
Identifying Fuzzy Inferen
e Models by Means ofPossibilisti
 Clustering: So
io-E
onomi
Appli
ationsAlberto Guill�en1, Federi
o Montesino2, Angel Barriga3 ,L.J. Herrera1, J. Gonz�alez1, H. Pomares1 and I. Rojas1 �1- Dept of Computer Te
hnology and Ar
hite
tureUniversity of Granada - Spain2- Aalto University SST - Dpt. of Information and Computer S
ien
eP.O. Box 15400, FI-00076 Aalto - Finland3- University of Seville - Dpt. of Ele
troni
s and Ele
tromagnetismAvda. Reina Mer
edes s/n, E-41012 Seville - SpainAbstra
t.This paper analyzes the use of 
lustering methods for the identi�
ation offuzzy inferen
e models for regression problems whi
h is a problem fre-quently raised in the so
io-e
onomi
 resear
h �eld. Traditional, fuzzyand hybrid fuzzy-possibilisti
 approa
hes to 
lustering are 
ompared. Inparti
ular, Improved Clustering for Fun
tion Approximation (ICFA), andFuzzy-Possibilisti
 Clustering for Fun
tion Approximation (FPCFA). Themethods proposed are applied to three datasets 
on
erning sto
k pri
esand housing pri
es. The experiments show that both ICFA and FPCFA
ompare favorably against well-established traditional 
lustering methodsfor fuzzy inferen
e systems identi�
ation.1 Introdu
tionThe problem of approximating a given fun
tion using a model F 
an be formu-lated as, given a set of observations f(~xk; yk); k = 1; :::; ng with yk = F (~xk) 2and ~xk 2 d, it is desired to obtain a fun
tion F so nPk=1 jjyk �F(~xk)jj2 is minimum.In order to solve this problem, Fuzzy logi
 based and neuro-fuzzy modeling te
h-niques are appealing be
ause of their interpretability and potential to addressa broad spe
trum of problems. In parti
ular, fuzzy inferen
e systems (FIS) ex-hibit a 
ombined des
ription and predi
tion 
apability as a 
onsequen
e of theirrule-based stru
ture [1℄.The problem of identifying fuzzy inferen
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Two approa
hes are often distinguished in the literature: stru
ture-oriented and
lustering-based.In this paper we analyze the use of 
lustering-based identi�
ation methodsfor fuzzy inferen
e systems in the 
ontext of regression problems. Fuzzy andhybrid fuzzy-possibilisti
 
lustering approa
hes are followed.The rest of the paper remains as follow: in the next se
tion, we dis
uss thestru
ture of FIS identi�ed by means of a fuzzy 
lustering methods as well as thefuzzy-possibilisti
 approa
h used previously. Afterwards, in se
tion 3, we apply
lustering-based identi�
ation approa
hes to so
io-e
onomi
 regression datasets.Finally, some 
on
lusion remarks are given.2 Fuzzy Inferen
e System Identi�
ationIn order to build a regression model, a fuzzy inferen
e system 
an be de�ned as amapping between a ve
tor of 
risp inputs and a 
risp output. Let us denote theinputs for observations (~xk; yk) of a 
ertain regression problem as s
alar valuesx1; : : : ; xM . This way, assuming all the inputs (M) are used, the fuzzy regressionmodel 
an be expressed as a set of N fuzzy rules of the following form:Ri : IF x1 isLi1 AND x2 isLi2 AND : : : AND xM isLiM THEN ŷ  �Ri ;where i = 1; : : : ; N , and the fuzzy sets Lij 2 fLj;kg; k = 1 : : : ; nj ; j = 1; : : : ;M;with nj being the number of linguisti
 labels de�ned for the jth input variable.Lij are the fuzzy sets representing the linguisti
 terms used for the jth input inthe ith rule of the fuzzy model. �Ri are the 
onsequents of the rules and 
antake di�erent forms. For example, in a system with two inputs, if Li1 is renamedLOW1 and Li2 is renamed HIGH2, the ith rule Ri, would have the followingform: Ri : IF x1 isLOW1 AND x2 isHIGH2 THEN ŷ  �Ri :Depending on the fuzzy operators, inferen
e model and type of membershipfun
tions (MFs) employed, the mapping between inputs and outputs 
an havedi�erent formulations. In prin
iple, the methods proposed in this paper 
an beapplied for any 
ombination of types of MFs, operators and inferen
e model, butthe sele
tion 
an have a signi�
ant impa
t on pra
ti
al results.As a 
on
rete implementation for this paper, we use the minimum as T-norm for 
onjun
tion operations, Gaussian MFs for inputs, singleton outputs,and produ
t inferen
e of rules. Defuzzi�
ation is performed using the fuzzymean method, i.e., zero-order Takagi-Sugeno systems [2℄ are de�ned. Thus, theresult of the inferen
e pro
ess is a weighted average of the singleton 
onsequents.This inferen
e s
heme was 
hosen in order to keep systems as simple and inter-pretable as possible. In parti
ular, the use of singleton outputs simpli�es boththe interpretation of rules and its lo
al optimization.Therefore, in this parti
ular 
ase a fuzzy regressor 
an be formulated as



