3)
 only the inputs with a topology that best matches the
topology of the output are selected as relevant.
Once the subset x̌ of inputs is selected, any regression model
can be used to reconstruct f and predict the output y.

2.1. Topology preserving mappings with the SOM

The self-organizing map, SOM [12], is an adaptive algorithm to
formulate the vector-quantization paradigm [20]. In the following,
the basic formulation and essential properties of the SOM
algorithm are briefly reported.

The SOM consists of a low-dimensional (typically, 2D) regular
array of K nodes where a prototype vector mk 2 R

p is associated
with every node k. Each prototype acts as an adaptive model
vector for the observations vi 2 R

p. In the addressed context of
spectroscopy, both the inputs and the output are considered; i.e.,
vi ¼ ½xi; yi� and p ¼ dþ 1. During the computation of the map, the
observations are mapped onto the SOM’s array and the prototyp-
ing model vectors adapted according to the learning rule:

mkðt þ 1Þ ¼mkðtÞ þ aðtÞhk;cðviÞ
ðmkðtÞ � viðtÞÞ; ð1Þ

where t is the discrete-time coordinate of the mapping steps, and
aðtÞ 2 ð0;1Þ the monotonically decreasing learning rate. The scalar
multiplier hk;cðviÞ

denotes a neighborhood kernel function centered
at the best matching unit (BMU), the model vector mc that best
matches with the observation vector vi. The matching is
determined according to a competitive criterion based on the
Euclidean metric J � J and, at each step t, the BMU mcðtÞ is the
prototype mkðtÞ that is the closest to the observation viðtÞ:

JmcðtÞ � viðtÞJrJmkðtÞ � viðtÞJ; 8k ¼ 1; . . . ;K: ð2Þ

The kernel hk;cðviÞ
centered at mcðtÞ is usually chosen in

Gaussian form:

hk;cðviÞ
¼ exp �

Jrk � rcJ
2

2s2ðtÞ

 !
; ð3Þ

where the vectors rk and rc (in R2, for a 2D map) represent the
geometric location of the nodes on the array, and sðtÞ denotes the
monotonically decreasing width of the kernel that allows for a
regular smoothing of the prototypes. On the array, the effect of the
kernel decreases with the distance between the BMU and the
other prototypes.

The map is computed recursively for each observation. As
aðtÞhk;cðviÞ

tends to zero with t, the set of prototype model vectors
fmkg

K
k¼1 is updated to represent similar observations in fvig

N
i¼1 and

the prototypes converge toward their asymptotic limits [21,22].
The resulting model vectors form a submanifold in the original
data space where the relevant topological and metric properties of
the observations are preserved. Thus, the SOM is to be understood
as an ordered image of the original high-dimensional data
manifold modeled with a low-dimensional array of prototypes.
On the SOM’s array, the complex structures existing in the data
are represented with simple geometric relationships.
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2.1.1. The MTR based on the U-matrix of the SOM

The self-organizing map is widely employed to getting a
visual insight of the data and to starting a preliminary investiga-
tion of potential relationships between the component variables.
From the SOM, dependencies can be either searched by looking
for similar patterns in identical positions in component plane
and distance-based representations of the map [23] or estimating
the correlation coefficients between such displays, as proposed
in [24].

We identify the relevant inputs by exploiting the topology
preserving properties of the SOM of the input and output data
according to a relevance measure derived from the assumed
continuity of the unknown functionality y ¼ f ðxÞ. Under this
hypothesis, if two points xi and xi

0 are close together in the input
space, it is expectable that f ðxiÞ and f ðxi

0Þ are also close together in
the output space. Therefore, the continuity of f is also represented
in the local topology of the data and, thus, recoverable from
nearest neighbors graphs. If the neighborhood continuity is not
satisfied (i.e., the points yi and yi

0 are not close together in the
output space) it can be either due to the presence of noise or
because the inputs are not related to the output. In order to
benefit from the noise-filtering properties of the SOM, this general
principle can be directly explored from the set of model vectors
fmlg

M
l¼1 of the map.

