
An Online Evaluation Platform for Proactive Information
Retrieval Task

Li Yao?

?School of Science and Technology, Aalto University
Espoo, Finland

lyao@cis.hut.fi

Antti Ajanki†
†School of Science and Technology, Aalto University

Espoo, Finland
antti.ajanki@tkk.fi

Abstract

The last decade has seen a great progress on the research and applications of information retrieval. The
major improvement has been made to combine traditional keyword-based search with implicit inputs
such as eye movements or fixations, mouse clicks and voice commands, thus gradually forming a new
branch under the name of proactive information retrieval. This paper focuses on the the study of eye
movement tracking in the document retrieval by constructing a universal online research platform that
merges all the research steps - collecting data, feature selection, model selection and testing into a
flexible and extendible cross-platform software system.

1 Introduction

Proactive information retrieval (PIR) is a relatively
new research field that incorporates explicit user in-
puts such as search keywords from keyboard and
clicks from a mouse with additional implicit inputs
such as eye movement, speech, blood pressure and
even facial expression. Buscher and Dengel (2009)
shows that personalized information, if available, can
be combined into PIR and the retrieval shows high ef-
ficiency and accuracy. The most commonly used per-
sonalization approach is to include a user’s personal
information such as age, nationality, sex, educational
background and career. However, those kind of infor-
mation are always too personal to be safely collected.
Thus, latest research has been focused on collecting
the observation of eye movement that is directly re-
lated to a user’s personal interest or attention. Miller
and Agne (2005) and many other research discussed
the feasibility of the attention-based information re-
trieval using eye tracker data.

So far, many research has been devoted to study-
ing the implicit feedbacks as a complement of tradi-
tional explicit inputs. As a relatively thorough report,
He Zhang and Laaksonen (2008) presents a literature
survey conducted to review the current state of the
art in research concerning the use of eye movement
measurements and other non-conventional and im-
plicit relevance feedback modalities in content-based
image and information retrieval. In the work of Vi-
itaniemi and Laaksonen (2008), the author presents
the results of a series of experiments where knowl-

edge of the most relevant part of images is given
as additional information to a content-based image
retrieval system using mouse clicks. Furthermore,
Arto Klami and Kaski (2008) presents important re-
sults on inferring the relevance of images based on
implicit feedback about users’ attention, measured
using an eye tracking device.

Specifically in terms of PIR using eye move-
ment, according to Campbell and Maglio (2001), the
eye movement data is utilized to two very differ-
ent types of interfaces: command and non-command.
Command-based interfaces use gaze location to di-
rectly issue commands to the system while non-
command interfaces use gaze information to indi-
rectly tune the system to the user’s needs. Command-
based interfaces is most conveniently used to control
the system such as clicking by fixation. In the field
of information retrieval, the non-command interfaces,
combination of traditional application with gaze, are
used to adapt the computer to return more accurate
information. However, gaze data usually comprises
large amount of noise due to the flexibility of human’s
eyes. Different person may have very different read-
ing behavior and habit that make the universal model-
ing a non-trivial task. Hardoon and Pasupa (2010) ex-
plores the idea of implicitly incorporating eye move-
ment features in an image ranking task by combining
image features together with implicit feedback from
users’ eye movements in a tensor ranking Support
Vector Machine and shows that it is possible to extract
the individual source-specific features. Zakria Hus-
sain and Shawe-Taylor (2010) demonstrates that by

using a greedy Nystrom algorithm on the eye move-
ment features of different users, we can find a suit-
able low-dimensional feature space for learning the
individualized behavior.

Based on the principles briefly discussed above,
many applications of PIR have been developed for
both practical and academic purposes. One of the
earliest and most representative system can be found
in Maglio et al. (2000) where an attentive informa-
tion system called “SUITOR” was developed in IBM.
The system monitors a user’s behavior of operating
a computer such as web browsing, word processing
and provides suggestions and helps regarding to a
user’s current activity. The main source of infor-
mation comes from the tracking of the eye move-
ments. In Laaksonen et al. (1999), a PIR system
named PicSOM, is introduced for content-based in-
formation browsing and retrieval system based on the
Self-Organizing Map (SOM). In Laaksonen (2008)
and Viitaniemi and Laaksonen (2008), the authors
defined and implemented communication principles
and data formats for transferring enriched relevance
feedback to the PicSOM content-based image re-
trieval system used in the PinView1. The goal of
PinView is a proactive personal information naviga-
tor that allows retrieval of multimedia - such as still
images, text and video - from unannotated databases.
The modalities of enriched relevance feedback in Pin-
View include recorded eye movements, pointers and
keyboard events and audio including speech. An-
other delicate interactive PIR system can be found
in Lszl Kozma and Kaski (2009) which introduces
GaZIR, a gaze-based interface for browsing and
searching for images. The system computes on-line
predictions of relevance of images based on implicit
feedback, and when the user zooms in, the images
that are predicted to be the most relevant are brought
out.