follows: F(�x) = NXi=1 ��Ri � min1�j�M �Lij (xj)�NXi=1 min1�j�M �Lij (xj) ;where N is the number of rules in the rule base, �Ri are singleton output values,and �Lij are Gaussian MFs for the inputs. Thus, ea
h fuzzy set de�ned for theinput linguisti
 terms, Lj;k (for the kth linguisti
 term de�ned for the jth input),is 
hara
terized by an MF having the following form:�Lj;k = exp ��(yj � 
k;j)2=2�2k;j� ; k = 1 : : : ; nj ; j = 1; : : : ;M; (1)where 
k;j and �k;j are s
alar values and represent the 
enters and widths of theinputs MFs, respe
tively.Fuzzy inferen
e systems of the 
lass being designed here are universal ap-proximators [3, 4℄. Thus, for a suÆ
iently large number of rules and MFs, anyinput-output mapping should be approximated with arbitrary a

ura
y.2.1 Clustering-Based Identi�
ation of Fuzzy Inferen
e SystemsDi�erent approa
hes to the identi�
ation of fuzzy inferen
e systems from numeri
data have been proposed in the literature [5, 6℄. Roughly, two 
lasses of methods
an be distinguished: stru
ture-oriented and 
lustering-based.In this paper we fo
us on the 
lustering-based 
lass of methods and spe-
ially on those methods that follow an o�ine approa
h. The following 
lus-tering algorithms are 
ompared for the purposes of identifying fuzzy inferen
esystems: The Hard and Fuzzy C-means (HCM and FCM, respe
tively) [7℄ 
lus-tering algorithms, the Improved Clustering for Fun
tion Approximation (ICFA)algorithm [8℄, and the hybrid Fuzzy-Possibilisti
 Clustering for Fun
tion Approx-imation [9℄. The latter two algorithms were originally proposed for initializingRadial Basis Fun
tion Neural Networks (RBFNNs) for regression problems. Inthis paper, the ICFAf variant, tailored for fuzzy inferen
e systems identi�
a-tion, is used [10℄.The �rst step for 
lustering-based identi�
ation of fuzzy inferen
e systems isto apply a 
lustering algorithm on the input-output patterns. On
e this pro
ess�nishes, Q 
lusters have been identi�ed. Then, the stru
ture of the 
orrespond-ing fuzzy inferen
e systems has to be de�ned. In general, fuzzy rules 
an beinterpreted as joint 
onstraints [6℄ rather than impli
ation rules. Thus, it is sen-sible to de�ne a fuzzy rule from ea
h 
luster identi�ed. This is the most frequentapproa
h in the literature. This way, the 
lusters and their 
orresponding rulesare 
onsidered as prototypes or models of the whole input pattern sequen
e.Let us 
onsider as above a multiple s
alar input, single s
alar output 
asewhere the input patterns to the 
lustering algorithm 
onsist of M inputs andone output. Let us denote the 
lusters identi�ed by ~
k; i = 1; : : : ; Q. Let every




