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Abstract.

This paper analyzes the use of clustering methods for the identification of
fuzzy inference models for regression problems which is a problem fre-
quently raised in the socio-economic research field. Traditional, fuzzy
and hybrid fuzzy-possibilistic approaches to clustering are compared. In
particular, Improved Clustering for Function Approximation (ICFA), and
Fuzzy-Possibilistic Clustering for Function Approximation (FPCFA). The
methods proposed are applied to three datasets concerning stock prices
and housing prices. The experiments show that both ICFA and FPCFA
compare favorably against well-established traditional clustering methods
for fuzzy inference systems identification.

1 Introduction

The problem of approximating a given function using a model F can be formu-
lated as, given a set of observations {(Z;yr); k = 1,...,n} with y, = F(Z}) €
n

and & € %, it is desired to obtain a function F so Y ||lyx — F(Z)||* is minimum.

=1
In order to solve this problem, Fuzzy logic based gnd neuro-fuzzy modeling tech-
niques are appealing because of their interpretability and potential to address
a broad spectrum of problems. In particular, fuzzy inference systems (FIS) ex-
hibit a combined description and prediction capability as a consequence of their
rule-based structure [1].
The problem of identifying fuzzy inference rules can be addressed by data-
driven techniques for identification of fuzzy systems from numerical examples.
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Two approaches are often distinguished in the literature: structure-oriented and
clustering-based.

In this paper we analyze the use of clustering-based identification methods
for fuzzy inference systems in the context of regression problems. Fuzzy and
hybrid fuzzy-possibilistic clustering approaches are followed.

The rest of the paper remains as follow: in the next section, we discuss the
structure of FIS identified by means of a fuzzy clustering methods as well as the
fuzzy-possibilistic approach used previously. Afterwards, in section 3, we apply
clustering-based identification approaches to socio-economic regression datasets.
Finally, some conclusion remarks are given.

2 Fuzzy Inference System Identification

In order to build a regression model, a fuzzy inference system can be defined as a
mapping between a vector of crisp inputs and a crisp output. Let us denote the
inputs for observations (#y;yx) of a certain regression problem as scalar values
z1,...,2p. This way, assuming all the inputs (M) are used, the fuzzy regression
model can be expressed as a set of N fuzzy rules of the following form:

R;: IF xyis L} AND x5is L5 AND ... AND zis L), THEN § < pg;,

where i = 1,..., N, and the fuzzy sets L’ € {L;x},k=1...,n;,j =1,..., M,
with n; being the number of linguistic labels defined for the jth input variable.
L;- are the fuzzy sets representing the linguistic terms used for the jth input in
the ith rule of the fuzzy model. ug, are the consequents of the rules and can
take different forms. For example, in a system with two inputs, if L{ is renamed
LOW; and L% is renamed HIGHo, the ith rule R;, would have the following
form:

R; : IF 21 is LOW; AND 24is HIGH> THEN § < ug,.

Depending on the fuzzy operators, inference model and type of membership
functions (MFs) employed, the mapping between inputs and outputs can have
different formulations. In principle, the methods proposed in this paper can be
applied for any combination of types of MFs, operators and inference model, but
the selection can have a significant impact on practical results.

As a concrete implementation for this paper, we use the minimum as T-
norm for conjunction operations, Gaussian MFs for inputs, singleton outputs,
and product inference of rules. Defuzzification is performed using the fuzzy
mean method, i.e., zero-order Takagi-Sugeno systems [2] are defined. Thus, the
result of the inference process is a weighted average of the singleton consequents.
This inference scheme was chosen in order to keep systems as simple and inter-
pretable as possible. In particular, the use of singleton outputs simplifies both
the interpretation of rules and its local optimization.

Therefore, in this particular case a fuzzy regressor can be formulated as



follows:
N
Z (uRi  min p (%))
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1<j<M

where IV is the number of rules in the rule base, ug, are singleton output values,

and pr: are Gaussian MFs for the inputs. Thus, each fuzzy set defined for the
J

input linguistic terms, L; 1, (for the kth linguistic term defined for the jth input),

is characterized by an MF having the following form:

pL;, = exp [—(y; —ck,j)Q/Qa,%’j] yk=1...,n;,j=1,...,M, (1)

where ¢ ; and oy, ; are scalar values and represent the centers and widths of the
inputs MFs, respectively.