Technically, all the PIR systems discussed above
rely on a collection of features which represent the
most essential part of information collected from a
mouse, a keyboard, a microphone and an eye tracker.
The collection of features, on one hand, differen-
tiate individuals from each other and on the other
hand, provide enough information for the computer
to model the exact behavior or intention of a specific
user. Among various of implicit inputs, eye move-
ment tracking is used in different tasks such as doc-
ument retrieval, image retrieval, and some subtasks
such as reading/skimming detection. The selected set
of features is coupled with a specific task and a model

1PinView is an EU FP7 funded Collaborative Project 216529.
For more information, go to the project webste: www.pinview.eu

that takes the selected features and generates perfor-
mance measurements indicating the acceptability of
the given feature-model pair. However, in eye move-
ment tracking, the number of collectable eye move-
ment features can be enormous as a result of exquisite
structure of human eyes. Furthermore, the number
of different models one can utilize is even larger —
logistic regression, support vector machine, artificial
neural network and their variations — just to name
a few. It remains a confusing question that which
feature-model-task combination gives the best perfor-
mance.

The traditional methods to find the best combina-
tion are limited in offline mode containing mainly
two stages. In the training stage, a task is firstly de-
fined, then data is collected, features are abstracted
from the collected data and models are trained us-
ing the features. The theoretical performance of the
tuned task-feature-model in this stage can be illus-
trated by using an isolated test set. This is called
theoretical performance for the reason that it is en-
tirely based on the data collected from a group of sub-
jects who only represent a small portion of general
population. In the testing stage with the fixed task-
feature-model tuple, the practical performance test of
a task-feature-model can finally be carried out by in-
volving more subjects in the experiment. The actual
practical performance is only available by using sep-
arate analysis after the whole experiment is finished,
which is why this 2-stage process is named after the
word “offline”. One may realize that the whole pro-
cess is time-consuming and involves large amount of
work such as constructing an experiment platform for
different tasks to collect training data, building and
testing different combination of task-feature-model
to get theoretical performance measurement and fi-
nally analyzing the practical performance. Further-
more, different researchers usually have their own
software platform to perform specific tasks and their
own models trained in different platforms such Mat-
lab, R or even Python on different operation systems
such as Windows and Linux. Thus, a new universal
software platform is needed to simplify the whole re-
search process and to provide flexibility and reliabil-
ity to PIR research. In this paper, we focus on devel-
oping such a system having the following promising
features:

• It is a proactive document retrieval system using
eye movement data.

• Researchers can define different task-feature-
model components in their favorite program-
ming languages (e.g. Python and Matlab) and

components can be easily plugged into the sys-
tem.

• It incorporates stage one of training and stage
two of practical testing into a unified software
system that is connected with the backstage re-
search environment.

• It provides online evaluation feedback in the
practical testing stage so that the practical per-
formance of a trained task-feature-model tuple is
shown in real time during the testing stage while
the subjects are performing the experiment.

• Even though the system is made to evaluate task-
feature-model combination in an efficient way in
the research, the online evaluation feedback can
be used in many other purposes such as giving
suggestions to a user or providing guidance.

• The system can be easily extended to proac-
tive image retrieval system using eye movement
data.

In what follows, section 2 overviews the system and
demonstrates the usage of the system. Section 3 goes
deeper into the implementation of the system. Sec-
tion 4 performs the experiment: Reading/skimming
detection in order to show exactly how the system
works with different task-feature-model components
in the PIR research. Note that this work is not ded-
icated to any specific research task but the emphasis
of use of the system in various of tasks and how it
simplifies the experiment and data analysis and mean-
while guarantees accurate results.

2 System Overview

2.1 High level architecture of system
Figure 1 shows the top level architecture of the sys-
tem. The system consists of three seperate compo-
nents located in two different operating systems. The
Firefox extension is installed in Firefox browser in
the Windows computer in which the eye fixations are
collected by Tobbi 1750 eye tracker driver and pre-
processed to XML-formatted data. The preprocessed
XML fixation data is then relayed to the Apache
HTTP server.

