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Abstract—This paper proposes a method for the identi-
fication of evolving fuzzy Takagi-Sugeno systems based on
the Optimally-Pruned Extreme Learning Machine (OP-ELM)
methodology. We describe ELM which is a simple yet accurate
and fast learning algorithm for training single-hidden layer
feed-forward artificial neural networks (SLFNs) with random
hidden neurons. We then describe the OP-ELM methodology
for building ELM models in a robust and generic manner.
Leveraging on the previously proposed Online Sequential
ELM method and the OP-ELM, we propose an identification
method for self-developing or evolving neuro-fuzzy systems.
This method follows a random projection based approach to
extracting evolving fuzzy rulebases. A comparison is performed
over a diverse collection of datasets against well known evolving
neuro-fuzzy methods, namely DENFIS and eTS. It is shown
that the method proposed is robust and competitive in terms
of accuracy and speed.

I. INTRODUCTION

Evolving, online or adaptive intelligent systems are meant
to be applied on sequential data or streams of data. These sys-
tems distinguish themselves from traditional, offline learning
methods and previous online methods in that their structure
(in addition to their parameters) evolves in order to account
for new data.

The interest in self-developing artificial neural network
methods can be tracked back to some early works in the
field [1]. During the last decade there has been an increase
of interest in this field and in particular within the area of
evolving fuzzy systems for modeling and control [2]. Some
recent advances include DENFIS [3], and the more general
Evolving Connectionist Systems framework [4], and evolving
Takagi-Sugeno (eTS) [5] as well as its variants [6].

For instance, evolving TS fuzzy systems [5] combine
supervised and unsupervised learning techniques to evolve
the TS model structure as well as its parameters as new
data become available. This way, new rules can be added,
existing rules can be reorganized, and in general any aspect
of an evolving fuzzy inference model is subject to self-
development.

Evolving fuzzy systems represent a relative recent step be-
yond the paradigms of self-tunning neuro-fuzzy systems [7]
and online neuro-fuzzy systems [5]. In general, the evolving
approach implies the need for simple, one-pass training meth-
ods as opposed to traditional, iterative algorithms. Evolving
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fuzzy systems are particularly useful for online prediction
and predictive control. Among other advantages, evolving
fuzzy systems provide an inherent capability for novelty de-
tection and an enhanced robustness against nonstationarities.

This paper proposes a method for the identification
of evolving fuzzy Takagi-Sugeno systems based on the
Optimally-Pruned Extreme Learning Machine (OP-ELM)
methodology. We leverage in three previous developments:
the ELM learning method, introduced by Huang et al. [8], the
OP-ELM methodology, introduced by Miche et al. [9], and
the online sequential ELM algorithm, introduced by Liang et
al. [10] and extended for fuzzy systems by Rong et al. [11].

ELM challenges conventional learning methods and the-
ories. ELM has been shown to be accurate and fast both
theoretically and experimentally. Indeed, ELM is extremely
fast but can achieve a performance in terms of generalization
comparable to other accurate yet costly learning techniques.

OP-ELM has been introduced by Miche et al. [9] in order
to improve the robustness of ELM models. This is achieved
through a three stages methodology which includes steps for
fast ranking of hidden neurons and model selection.

Rong et al. [11] have previously shown that single hidden-
layer feedforward neural networks (SLFNs) can be regarded
as equivalent to fuzzy inference systems. They use this
equvalence in order to derive an online sequential method
for fuzzy systems (OS-Fuzzy-ELM) based on the online
sequential ELM [10].

Here we introduce an evolving approach to the identifi-
cation of evolving Takagi-Sugeno fuzzy inference systems
based on the original offline OP-ELM methodology and
the OS-ELM online learning algorithm. We exploit the
equivalence between SLFNs and FIS, and bring the good
performance and robustness of the OP-ELM methodology
together with the online approach of OS-ELM in order to
define the evolving fuzzy OP-ELM (eF-OP-ELM).