The standard approach to recover the topological structure of
the data from the SOM is to compute the Unified-distance matrix,
or U-matrix [15]. The U-matrix U is built from local distances for
each SOM node and, thus, defines a neighboring graph based on
the model vectors of the map. To represent the local topology of
the component variables, the corresponding U-matrices are
calculated independently along each direction of the data space;
that is, Uxj

(with j ¼ 1; . . . ; d) for the input variables, and Uy for the
output. The measure of topological relevance on the self-
organizing map (MTR on SOM, [13,14]) assesses the significance
of the input xj to the output y by calculating the distance between
the respective topologies, that is:

Tðxj; yÞ ¼ JUxj
� UyJF ; ð4Þ

where the matrix Frobenius metric J � JF measures the Euclidean
closeness between matrices; the closer to 0 is the measure, the
more relevant is the input for reconstructing the output. Typically,
in order to clearly represent relevances the way they are
commonly perceived, the measure Tð�; �ÞZ0 is preferably inverted
and rescaled so that, larger values indicate stronger relevances
(e.g., Tð�; �Þ-Tð�; �Þ 2 ½0;1�Þ.

2.2. An input selection strategy for spectroscopy

In principles, variable selection using the MTR on SOM can be
simply performed by ranking the inputs according to their
relevance to the output, and selecting a reduced but still
representative subset x̌ 2 Rs. However, this basic procedure
applied to spectroscopy data is intrinsically limited by the
continuous nature of the light’s wavelengths domain, regardless
the employed relevance index as long as it is continuous. In fact, it
is intuitive that absorbances measured at neighboring wave-
lengths are characterized by a relevance to the output that is very
similar. Therefore, the selection of an input xj that is found to be
relevant to predicting y would be naturally accompanied by the
selection of a broad range of contiguous inputs also characterized
by high relevance, but redundant because embedding a near-
identical informative content.

In such context, the selection scheme proposed in [19] and
adapted to the MTR on SOM in [13] can be adopted. The procedure
was originally defined for a standard measure of dependence,
Pearson’s correlation coefficient (CC):

Rðxj; yÞ ¼
E½xjy� � E½xj�E½y�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½x2
j � � E½xj�

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½y2� � E½y�2
q

; ð5Þ

where, in practice, the expectations are approximated based on a
finite number of observations. However, the CC is only able to
capture dependencies that manifest themselves in the covariance.
This motivated the use of alternative measures of relevance.

In the case of MTR over the SOM, the selection procedure
summarizes as:
(1)
 calculate the full set T ¼ fTðxj; yÞg
d
j¼1 of pairwise relevances

between each input–output pair;

(2)
 select the subset of inputs x̌ with a topology that best matches

the output’s: i.e.,

x̌ ¼ fx̌j� � x : j� ¼ argmax
j

Tðxj; yÞg
s
j�¼1:
The procedure identifies only the inputs that are associated to the
local maxima of T, thus, relevant to predict the output. In such a
condition, the selection is optimal with respect to the problem of
predicting the output: in fact, among similar inputs, only the
maximally relevant ones are retained and the neighboring
redundancies discarded. Being relevance to the output the only
supervising criterion for selection, the procedure is still sub-
optimal with respect to problem of selecting inputs that are also
minimally redundant. Nevertheless, the selected variables are
implicitly as much as possible dissimilar, because each prototypes
different subsets of inputs separated by the local minima of T.

Because the selection scheme is general and valid for any
measure of relevance, as long as it is defines a continuous function
in the operating domain of wavelengths of the spectrophotometer,
in this study we also considered other measures: namely, (i)
mutual information (MI, [25]), and; (ii) noise variance estimates
(NVE, [26]), as well as the forementioned CC. For completeness, a
brief overview on such measures is reported in the following:
�
 Mutual information measures the distance between the joint
density pðxj; yÞ and the product density pðxjÞpðyÞ in the sense of
Kullback–Leibler divergence. The analytic form of the MI is
given by

Iðxj; yÞ ¼

Z
pðxj; yÞlog

pðxj; yÞ

pðxjÞpðyÞ
dxj dy: ð6Þ

It can be shown that Iðxj; yÞZ0 and Iðxj; yÞ ¼ 0 if and only if the
variables xj and y are independent. The integral can be viewed
as a measure of distance between the actual joint distribution
and the joint distribution under the assumption of indepen-
dence of the variables. To estimate MI we used the estimator
introduced in [27];

�
 Noise variance estimation is a technique that, under the

assumption that there is a functional relationship between xj

and y, estimates the part of the output that cannot be modeled
with the given inputs (i.e., the noise). As such noise variance
estimates can be also understood as the best possible mean
squared error (MSE) obtainable by any model. The task can be
done in various ways of which we chose the well-known
estimator proposed in [26].