The Apache HTTP server is installed on the Linux
machine where fixation data from Firefox extension
is received via standard Common Gateway Inter-
face (CGI) and further processed to generate series
of commands sent to the experimental module via
socket client/server communication.

Figure 1: System architecture.

The experimental module is designed to run on any
Linux machine inside a normal computer network,
which is achieved by setting a socket server inside
the experimental module and a socket client inside
HTTP server. The commands from HTTP server are
designed to be executed on specific experimental plat-
forms, which in the current system, are Matlab and
Python modules. Take Matlab as an example. The
socket server implemented inside Matlab keeps wait-
ing for the message from socket client. The received
messages from the socket client are executable Mat-
lab commands containing fixation data. The Matlab
commands call the models implemented in Matlab to
analyze the fixation data.

Data travels from Firefox to experimental module
and then back to Firefox. It has two parts: evaluation
feedbacks showing the response and performance of
current machine learning algorithm, and the content
of the next document. Due to the intensive real-time
data communication, a stable network connection and
bandwidth with at least 500KB/s is necessary.

2.2 Functional scenarios
Two basic functional scenarios are “collecting train-
ing data” and “testing model”. Firefox browser plu-
gin shows a series of documents by using and collects
the information of eye fixation data. The fixation data
is then used for a research purpose, for instance, mod-
eling a subject’s behavior. After a model is trained,
the system is further used to test the performance of
the trained model.

2.2.1 Scenario one: collecting training data

A subject selects an interesting topic in the interface
shown in Figure 2. Then a series of random docu-
ments on that topic are shown to the subject. The

subject reads given documents one by one as in Fig-
ure 3. While reading, the subject’s eye movements
are collected by the system. The collected data is
then used in the research. During this stage, the ex-
perimental module does not load any algorithm to an-
alyze the fixations, so the system gives no evaluation
feedbacks.

Figure 2: Select task: collecting training data. Doc-
uments on a selected topic are loaded. No model is
involved.

Figure 3: Subjects read through documents while
training data is collected at the backstage. The per-
formance evaluation of task-feature-model is not pro-
vided since no model is loaded behind the scene.

2.2.2 Scenario two: practical test of model per-
formance

After training a model using data from scenario one
and plugging it into the system, it is time to run the
practical test with new test subjects. In this sce-
nario, the trained model is loaded into the experimen-
tal module as in Figure 4. The system collects the
fixation data and evaluates the fixations sequentially
by using the preloaded algorithm and gives evalua-
tion feedbacks to the Firefox extension. As in Figure

5, the evaluation result is shown at the top of the doc-
ument. Another alternative way is to play a music
note in accordance to the value of evaluation result.

Figure 4: Preparing stage for the practical test after
task-feature-model has been tuned with training data.
Selecting a topic equals to selecting a model at the
backstage.

Figure 5: Subjects read through the documents with
model loaded and performance evaluation returned in
real-time. Evaluation is normalized between 0 and 1.

3 System Implementation

3.1 Implementation of Firefox extension

Firefox, developped by Mozilla organization, pro-
vides the standard of constructing the entension to
Firefox browser. In general, every extension consists
of two parts, XPCOM and a user interface. XPCOM,
which builds a communication channel between eye
tracker and Firefox is coded by C++. The imple-
mentation of the user interface requires several tech-
niques including Javascript, XML user interface lan-
guage (XUL) and HTML. XUL and HTML construct
the user interface controls such as buttons and la-
bels. Javascript collects raw fixation via XPCOM,
and maps each fixation to a paragraph in a document

Table 1: Functionality of CGI scripts
CGI scripts Functionality
configure Load experimental module,

load model list,
configure tasks,
(collecting data or testing model)

collect Receive fixations,
communicate with Python/Matlab,
response feedback to Firefox

format Generate training data,
format all communications
to XML file

and transforms the mapping into standard XML for-
mat. The XML-formatted mappings are then deliv-
ered to HTTP server via Javacripts’ embeded object
XMLHttpRequest, which is also known as AJAX.