The paper is organized as follows. Section II describes
the ELM, the OP-ELM methodology and the OS-ELM
sequential learning algorithm. In section III we introduce the
evolving fuzzy OP-ELM (eF-OP-ELM) modeling approach
for building evolving fuzzy inference systems. Then, in
section IV a comparative analysis is performed against other
well-known alternatives. Section V discusses results with
an emphasis on the interpretability achieved through the
OP-ELM model selection scheme. Finally we give some
concluding remarks.

II. ELM

The Extreme Learning Machine (ELM) [8], [12] is a
simple yet effective learning algorithm for training single-
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hidden-layer feed-forward artificial neural networks (SLFNs)
with random hidden nodes. In ELM, the hidden neuron pa-
rameters are randomly assigned whereas the output weights
are analytically determined. ELM is a unified framework
of generalized SLFNs that has the universal approximation
capability for a wide range of hidden node types. The training
process for ELM can be several orders of magnitude faster
than traditional learning algorithms for feed-forward neural
networks, while attaining similar or even better approxima-
tion capabilities.

Let us consider a dataset consisting of M observations
(x;,y;) € R% x R%, being d; the dimension of the
input space and ds the dimension of the output space. An
SLFN with N neurons in the hidden layer is defined by the
following expression:

N
Zﬂif(xjaciyai)v 1<j<M,
i=1

where f(-) is the activation function and 3; € R are
the output weights. Let us illustrate two widely studied
architectures of SLFNs: SFLNs with hidden additive nodes
and radial basis function (RBF) networks which use RBF
nodes in the hidden layer. Additive nodes have the form
f(ci-x; +b;), where w; € R‘li are the input weights and b;
the biases. RBFs have the form f(|| % ), where w; € R¢
are the centers and b; the widths of the RBF nodes.

If the SFLN perfectly fits the data, then the difference
between the estimated outputs ¥; and the actual output values
is zero and thus the following holds:

N
Zﬁif(xj7cz‘7 ai) =j,

1<j<M,
i=1
which can be written as:
HB =Y, (1
with
f(x1,¢1,a1) f(x1,en,an)
f(xnm,c1,a1) f(xnm,cn,an)
B=@F,....0%) and Y = (y],...,yip"

In the ELM method, the hidden layer, H, is generated
in in a random way, independenly of the training dataset.
Then, the output weights of the SLFN, [ can be determined
analytically. The estimated output weights are computed as:

B=H'Y, )

where H' is the Moore-Penrose generalized inverse of H.
For the applicable implementation methods refer to [10], [8].
As pointed out by Huang [13] the ELM theory claims that
parameter tuning is not required. This approach challenges
conventional learning methods and theories.

It has been theoretically shown that for function approx-
imation all the parameters of the hidden nodes can be
randomly generated without any prior knowledge. In [8§]

it is proved that the hidden-layer output matrix can be
computed (and achieves an approximation error as small
as desired) for N < M, under the assumption that the
activation function is infinitely differentiable. The universal
approximation capability of ELM has been proved in [12].

This way, ELM is a extremely fast method [8], several
orders of magnitude faster than traditional feedforward neural
networks methods while competitive in terms of accuracy.

As a final remark, ELM only requires the number of neu-
rons in the hidden layer to be specified, as opposed to other
learning methods which often have several hyperparameters
to be tuned.

A. Optimally-Pruned ELM (OP-ELM)

The Optimally Pruned Extreme Learning Machine (OP-
ELM) models [9], [14], [15] is a methodology based on the
ELM. OP-ELM models are built in three stages and use
Gaussian, sigmoid and linear kernels in general. First, an
ELM is constructed, then, an exact ranking of the neurons in
the hidden layer is performed, and finally the decision on how
many neurons are pruned is made based on an exact leave-
one-out error estimation method. These stages are performed
by means of fast methods and lead to extremely fast yet
accurate models.

OP-ELM has been shown to provide a compromise be-
tween the speed of ELM and the accuracy and robustness
of other much more computationally intensive methods. OP-
ELM models achieve roughly the same level of accuracy as
that of other well known computational intelligence meth-
ods [9], [14], such as Support Vector Machines and Least
Squares Support Vector Machines [16], Gaussian Processes
and Multilayer Perceptrons [17], while being significantly
faster.