3. Experimental

The development and application of the studied soft-sensors is
illustrated on a selection of actual monitoring tasks from
pharmaceutical and refining industry. The selected applications
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are referenced and industrial full-scale problems for variable
selection and interpretation, as well as prediction purposes.

3.1. Application to pharmaceutical industry: predicting the

composition of active substance in tablets

The first application consists of estimating the content of
active substance in pharmaceutical tablets. The problem is
discussed in detail for Escitaloprams tablets produced by
H. Lundbeck A/S (Valby, Denmark) using the measurements
provided by the Spectroscopy and Chemometrics Group at the
Faculty of Life Science, University of Copenhagen (Denmark),
which is kindly acknowledged for sharing the data.

The case is interesting because the identification of the inputs
associated to the active substance can be prevented by the
superposition of interfering artifacts due to the presence of the
excipients and the production processes. Moreover, the good
manufacturing practice (GMP) requires pharmaceutical industries
to perform frequent content uniformity (CU) controls on the
finished products; a requirement that is usually fulfilled by time
and solvent consuming chromatographic analysis operated by
specifically trained laboratory personnel. Therefore, the produc-
tion of such a drug would greatly benefit from the availability of
fast and reliable methods alternative to conventional tests.

3.1.1. Problem and data description

Four different dosages (5, 10, 15 and 20 mg) of the drug are
used (see Table 1). The 10, 15 and 20 mg tablets have the same
concentration of active substance (i.e., they are dose-proportional
with a nominal content equal to 8.0% w/w) and have a slot and a
print on one side, whereas the 5 mg tablets have a nominal
content of active substance equal to 5.6% w/w.

The tablets have different total weight and also different shape
and size. Seven full-scale production batches and 12 batches from
pilot plant production are available. Furthermore, three specially
Table 1
Study case 1 (tablets): nominal specifications.

Active substance Tablet Active substance Batches

Weight (mg) Weight (mg) Content (% w/w) Number

5.0 90 5.6 1 full- þ 3 pilot-scale

10.0 125 8.0 2 full- þ 3 pilot-scale

15.0 188 8.0 2 full- þ 3 pilot-scale

20.0 250 8.0 2 full- þ 3 pilot-scale

4.3–5.7 90 4.8–6.3 3 laboratory-scale

8.3–11.4 125 6.9–9.1 3 laboratory-scale

12.9–17.1 188 6.9–9.1 3 laboratory-scale

17.3–22.8 250 6.9–9.1 3 laboratory-scale
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Fig. 1. Study case 1 (tablets): a selection of spectral observations fr
prepared batches were produced to extend the calibration range
to 85–115% of the nominal content for each dosage form, giving 12
additional laboratory-scale batches. In total 31 batches are used,
each batch consisting of 10 tablets that were individually analyzed
by the spectroscopic method as well as the reference method.
The pilot plant batches are film-coated, while full- and lab-scale
batches are not. The tablets contain several excipients, the
dominating one being microcrystalline cellulose and, for
the coated tablets, the coating material contains titanium dioxide.
In addition, it is worthwhile noticing that all the laboratory-scale
tablets were stamped with a press using only one punch, whereas
the pilot- and full-scale tablets are produced after a total of 40
different punches. Dyrby et al. in [28] provide a detailed
description of the experimental setting.

The spectra were acquired in the 4000214 000 cm�1 wave-
numbers’ range (corresponding to the 700–2500 nm wavelengths’
range) with a resolution of 16 cm�1. The measurements were
recorded with an ABB Bomem FT-NIR (Fourier transform NIR)
model MB-160 performing 128 transmittance scans per sample.
The main advantage of the transmission mode, when compared to
the reflectance mode, is that the resulting spectra contain also
information on the inside of the tablets; thus, making the method
less sensitive to samples heterogeneity and use of coating
materials. The transmittance mode is, however, more sensitive
to the pressing process used in producing the tablets.