3.2 Implementation of Common Gate-
way Interface in Apache HTTP
server

The Common Gateway Interface (CGI) is a standard
protocol that defines how webserver software can del-
egate the generation of webpages to a console appli-
cation. Such applications are known as CGI scripts
that in principle can be written in any programming
language. Apache HTTP Server provides a container
to which the Firefox extension sends data by standard
HTTP requests. The CGI scripts wait in the HTTP
container for the incoming requests, analyze the re-
quests and compose HTTP responses back to Fire-
fox extension. The system includes three CGI scripts
written in C, dealing with 3 different tasks in Table
1. Those three scripts explicitly use GNU Cgicc li-
brary to traverse XML requests and compose XML
response that is then fed back from HTTP server to
Firefox extension.

More specifically, configure corresponds to the
configuration phase shown in Figure 2 where it dy-
namically loads the topics or models into the drop-
down lists and notifies the server with a subject’s se-
lection after clicking “config server” button.

collect corresponds to the phase shown in Figure 3
and Figure 5. Evaluation result is shown as “Evalua-
tion Result”. When a subject clicks next document
button, the request of a new document is inserted
into the XML request so that in the corresponding re-
sponse, not only the evaluation but also the content of
new document are provided to Firefox.

format is responsible to convert all isolated XML
requests into one well-formatted XML file so that

training data are easily collected for the future use.

3.3 Implementation of experimental
module

This part gives details of experimental modules. The
whole system consists of two experimental modules,
Matlab and Python. Each module further consists of
several models each of which is in fact a specific ma-
chine learning algorithm handling feature selection
and classification. Besides, each module has its own
implementation of a socket server.

3.3.1 Implementation by Matlab

Matlab implementation of the experimental module
makes use of the power of embedded Java network
communication package “java.net.SocketServer”, I/O
package “java.io” and other utility packages such as
“java.lang.String”.

Java receives fixation requests from CGI and
judges the type of command from CGI. The “se-
lect task” containing parameters “model” and “task”
is always the first command that is relayed from Java
and executed by Matlab. It sets up the variable “task”
inside Matlab module and loads the model. After
that, if the command is either “handle fixation” or
“next document”, Matlab searches the .m file with
the same name as the command and executes the file.
If the command is something else other than the pre-
vious three, Java will by default recognize that com-
mand as the stop server signal and thus stops the
server. Basically, any unrecognized commands will
stops the Matlab server. For example, “telnet local-
host 6666” in Linux console will do. The Matlab
server cannot be stopped inside Matlab command line
for some safety reasons of the operating system.

From the other way around, when a task is set to
“testing”, “handle fixation” returns evaluation result
(otherwise, “NoEvalution”) to Java. Java will send
back the result to CGI.

Another practical concern is the change of
workspace in Matlab. Since in Matlab experimen-
tal module, socket server and models are saved under
different directories, the change of workspace needs
to be explicitly added into the Matlab scripts. The
one-server-multiple-models structure relies on accu-
rate change of workspace.

3.3.2 Implementation by Python

The implementation of Python module uses the same
one-server-mulitple-models structure as Matlab. The
difference is that Python is sufficient to handle both

socket communication and model implementation.
The command sets are the same as those used in Mat-
lab. Python socket server can be stopped by using
keyboard combination “CTRL+C” in Linux console
used to start the Python server.

4 Experiment on the system

The importance of the system is that it can be used
as an architecture which may also be enhanced and
extended in various research tasks. One example is
demonstrated in this section. Other experiments may
be designed based on the different goals.

4.1 Reading and skimming detection

The last hundred years has seen a lot of research fo-
cusing on the behavior of the human’s eyes when
reading. The most important results can be found
in K.Rayner (1998): When reading silently the eye
shows a very characteristic behavior composed of fix-
ations and saccades. A fixation is a time interval of
about 200-250 ms on average during which the eye
is steadily gazing at one point. A saccade is a rapid
eye movement from one fixation to the next. The
mean left-to-right saccade size during reading is 7-
9 letter spaces. This depends on the font size and is
relatively invariant concerning the distance between
the eyes and the text. Approximately 10-15% of the
eye movements during reading are regressions. Read-
ing detection provides an accurate way of defining
the level of a user’s interest. For example, reading
shows one’s consistent interests of the content while
skimming shows the opposite. As in Georg Buscher
and van Elst (2008), by monitoring the distance and
direction in letter spaces, features such as read for-
ward, skim forward, long skim jump, short regres-
sion and unrelated move are abstracted and then used
to generate both reading and skimming weights for
each fixation. Both reading and skimming weights
are then added together as a score to judge whether
a user is reading or not. A threshhold for reading is
predefined. If the score exceeds the threshhold, sys-
tem draws the conclusion that a user is reading. If
not, a user is skimming. The similar approach is also
dopted in Campbell and Maglio (2001).