luster have the following general form:~
k : (
k;1; : : : ; 
k;M+1); with k = 1; : : : ; Q;where the 
k;M+1 
orrespond to the outputs of the fuzzy inferen
e model, whereasthe 
k;1; : : : ; 
k;M 
orrespond to the inputs (x1; : : : ; xM ) to the fuzzy model.For ea
h 
luster, a mat
hing rule is generated with the following form:Rk : IF x1 isL1;k AND x2 isL2;k AND : : : AND xM isLM;k THEN ŷ  
k;M+1;k = 1; : : : ; Q; Q = N = nj ;where a set of input linguisti
 terms is 
reated fLj;kg; k = 1 : : : ; nj ; j = 1; : : : ;M;.These linguisti
 terms are de�ned by Gaussian MFs, �Lj;k , as in equation 1. Theoutput membership fun
tions are de�ned as singleton fun
tions 
entered at the
orresponding element of the 
luster 
enters, 
k;M+1. The 
enters of the inputGaussian MFs for the jth input and kth rule (
k;j in equation 1) are set to thejth elements of the 
orresponding 
lusters ~
k.When inferen
e systems are identi�ed with 
lustering methods following thisapproa
h, the number of linguisti
 terms de�ned for every input variable, nj ; j =1; : : : ;M , is equal to the number of 
lusters identi�ed, Q, whi
h in turn is equalto the number of rules identi�ed, N . Hen
e, Q di�erent membership fun
tionsare generated for ea
h input and output variable, and Q rules are generated forhorizon h.The way the widths of the input Gaussian MFs (�k;j in equation 1) are setdepends on the 
lustering algorithm used. For the Hard C-means and FuzzyC-means algorithms the widths are set as a fun
tion of the membership degreesof the input patterns to the 
lusters.Re
ently, an adaptation of the ICFA [8℄ algorithm for identi�
ation of FISwas proposed [10℄. This adaptation, ICFAf , is a simple generalization of theoriginal ICFA proposal where all the widths for a 
ertain rule are set to a valueinversely proportional to the average weighting parameter w.The ICFA algorithm performs an initialization of the 
enters of the 
lusters,taking into a

ount the output of the fun
tion to be approximated. The wayin whi
h the output is 
onsidered is by de�ning a value for ea
h 
enter in theoutput spa
e. This value is named expe
ted output (oi) of a 
enter i and allowsthe algorithm to weight the distan
e 
omputed between the input ve
tors andea
h 
enter.2.2 Fuzzy-Possibilisti
 approa
hAs was shown in [9℄, the 
ombination of possibilisti
 and fuzzy membershipfun
tions 
ould lead to a better 
enter initialization for RBFNNs.The development of the FPCFA algorithm relied in the approa
h presentedin [11℄ where a 
ombination of a fuzzy partition and a possibilisti
 partitionis used. The authors assert that the membership value of the fuzzy partitionis important to be able to assign a hard label to 
lassify an input ve
tor, butat the same time, it is very useful to use the typi
ality (possibility) value to