Fuzzy inference systems of the class being designed here are universal ap-
proximators [3, 4]. Thus, for a sufficiently large number of rules and MFs, any
input-output mapping should be approximated with arbitrary accuracy.

2.1 Clustering-Based Identification of Fuzzy Inference Systems

Different approaches to the identification of fuzzy inference systems from numeric
data have been proposed in the literature [5, 6]. Roughly, two classes of methods
can be distinguished: structure-oriented and clustering-based.

In this paper we focus on the clustering-based class of methods and spe-
cially on those methods that follow an offline approach. The following clus-
tering algorithms are compared for the purposes of identifying fuzzy inference
systems: The Hard and Fuzzy C-means (HCM and FCM, respectively) [7] clus-
tering algorithms, the Improved Clustering for Function Approximation (ICFA)
algorithm [8], and the hybrid Fuzzy-Possibilistic Clustering for Function Approx-
imation [9]. The latter two algorithms were originally proposed for initializing
Radial Basis Function Neural Networks (RBFNNs) for regression problems. In
this paper, the ICF Ay variant, tailored for fuzzy inference systems identifica-
tion, is used [10].

The first step for clustering-based identification of fuzzy inference systems is
to apply a clustering algorithm on the input-output patterns. Once this process
finishes, @) clusters have been identified. Then, the structure of the correspond-
ing fuzzy inference systems has to be defined. In general, fuzzy rules can be
interpreted as joint constraints [6] rather than implication rules. Thus, it is sen-
sible to define a fuzzy rule from each cluster identified. This is the most frequent
approach in the literature. This way, the clusters and their corresponding rules
are considered as prototypes or models of the whole input pattern sequence.

Let us consider as above a multiple scalar input, single scalar output case
where the input patterns to the clustering algorithm consist of M inputs and
one output. Let us denote the clusters identified by &, 7 =1, ... ,Q. Let every



cluster have the following general form:

€k . (Ck71, ey Clc,M+1); with k = ]., ,Q,

where the ¢, 741 correspond to the outputs of the fuzzy inference model, whereas
the ¢, ..., cpn correspond to the inputs (z1, ... ,zp) to the fuzzy model.
For each cluster, a matching rule is generated with the following form:

Rk . IF T iSLlyk AND D) iSLzyk AND ... AND Tp iSLMJC THEN :I? — Ck,M+1,
k=1,...,Q,Q =N =n;,

where a set of input linguistic terms is created {L; x},k=1...,n;,j=1,...,M,.
These linguistic terms are defined by Gaussian MFs, ur, ., as in equation 1. The
output membership functions are defined as singleton functions centered at the
corresponding element of the cluster centers, c; pr+1. The centers of the input
Gaussian MFs for the jth input and kth rule (¢ ; in equation 1) are set to the
jth elements of the corresponding clusters ¢.

When inference systems are identified with clustering methods following this
approach, the number of linguistic terms defined for every input variable, n;, j =
1,...,M, is equal to the number of clusters identified, (), which in turn is equal
to the number of rules identified, N. Hence, @ different membership functions
are generated for each input and output variable, and @) rules are generated for
horizon h.

The way the widths of the input Gaussian MF's (o ; in equation 1) are set
depends on the clustering algorithm used. For the Hard C-means and Fuzzy
C-means algorithms the widths are set as a function of the membership degrees
of the input patterns to the clusters.

Recently, an adaptation of the ICFA [8] algorithm for identification of FIS
was proposed [10]. This adaptation, ICFA, is a simple generalization of the
original ICFA proposal where all the widths for a certain rule are set to a value
inversely proportional to the average weighting parameter w.

The ICFA algorithm performs an initialization of the centers of the clusters,
taking into account the output of the function to be approximated. The way
in which the output is considered is by defining a value for each center in the
output space. This value is named expected output (0;) of a center i and allows
the algorithm to weight the distance computed between the input vectors and
each center.