The differentiation between the human behavior of
reading and skimming shows its importance in proac-
tive information retrieval task. After the discussion
of the suitable features, the basic classification algo-
rithms are briefly explained followed by the results.

4.1.1 Dataset and feature abstraction

By following the Figure 2 and Figure 3, the data was
collected from 2 subjects who was told before the ex-
periment to look for the words starting with capital
letter, which mimicks skimming, or to understand the
story of the given short passage, which mimicks read-
ing. The whole data set includes 17 documents aimed
for skimming and 33 documents aimed for reading.
Although with limited size, the data is enough to
show the significant use of our system.

In order to simplify the reading/skimming detec-
tion task, only document level features that summa-
rize the fixations across the whole document are taken
into consideration. The raw fixation directly collected
from Firefox extension is of more than 10 dimensions
including docID, fixation sequence, 3 pairs of (x,y)
coordinates, fixation duration and other trivial infor-
mation. From the raw fixation, we define new fea-
ture tuple (N, d1, d2, D) that is considered most use-
ful and informative to this specific reading/skimming
detection task:

• N: Number of fixations per document

• d1: Average jumping distance of x coordinates
between each pair of successive fixations

• d2: Average jumping distance of y coordinates
between each pair of successive fixations

• D: Average fixation duration per document

The dataset includes 50 rows and 5 columns. Each
row xi,x ∈ <n represents one document. In our fol-
lowing experiment, n = 5 is used for simplicity, how-
ever, one can come up with more complex features
to better represent a document for different purposes.
First 4 columns (N, d1, d2, D) show the feature tuple
collected from the raw data. The last column shows
the classification label ci in which ci = 1 represents
reading and ci = −1 represents skimming.

4.1.2 Logistic regression

Logistic regression in Hilbe (2009) is considered as
one of the most basic linear classifiers in machine
learning algorithms. It tries to construct a hyperplane
that separates the instances of two classes by min-
imizing the classification error. The logistic func-
tion f(z) = ez

ez+1 = 1
1+e−z , where z = w · x =

w0 + x1w1 + x2w2 + · · ·+ xdwd , wd is coefficients
and vector [x1, x2, . . . , xd] represents one observa-
tion, is used to decide which class the given instance
belongs to. The best model comes from the mini-
mization of the classification error which is defined

as e = 1
n

∑n
i=1(ci − c̃i) where ci is the observation

label and c̃i is the classification result equal to f(z)
and n is the total number of observations.

4.1.3 Soft margin support vector machine

Support vector machine (SVM) is another widely
used family of classifiers. Linear SVM constructs
the hyperplane that separates the given two classes
by maximizing the margin between support vectors.
Seeking for a plane to separate two classes of in-
stances becomes infeasible when instances are by na-
ture not linearly separable. Soft margin SVM, de-
tailed in Alpaydin (2004), relaxes the separation to
allow misclassification. In Figure 6, by minimizing
1
2 ||w||

2 + C
∑

i ξ
i subject to ci(w · x− b) ≥ 1− ξi

where ξi stores the deviation of each instance i from
the margin and C is the complexity trade-off, the op-
timal separation plan w·x−b = 0 is computed out by
using all the instances between the plane w·x−b = 1
and w · x− b = −1.

Figure 6: Soft margin support vector machine.

4.1.4 Classification result

The whole data has 50 feature vectors representing 50
documents either by reading or skimming. Their d1

and d2 are plot in Figure 7. According to the plot, we
can generally get the sense that reading and skimming
are not perfectly separable by straight line. Since the
size of data available is relatively small and in order to
minimize the prediction error, the expected prediction
error is computed for leave-one-out cross-validation.
Different combinations of features are also tried with
both logistic regression and SVM and the classifica-
tion result is shown in Table 2.