The absorbances are available only for the 7400210 500 cm�1

interval (Fig. 1) because the 400027400 cm�1 range was very
noisy, while in 10 500214 000 cm�1 very little information is
present. The content of active substance in each tablet was
evaluated by the reference high performance liquid
chromatography (HPLC) method performed in laboratory. Thus,
each observation consists of a 404-channel spectrum (i.e., x 2 Rd

with d ¼ 404) and the content of active substance (i.e., y 2 R).
The available measurements summarize to 120 laboratory-scale
observations, 120 pilot-scale observations and 70 full-scale
observations.

In this study, our objective consists of developing an estima-
tion model that, although calibrated using only the laboratory-
scale and the pilot-scale measurements, is directly usable in
monitoring the full-scale production.
3.1.2. Laboratory- and pilot-scale modeling and full-scale predictions

For the purpose, a preliminary analysis was performed
considering the three datasets independently and analyzing, for
each, the inputs relevances to the corresponding output.

According to the method discussed in Section 2, three 2D SOMs
of the input and output observations in each calibration set were
computed. Because no discrimination in learning and testing set is
provided with the data, we used the first 2

3 of each dataset for
000 10000
number
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om laboratory (a), pilot-scale (b) and full-scale (c) production.
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Fig. 2. Study case 1 (tablets): the measures of topological relevance on the self-organizing map for laboratory (a), pilot- (b) and full-scale (c) production.
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Fig. 3. Study case 1 (tablets): the laboratory and pilot-scale spectral observations (a) and the corresponding MTR on SOM between the inputs and the output (b). The

vertical dashed lines are drawn in the correspondence of the selected variables.

Table 2
Study case 1 (tablets): the set of selected inputs and associated wavenumbers.

x̌1 x̌2 x̌3 x̌4 x̌5 x̌6

ðcm�1Þ 7539 8200 8631 8831 9101 10 116

F. Corona et al. / Neurocomputing 73 (2009) 71–79 75
calibration. Each map consists of a hexagonal array of nodes
initialized in the space spanned by the eigenvectors correspond-
ing to the two largest eigenvalues of the covariance matrix of the
data. As usual, the ratios between these eigenvalues were also
used to calculate the size of the maps. For each map, the set of
topological relevances T ¼ fTðxj; yÞg

d
j¼1 between each input–out-

put pair was calculated. The results are depicted in Fig. 2, notice
that no variable selection is performed in this phase.

The NIR spectrum of the active substance is highly overlapped
with the excipients’ in the tablets, leaving just a single working
region (around 8800 cm�1) relatively free of interference, see
Fig. 1. In this region, the peak corresponding to the active
substance (assigned to the C–H aromatic bond at �8830 cm�1)
is visible as the shoulder of the broadband of the primary
excipient (�8200 cm�1). As expected, the application of the
MTR on SOM correctly identifies the matching input as the
global maximum of T for all the production scales, in Fig. 2.
Other significant inputs, whose detailed assignment to specific
vibrational bands is beyond the scope of this work, are also
identified correctly in correspondence to the local maxima; for
example, the approach is able to find a match with specific
features in the active substance’s spectrum (e.g., �7500 and
�8600 cm�1) while assigning a reduced relevance to secondary
inputs that are known to be less informative.

Given the analogy between the results obtained with the
different production scales, we then considered only the labora-
tory-scale and pilot-scale measurements and re-applied the
methodology to perform variable selection. On the resulting
SOM, the set of topological relevances T ¼ fTðxj; yÞg

d
j¼1 between

each input–output pair was calculated and the subset x̌ ¼ fx̌j� g
s
j�¼1

of relevant inputs was selected, s ¼ 6. Being the six inputs
maximally relevant, they are identified by the local maxima of
T, in Fig. 3 and Table 2.