move the 
enters properly in presen
e of outliers. Let Up = [upik℄ be the matrix
ontaining all the possibilisti
 memberships, Uf = [ufik℄ the matrix 
ontainingthe fuzzy memberships, and C = [~
i℄ the matrix 
ontaining the 
enter positionsfor i = 1:::m and k = 1:::n. The distortion fun
tion to be minimized is:Jhf ;hp(Uf ; C; Up;X) = nXk=1 mXi=1 ((ufik)hf + (upik)hp)D2ik (2)with the following 
onstraints:mXi=1 ufik = 1 8k = 1:::n (3)nXk=1upik = 1 8i = 1:::m (4)Let Up = [upik℄, then, the 
onstraint shown above requires ea
h row of Upto sum up to 1 but its 
olumns are free up to the requirement that ea
h 
ol-umn 
ontains at least one non-zero entry. Therefore, there is a possibility ofinput ve
tors not belonging to any 
luster. The design of the FPCFA algorithmweighted the similarity 
riteria used in the 
omputation of the distan
es andde�ning an expe
ted output for ea
h 
enter, so the distortion fun
tion to beoptimized remained as:Jhf ;hp(Uf ; C; Up;W ;X) = nXk=1 mXi=1 ((ufik)hf + (upik)hp)D2ikW (5)restri
ted to the same 
onstraints than the FPCM algorithm.The iteration method to minimize 
onsidered the following equations to 
om-pute the membership and expe
ted output:ufik = 0� mXj=1�DikWDjkW � 2hf�11A�1 (6)upik = 0� nXj=1�DikWDijW � 2hp�11A�1 (7)~
i = nPk=1((ufik)hf + (upik)hp)~xkw2kinPk=1((ufik)hf + (upik)hp)w2ki (8)oi = nPk=1((ufik)hf + (upik)hp)ykd2iknPk=1((ufik)hf + (upik)hp)d2ik (9)



The algorithm iterates until the 
enters have not moved signi�
antly.3 ExperimentsThe identi�
ation methods des
ribed above have been applied to three regressionben
hmarks related to so
io-e
onomi
 appli
ations: The Sto
ks Domain, BostonHousing, and California Housing datasets. The following approa
h was followedin order to test the performan
e of di�erent identi�
ation methods. The obser-vations of the datasets are randomly randomly rearranged and two thirds of the
omplete set of observations is sele
ted for training models, while the remainingthird is sele
ted for testing purposes.The overall properties of the three problems are shown in table 1. Overall,FCM yields better results than HCM. Both ICFA and FPCFA 
an improve theresults obtained with FCM in general, with ex
eptions for 
ertain numbers of
lusters. The most a

urate results are obtained using FPCFA for a suÆ
ientlylarge number of 
lusters.Dataset Inputs Training length Test lengthSto
ks Domain 9 634 316Boston Housing 13 338 168California Housing 8 13760 6880Table 1: Chara
teristi
s of Datasets.In what follows we summarize the results obtained for the di�erent 
luster-ing methods des
ribed above. The experiments have been performed using theXfuzzy environment for the design of fuzzy inferen
e systems [12, 13℄. For theregression approximation, errors are given as normalized root mean square error(RMSE) values, where the normalization is performed against the varian
e ofthe output variable.3.1 Sto
ks DomainThe Sto
ks Domain dataset 
onsists of daily sto
k pri
es for ten aerospa
e 
om-panies re
orded from January 1988 through O
tober 1991, and 
an be obtainedfrom the StatLib repository [14℄.Table 2 reports the results obtained for this dataset. The lowest test errora
hieved is highlighted in bold fa
e. In this 
ase, both HCM and FCM exhibita higher sensitivity to the number of 
lusters sele
ted. These limitations areover
ome by both ICFA and PCFA. In parti
ular, FPCFA 
an provide the besta

ura
y for a relatively small number of 
lusters.3.2 Boston HousingThe Boston Housing 
ontains various parameters about housing values in sub-urbs of Boston. The inputs variables in
lude the per 
apita 
rime rate by town,



Clusters HCM FCM ICFAf FPCFA2 0.398�0.260 0.544�0.356 0.309�0.184 0.346�0.2113 0.327�0.191 0.538�0.352 0.263�0.166 0.295�0.1804 0.541�0.425 0.278�0.170 0.302�0.194 0.225�0.1305 0.288�0.187 0.248�0.149 0.254�0.160 0.243�0.1436 0.324�0.189 0.215�0.136 0.215�0.138 0.231�0.1527 0.238�0.152 0.188�0.110 0.218�0.132 0.216�0.1208 0.246�0.159 0.213�0.136 0.184�0.113 0.175�0.1109 0.223�0.145 0.242�0.156 0.188�0.117 0.192�0.11610 0.311�0.225 0.177�0.115 0.214�0.136 0.204�0.12515 0.180�0.122 0.186�0.129 0.175�0.110 0.140�0.087Table 2: Results for Sto
ks Domain. Average and standard deviation of the testRMSE (normalized)index of a