2.2 Fuzzy-Possibilistic approach

As was shown in [9], the combination of possibilistic and fuzzy membership
functions could lead to a better center initialization for RBFNNs.

The development of the FPCFA algorithm relied in the approach presented
in [11] where a combination of a fuzzy partition and a possibilistic partition
is used. The authors assert that the membership value of the fuzzy partition
is important to be able to assign a hard label to classify an input vector, but
at the same time, it is very useful to use the typicality (possibility) value to



move the centers properly in presence of outliers. Let U? = [ul,] be the matrix

containing all the possibilistic memberships, U = [u{k] the matrix containing
the fuzzy memberships, and C' = [¢]] the matrix containing the center positions
for i = 1...m and k = 1...n. The distortion function to be minimized is:

n m
Tng oy (U7, CLUPX) =3~ (uh)™ + (uly)") Dy (2)
k=1 i=1
with the following constraints:

S oul=1Vk=1.n (3)
i=1
> ouby=1Vi=1..m (4)
k=1

Let UP = [uf,], then, the constraint shown above requires each row of UP
to sum up to 1 but its columns are free up to the requirement that each col-
umn contains at least one non-zero entry. Therefore, there is a possibility of
input vectors not belonging to any cluster. The design of the FPCFA algorithm
weighted the similarity criteria used in the computation of the distances and
defining an expected output for each center, so the distortion function to be
optimized remained as:

Ty, (U7, C, U7, W X) ZZ TN + (b)) Dy (5)
k=1 i=1
restricted to the same constraints than the FPCM algorithm.
The iteration method to minimize considered the following equations to com-
pute the membership and expected output:
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The algorithm iterates until the centers have not moved significantly.

3 Experiments

The identification methods described above have been applied to three regression
benchmarks related to socio-economic applications: The Stocks Domain, Boston
Housing, and California Housing datasets. The following approach was followed
in order to test the performance of different identification methods. The obser-
vations of the datasets are randomly randomly rearranged and two thirds of the
complete set of observations is selected for training models, while the remaining
third is selected for testing purposes.

The overall properties of the three problems are shown in table 1. Overall,
FCM yields better results than HCM. Both ICFA and FPCFA can improve the
results obtained with FCM in general, with exceptions for certain numbers of
clusters. The most accurate results are obtained using FPCFA for a sufficiently
large number of clusters.

Dataset Inputs | Training length | Test length
Stocks Domain 9 634 316
Boston Housing 13 338 168

California Housing 8 13760 6880

Table 1: Characteristics of Datasets.

In what follows we summarize the results obtained for the different cluster-
ing methods described above. The experiments have been performed using the
Xfuzzy environment for the design of fuzzy inference systems [12, 13]. For the
regression approximation, errors are given as normalized root mean square error
(RMSE) values, where the normalization is performed against the variance of
the output variable.

3.1 Stocks Domain

The Stocks Domain dataset consists of daily stock prices for ten aerospace com-
panies recorded from January 1988 through October 1991, and can be obtained
from the StatLib repository [14].

Table 2 reports the results obtained for this dataset. The lowest test error
achieved is highlighted in bold face. In this case, both HCM and FCM exhibit
a higher sensitivity to the number of clusters selected. These limitations are
overcome by both ICFA and PCFA. In particular, FPCFA can provide the best
accuracy for a relatively small number of clusters.

3.2 Boston Housing

The Boston Housing contains various parameters about housing values in sub-
urbs of Boston. The inputs variables include the per capita crime rate by town,



Clusters HCM FCM ICFA; FPCFA
2 0.398+0.260 | 0.544+0.356 | 0.309+0.184 | 0.346+0.211
3 0.327+0.191 | 0.538+0.352 | 0.263+0.166 | 0.295+0.180
4 0.54140.425 | 0.2784+0.170 | 0.302£0.194 | 0.22540.130
5 0.28840.187 | 0.24840.149 | 0.254+0.160 | 0.24340.143
6 0.32440.189 | 0.21540.136 | 0.215£0.138 | 0.23140.152
7 0.23840.152 | 0.1884+0.110 | 0.218+0.132 | 0.21640.120
8 0.246+0.159 | 0.213+0.136 | 0.184+0.113 | 0.175+0.110
9 0.223+0.145 | 0.242+0.156 | 0.188+0.117 | 0.192+0.116
10 0.31140.225 | 0.1774+0.115 | 0.214+£0.136 | 0.204%0.125
15 0.18040.122 | 0.18640.129 | 0.175+0.110 | 0.140+0.087