In Fig. 4, the results obtained with the absolute Pearson’s
correlation coefficients (Fig. 4(a)), mutual information (Fig. 4(b))
and Gasser’s noise variance estimates are presented (Fig. 4(c)).
Notice that, in the case of NVE, the local minima reflect the
highest relevance. Based on the depicted results, all the measures
are capable of identifying either part or all the relevant variables
and their behavior resembles, qualitatively, the relevance
estimated by the MTR on SOM. Nevertheless, none of the
measures is able to represent the smooth nature of the
observations and, thus, allow a direct selection of the local
maxima in the relevance function. The impossibility to recover
such property of the data prevents from an automatic variable
selection procedure.

Finally, both linear (OLS and ridge regression) and nonlinear
(LS-SVM) models were calibrated to represent f from the six
selected inputs x̌. When needed, the meta-parameters of the
models (the penalty term in ridge regression and the kernel width
and regularization term in LS-SVM) were validated by LOO-CV.
The prediction accuracy of the models was evaluated in terms of
root mean squared error (RMSET ) on an independent set of testing
data. The prediction accuracy of the regression models used to
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Fig. 4. Study case 1 (tablets): other input–output measures of dependence—correlation coefficient (a), mutual information (b) and Gasser’s noise variance (c).

Table 3
Study case 1 (tablets): a comparison between the results in full-scale production.

Number of variables RMSET

PCR 6 (latent) 0.44

PLSR 5 (latent) 0.42

OLS 6 (original) 0.38

Ridge 6 (original) 0.38

LS-SVM 6 (original) 0.22

F. Corona et al. / Neurocomputing 73 (2009) 71–7976
reconstruct f from the six selected inputs x̌ is reported in Table 3.
The results refer to a direct application of the regression models
on the entire set of full-scale measurements.

In Table 3, the prediction results are compared to the two
standard calibration methods used in spectroscopy, the full-
spectrum PLSR and PCR. The number of latent variables in the
PLSR and PCR models was also selected by LOO-CV. From the
table, it is possible to notice that the adopted method is not only
capable to select the relevant inputs but shows that the associated
LS-SVM model gives a prediction accuracy that outperforms the
standard methods. Interestingly, also the linear models produce
accurate results confirming the quality of the selected variables;
this is also demonstrated by an almost negligible value of the
penalty term selected for the ridge regression, indicating a near-
absolute absence of shrinkage for the regression coefficients.

Based on the experimental results, we can conclude that the
method proved capable to select only those inputs carrying
important information, thus, leading to parsimonious models
based on only six original variables with a clear chemical
understandability. Together with the high accuracy, such proper-
ties suggest the possibility for an efficient port of the models to
the on-line rating of the content of active substance in the full-
scale production. In fact, the models could be successfully
embedded in a soft sensing device capable of obtaining very
accurate results also robust to the different properties of the
tablets deriving from interfering artifacts and different production
operations.
3.2. Application to oil refining industry: predicting quality properties

of finished gasolines and diesels

3.2.1. Octane number of gasolines

The application consists of estimating the octane number in
gasolines. The American Society for Testing and Materials (ASTM)
standard for obtaining such a property is based on an internal
combustion engine in which the octane number is measured [29].
The procedure is time consuming, involves expensive and
maintenance-intensive equipment and requires skilled labor
and, therefore, is not well suited for on-line monitoring. Never-
theless, real-time measurements of such a property are of
fundamental importance for both the production and blending
processes of the finished fuel. The application of the methodology
is discussed on a set of spectral data and associated ratings of
octane provided by Camo A/S (Trondheim, Norway), which is
gratefully acknowledged.

The absorbance spectra are acquired by means of a spectro-
photometer operating in the 1100–1550 nm wavelengths’ range, in
Fig. 5. The absorbance is measured on the basis of the NIR
transmission principle with a 2 nm resolution. The measurements
of the octane number (in the 86–92 range) are evaluated in
laboratory by the reference ASTM motor tests. Therefore, each
sample consists of the 226-channel spectrum of absorbances and
the corresponding octane number; that is, x 2 Rd with d ¼ 226,
and y 2 R. The dataset consists of 24 observations for model
calibration and validation and nine observations for testing the
final model. The data were preliminary preprocessed by removing
the outliers and mean-centering. Although in reduced amount,
the data are collected over a sufficient period of time considered
to span all the important variations in the production of the
finished product. Being the relationship between the octane
and the spectrum distributed among different inputs, the
application is also interesting because variable selection cannot
be easily performed through first-principle interpretation of the
spectra [30,31].