essibility to radial highways, pupil-tea
her ratio by town, and %lower status of the population, among others. The output variable to be mod-eled is the Median value of owner-o

upied homes. The dataset 
an be obtainedfrom the UCI Ma
hine Learning Repository [15℄.The results obtained are shown in table 2. Both ICFA and FPCFA provideoverall better results than HCM and FCM. FPCFA 
onsistently provides themost a

urate results for a wide range of number of 
lusters.Clusters HCM FCM ICFAf FPCFA2 0.779�0.535 0.775�0.539 0.487�0.319 0.492�0.3283 0.611�0.407 0.585�0.445 0.526�0.327 0.397�0.2484 0.497�0.343 0.792�0.516 0.597�0.418 0.417�0.2785 0.607�0.398 0.628�0.445 0.631�0.433 0.435�0.2986 0.643�0.450 0.703�0.540 0.792�0.543 0.374�0.2687 0.668�0.504 0.585�0.417 0.401�0.262 0.343�0.2368 0.615�0.440 0.527�0.378 0.428�0.291 0.359�0.2449 0.546�0.378 0.610�0.424 0.435�0.302 0.405�0.28910 0.606�0.446 0.645�0.482 0.405�0.280 0.387�0.26915 0.565�0.407 0.622�0.468 0.391�0.272 0.426�0.319Table 3: Results for Boston Housing. Average and standard deviation of thetest RMSE (normalized).3.3 California HousingThe California Housing Datasets 
ontains information 
olle
ted from the 1990Census. The data des
ribes all the blo
k groups in California, where a blo
kgroup on average in
ludes 1425.5 individuals living in a geographi
ally 
ompa
tarea. The dataset 
an be obtained from the StatLib repository [14℄. The inputs



variable in
lude information about the lo
ation, median in
ome, median age,number of rooms, and number of householders, among others.Table 4 summarizes the results obtained. Both HCM and FCM provide aslightly lower test error for suÆ
iently high numbers of 
lusters. Overall, errorsare similar for the 4 
lustering methods, with only two ex
eptions (FCM for 2
lusters and FPCFA for 4 
lusters).Clusters HCM FCM ICFAf FPCFA2 0.666�0.448 1.031�0.612 0.686�0.452 0.637�0.4323 0.612�0.426 0.625�0.426 0.616�0.422 0.624�0.4354 0.592�0.414 0.604�0.417 0.665�0.448 0.762�0.4995 0.595�0.413 0.594�0.412 0.600�0.423 0.597�0.4156 0.596�0.413 0.600�0.412 0.634�0.435 0.585�0.4147 0.589�0.410 0.585�0.405 0.584�0.412 0.585�0.4148 0.573�0.397 0.566�0.398 0.581�0.407 0.580�0.4089 0.561�0.394 0.570�0.401 0.597�0.422 0.534�0.38110 0.567�0.391 0.551�0.391 0.583�0.407 0.566�0.40015 0.522�0.372 0.514�0.366 0.593�0.414 0.552�0.388Table 4: Results for California Housing. Average and standard deviation of thetest RMSE (normalized).4 Con
lusionsWe have dis
ussed the use of fuzzy and hybrid fuzzy-possibilisti
 
lustering meth-ods for identifying fuzzy inferen
e systems. Four 
lustering methods, HCM,FCM, ICFA and FPCFA, were 
ompared on datasets 
on
erning sto
k pri
esand housing statisti
s. Both ICFA and FPCFA, re
ently proposed for fun
tionapproximation problems, 
ompare favorably against well-established traditional
lustering methods for fuzzy inferen
e systems identi�
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