0 1000 2000 3000 4000 5000 6000 7000
0

200

400

600

800

1000

1200

1400

d
1

d
2

skimming

reading

Figure 7: Plot of feature subset (d1, d2)

Table 2: Leave-one-out cross-validation
Feature sets Expected error Expected error

rate of LG rate of SVM
N 0.328 0.325
d1 0.195 0.225
d2 0.124 0.135
D 0.242 0.235
N, d1 0.147 0.190
N,d2 0.142 0.130
d1, d2 0.125 0.162
N,d1, d2 0.125 0.095
N,d1, d2,D 0.035 0.085

5 Conclusions
In terms of the system, the current performance is ac-
ceptable with at least 3 fixations being handled per
second both in Python and Matlab modules. This
performance is considered as enough foundation to
evaluate the advantage and drawback of any given
algorithm in real-time. The evaluation feedback is
expressed as the music note of different frequencies
regarding to the value of the feedback. However,
whether the use of music notes is sensible and in-
formative enough to indicate the performance of the
algorithm is still under discussion. The future work
could consists of finding more reliable approaches.

In terms of the reading/skimming detection, data
used in the experiment has its limitations. After all,
only two persons are involved in collecting data. Two
persons are insufficient to represent the mass popu-
lation. Obviously, the system is adapted to model
the behavior of only these two persons. Whether the
feature is widely suitable for different persons needs
more experiment to prove.

In terms of the availability of our system, unfortu-

nately, it is not going to be delivered into the public
domain quite soon. But its variations have been inter-
nally distributed into the research and construction of
the PinView system.

Acknowledgements
We would like to give thanks to all the researchers
and developers involved in the PinView project. Their
outstanding work provides an essential building block
of our system.

References
Ethem Alpaydin. Introduction to Machine Learn-

ing (Adaptive Computation and Machine Learn-
ing). The MIT Press, 2004. ISBN 0262012111.

Tefilo de Campos Arto Klami, Craig Saunders and
Samuel Kaski. Can relevance of images be inferred
from eye movements? In MIR ’08: Proceedings of
the 1st ACM International Conference on Multime-
dia Information Retrieval, pages 134–140, 2008.

Georg Buscher and Andreas Dengel. Gaze-base fil-
tering of relevant document segments. In WWW,
2009.

Christopher S. Campbell and Paul P. Maglio. A robust
algorithm for reading detection. In Proceedings of
the 2001 workshop on Perceptive user interfaces,
2001.

Andreas Dengel Georg Buscher and Ludger van Elst.
Eye movements as implicit relevance feedback. In
CHI, 2008.

David Hardoon and Kitsuchart Pasupa. Image rank-
ing with implicit feedback from eye movements.
In In Proceedings of the 6th Biennial Sympo-
sium on Eye Tracking Research and Applications
(ETRA’2010), Austin, USA, 2010.

Markus Koskela He Zhang and Jorma Laaksonen.
Report on forms of enriched relevance feedback.
Technical report, Helsinki University of Technol-
ogy, Department of Information and Computer Sci-
ence, 2008.

Joseph M. Hilbe. Logistic Regression Models. Chap-
man and Hall/CRC Press, 2009.

K.Rayner. Eye movements in reading and informa-
tion processing: 20 years of research. In Psycho-
logical Bulletin, 1998.

J. T. Laaksonen, J. M. Koskela, and E. Oja. Picsom -
a framework for content-based image database re-
trieval using self-organizing maps. In In 11th Scan-
dinavian Conference on Image Analysis, pages
151–156, 1999.

Jorma Laaksonen. Definition of enriched relevance
feedback in picsom. Technical report, Helsinki
University of Technology, Department of Informa-
tion and Computer Science, 2008.

Arto Klami Lszl Kozma and Samuel Kaski. Gazir:
Gaze-based zooming interface for image retrieval.
In In Eleventh International Conference on Multi-
modal Interfaces (ICMI-MLMI),Cambridge, Mas-
sachusetts, USA, 2009.

Paul P. Maglio, Rob Barrett, Christopher S. Camp-
bell, and Ted Selker. Suitor: an attentive informa-
tion system. In IUI ’00: Proceedings of the 5th
international conference on Intelligent user inter-
faces, New York, NY, USA, 2000. ACM.

Tristan Miller and Stefan Agne. Attention-based in-
formation retrieval using eye tracker data. In inter-
national conference on Knowledge Capture, 2005.

Ville Viitaniemi and Jorma Laaksonen. Evaluation of
pointer click relevance feedback in picsom. Tech-
nical report, Helsinki University of Technology,
Department of Information and Computer Science,
2008.

Kitsuchart Pasupa Zakria Hussain and John Shawe-
Taylor. Image ranking with implicit feedback from
eye movements. In In Proceedings of the 6th Bi-
ennial Symposium on Eye Tracking Research and
Applications (ETRA’2010), Austin, USA, 2010.