According to the methodology, the 2D SOM of the input and
output observations in the calibration set was computed. On the
map, the set of topological relevances T ¼ fTðxj; yÞg

d
j¼1 between

each input–output pair was calculated and the subset x̌ ¼ fx̌j� g
s
j�¼1

of relevant inputs selected, s ¼ 6. Being the six inputs maximally
relevant, they are identified by the local maxima of T.

The set of selected inputs (see Fig. 5(b) and Table 4) is in
agreement with the chemical model explaining the influence for
the chemical groups on the octane number [32]. The analyzed
spectra show the typical overlapped absorbance bands arising
from different hydrocarbon functional groups and reflect the
samples’ composition. The major absorbance features in the
experimental region are usually assigned to the second overtone
(1100–1300 nm) and to the combination bands (1300–1550 nm) of
the C–H vibrations. In detail:
�
 the aromatic bonds at �1150 nm (x̌1) are related to an increase
in octane number. Conversely, the methylene bonds at
�1220 nm (x̌2) indicate the presence of linear hydrocarbons
which are responsible for a reduction in the gasoline quality.
The methyl bonds at �1200 nm indicate a larger amount of
branched hydrocarbon although the absorbance is also
influenced by the amount of linear paraffin: in fact, its effect
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Fig. 5. Study case 2 (gasolines): the spectral observations (a) and the MTR on SOM between the inputs and the output (b). The vertical dashed lines are drawn in the

correspondence of the selected variables.

Table 4
Study case 2 (gasolines): the set of selected inputs and associated wavelengths.

x̌1 x̌2 x̌3 x̌4 x̌5 x̌6

(nm) 1146 1214 1366 1394 1416 1518

Table 5
Study case 2 (gasolines): a comparison between prediction results.

Number of variables RMSET

PCR 3 (latent) 0.21

PLSR 4 (latent) 0.28

OLS 6 (original) 0.34

Ridge 6 (original) 0.31

LS-SVM 6 (original) 0.24
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on octane is not readily explained and the contribution,
usually, varies with the gasoline type. Actually, this occurs
with the present spectra in which, even if the relevance T
shows an inflection at 1200 nm, the absorbance does not
correspond to a local maximum and, thus, the associated input
is not selected;

�
 by the same token, the effect of the combination bands for

methylene (�1395=1416 nm), and methyl (�1360=1345 nm)
on octane mimics what observed in the short-wavelength
range. With this respect, the methylene absorbance wave-
lengths are correctly identified (x̌4 and x̌5), while x̌3 accounts
for the first methyl band. As already noticed above, again
the second methyl band is only partially recovered by an
inflection in T.

As for variable x̌6, no spectral features are readily assignable. Its
selection can be ascribed to baseline effects.

Subsequently, the regression models were calibrated to
represent f from the six selected inputs x̌ and the prediction
accuracy evaluated on the independent set of testing data
(Table 5). From the table, it is possible to notice that all the
regression models achieve accuracies that are comparable to the
ASTM standard of reference. In detail, the LS-SVM gives prediction
results that are analogous to the standard PLSR model, whereas
the PCR model slightly outperforms all the other methods.
3.2.2. Density of diesels

The last application that we discuss refers to estimating the
density of finished diesel fuels from FT-IR (Fourier transform IR)
spectra. The issue here is tied to the need of real time collection of
process data for quality control during refinery operation. For
the purpose, the measurements were acquired from the SARAS
Refinery in Sarroch (Italy), which is acknowledged for the support.

The on-line estimation of diesel properties for either quality
or process control during refinery operations is usually accom-
plished inferentially through spectroscopy-based analyzers and
chemometric modeling as they usually guarantee high stability
(precision) and accuracy (reproducibility) of the measurements
The latter being evaluated through comparison with the accuracy
laboratory method according to ASTM [33]. Among the many
physical and chemical diesel properties routinely measured on-
line, density is one of the most important but also one of the most
challenging to be determined inferentially within specs. This is
due to the fact that density is a bulk property resulting from the
contribution of all components in the hydrocarbon mixture (i.e., it
is not associable at any particular spectral feature). In such cases,
the full spectral range, containing all the input variables, is usually
adopted. Nevertheless, considering the collinearity and the high-
dimensionality of the inputs, we investigated the possibility to
obtain equivalent or better results selecting fewer variables,
although encompassing the complete spectral data range.