Table 2: Results for Stocks Domain. Average and standard deviation of the test
RMSE (normalized)

index of accessibility to radial highways, pupil-teacher ratio by town, and %
lower status of the population, among others. The output variable to be mod-
eled is the Median value of owner-occupied homes. The dataset can be obtained
from the UCI Machine Learning Repository [15].

The results obtained are shown in table 2. Both ICFA and FPCFA provide
overall better results than HCM and FCM. FPCFA consistently provides the
most accurate results for a wide range of number of clusters.

Clusters HCM FCM ICFA; FPCFA
2 0.779+0.535 | 0.775+0.539 | 0.487+0.319 | 0.492+0.328
3 0.611+£0.407 | 0.585+0.445 | 0.526+0.327 | 0.397+0.248
4 0.497+0.343 | 0.792£0.516 | 0.597+0.418 | 0.417£0.278
5 0.607£0.398 | 0.628+0.445 | 0.631£0.433 | 0.435%0.298
6 0.643+0.450 | 0.703+0.540 | 0.792+0.543 | 0.374+0.268
7 0.668+0.504 | 0.585+0.417 | 0.401+0.262 | 0.343+0.236
8 0.615+0.440 | 0.527+0.378 | 0.428+0.291 | 0.359+0.244
9 0.546+£0.378 | 0.610£0.424 | 0.435+£0.302 | 0.405%0.289
10 0.606+£0.446 | 0.645+0.482 | 0.405£0.280 | 0.387+0.269
15 0.56540.407 | 0.62240.468 | 0.391£0.272 | 0.42640.319

Table 3: Results for Boston Housing. Average and standard deviation of the
test RMSE (normalized).

3.3 California Housing

The California Housing Datasets contains information collected from the 1990
Census. The data describes all the block groups in California, where a block
group on average includes 1425.5 individuals living in a geographically compact
area. The dataset can be obtained from the StatLib repository [14]. The inputs



variable include information about the location, median income, median age,
number of rooms, and number of householders, among others.

Table 4 summarizes the results obtained. Both HCM and FCM provide a
slightly lower test error for sufficiently high numbers of clusters. Overall, errors
are similar for the 4 clustering methods, with only two exceptions (FCM for 2

clusters and FPCFA for 4 clusters).

Clusters HCM FCM ICFAy FPCFA
2 0.666+0.448 | 1.031+£0.612 | 0.686+0.452 | 0.637+0.432
3 0.61240.426 | 0.625+£0.426 | 0.61640.422 | 0.624+0.435
4 0.59240.414 | 0.604£0.417 | 0.66540.448 | 0.762+0.499
5 0.595+£0.413 | 0.594£0.412 | 0.600£0.423 | 0.59740.415
6 0.59640.413 | 0.600£0.412 | 0.6344+0.435 | 0.585+0.414
7 0.589+0.410 | 0.585+0.405 | 0.58440.412 | 0.585+0.414
8 0.573+£0.397 | 0.566+0.398 | 0.581£0.407 | 0.58040.408
9 0.561£0.394 | 0.570£0.401 | 0.59740.422 | 0.53440.381
10 0.567+£0.391 | 0.551£0.391 | 0.583£0.407 | 0.56640.400
15 0.52240.372 | 0.514+0.366 | 0.59340.414 | 0.552+0.388

Table 4: Results for California Housing. Average and standard deviation of the
test RMSE (normalized).

4 Conclusions

We have discussed the use of fuzzy and hybrid fuzzy-possibilistic clustering meth-
ods for identifying fuzzy inference systems. Four clustering methods, HCM,
FCM, ICFA and FPCFA, were compared on datasets concerning stock prices
and housing statistics. Both ICFA and FPCFA, recently proposed for function
approximation problems, compare favorably against well-established traditional
clustering methods for fuzzy inference systems identification.
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