The available measurements consist of diesel fuel spectra and
associated density measurements, summarizing to 264 observa-
tions for model learning and validation and 108 observations for
testing. The data were acquired over a year round period during
refinery operations yielding to a collection of fuel samples that
were as diverse as possible and included the broadest range of
values for the property of interest. The spectra were measured
with an Analect Diamond 20 FTIR spectrometer (Applied Instru-
ment Technologies, Pomona, CA) over the 600021000 cm�1 region
(approx., 1667–10 000 nm) by using a flow cell, with optical
pathlength of 0.5 mm and conditioned at 25 1C. The instrument
resolution is 8 cm�1, so that 1297 spectral variables are measured
(d ¼ 1297). Each sample was scanned 64 times and ratioed with a
background spectrum of the empty cell flushed with nitrogen
recorded over 128 scans. Density measurements spanning from
845 to 822 kg=m3 were obtained by using the conventional ASTM
method D1298 [29].

Given the experimental setting, the application also offers an
interesting extension of the methodology to a broader spectral
range. In fact, MIR spectral bands associate to fundamental
vibrations giving peaks that are specific and sensitive, in contrast



ARTICLE IN PRESS

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Wavenumber

A
bs

or
ba

nc
e

825 830 835 840 845 850
825

830

835

840

845

850

Measured

E
st

im
at

ed

Fig. 6. Study case 3 (diesels): the spectra with vertical dashed lines corresponding to the selected variables (a) and the predictions with 95% confidence bands (b).

F. Corona et al. / Neurocomputing 73 (2009) 71–7978
to NIRs’ that associate to overtone and combination bands
originating from the fundamental vibrations in the MIR region
(i.e., characterized by low molar absorptivity, or low sensitivity).
Although, each technique has distinctive advantages and dis-
advantages, NIR has historically been the most used of the two.
Hence, this application also investigates the potentialities of the
methodology on a spectral region which includes portions of both
the NIR (400021000 cm�1) and MIR (600024000 cm�1), trying to
take advantage of the information carried in each range.

The application led to the selection of 13 input variables, in
Fig. 6(a). The selection can be mostly assigned to the spectral
features corresponding to the aliphatic C–H bending vibrations
(approx., 150321296 cm�1), asymmetrical C–O–C stretching
vibrations of aliphatic ethers (approx., 1290–1133 and
113321000 cm�1), as well as the combination bands of the C–H
vibrations (approx., 400024500 cm�1). When used to calibrate the
regression models, the selected subset of inputs achieved
accuracies that are equivalent to the reference values reported
in literature [34] and comparable to the analytical methods of
measurement. In particular, already a simple linear model like OLS
is capable to predict the density of the samples in the independent
testing set with a 95% confidence and a RMSET ¼ 0:7 kg=m3. Such
a result, when compared to the full spectrum PCR and PLSR
models with 11 latent variables developed with the Saras
refinery dataset (RMSET ¼ 0:93), and to the results from other
examples reported in literature (for instance, RMSET ¼ 0:9 in [34]),
shows a significant improvement and suggests direct use of the
model in on-line monitoring such a property of the finished diesel
fuels.
4. Conclusions

In this paper, the application of a methodology for variable
selection based on the measures of topological relevance the self-
organizing map was presented and discussed within the context
of spectroscopic modeling. The selection methods were investi-
gated on a set of different monitoring problems in industry.

From the obtained results a major consideration can be drawn.
The interpretability of the selected variables and sparsity of the
obtained models is, indeed, an advantage because of the easy
understandability for the domain experts. Moreover, the selected
variables are also characterized by an important informative
content that can be exploited to develop simple and robust
estimation models that always demonstrated capable to achieve
the accuracy required for an effective use in real-time monitoring
properties of the materials otherwise difficult to measure on-line.
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