As explained above, only one parameter has to be tuned
in order to build accurate ELM models: the number of
hidden neurons. In principle the only feasible approaches to
a sensible tuning of the number of hidden neurons are based
on the definition of validation subsets. This is the approach
used generally in the literature [8], [10].

However, validation approaches such as cross-validation
and bootstrapping methods raise several issues. In partic-
ular, computational cost increases significantly, which is
specially troublesome for online, adaptive and possibly real-
time systems. In addition, validation methods assume the
different subsets used for training, validation and test are
drawn from the same population. For systems that evolve or
exhibit nonstationarity, whether statistical or dynamical, this
assumption may lead to wrong models.

The OP-ELM method introduced a sound approach to the
selection of the subset of best nodes in such a way that
unuseful neurons are pruned. This brings in a fundamen-
tal advantage for evolving methods besides enhancing the
robustness of ELM models against irrelevant and redundant
variables [9]. In what follows we outline the 3 stages of the
OP-ELM methodology.

1) Construction of an initial SLFN: This step is per-
formed using the standard ELM algorithm for a large enough
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number of neurons N'.

2) Ranking of Hidden Neurons: The Multiresponse Sparse
Regression (MRSR) [19] algorithm is applied in order to rank
the hidden neurons according to their accuracy. MRSR is in
essence a generalization of the least angle regression (LARS)
algorithm, and is thus able to find an exact ranking for linear
problems. Since in a ELM model the output is linear with
respect to the randomly initialized hidden nodes, the MRSR
ranking within the OP-ELM methodology is exact. This way,
the variables for the MRSR algorithm, h; (the outputs of the
hidden nodes or columns of the hidden node matrix, H), are
ranked exactly by their performance.

3) Model Selection: Once a ranking of the the kernel has
been obtained. the best number of neurons for the model
has to be chosen. Methods based on offline validation, such
as leave-one-out are often used for this kind of task. They
can be however extremely expensive in computational terms
and quickly become unaffordable for large datasets or online,
evolving or time constrained systems.

However, the LOO can be directly calculated for linear
models by using the PRESS (PREdiction Sum of Squares)
statistics, which provides the following closed-form expres-
sion for the LOO error of linear models:

PRESS _ Yi— h;b;
! 1 —h,Ph’”’

where 7 denotes the 7th hidden node, and P is defined as
P = (H"H) !, being H the hidden layer output matrix.

The optimal number of neurons can be found by estimating
the LOO error for different numbers of nodes (already ranked
by accuracy) and selecting the number of neurons L such that
minimizes the error:

J
L = argmin gPRESS (3)
je{Tn, N}; ’

It has been shown that the ranking (previous) stage of the OP-
ELM method has two positive effects: convergence is faster
and the number of neurons required to achieve the lowest
LOO error is lower [9].

B. Online Sequential ELM (OS-ELM)

The original ELM method is designed for offline model-
ing. However thanks to the simplicity of the computations
in the ELM method, it is possible to define efficient online
extensions for ELM. Liang et al. [10] have proposed the
OS-ELM algorithm which we outline in this section for the
purposes of providing all the equations used in the next
section.

The algorithm first computes a standard ELM model for
an initialization training set, with output matrix Y, hidden
nodes matrix Hg, and solution ,8(0) = (HIHo)'H!Y,,
using the Moore-Penrose generalized inversion according
to 2. Let us define Ky = HgHO. Then, for each new

'By default the initial number of neurons used in the OP-ELM Tool-
box [18], [14] is 100.

observation or chunk of observations the model is updated
online by means of the following recursive expressions:

B = g™ L P HT (Y — Hen 85, @)

Py =Py — PoH, I+ H PLHE )T Hy 1 Py,
®)
where P = K,all. These recursive update rules are
obtained by using the Sherman-Morrison-Woodbury formula
for computing the inverse of a rank-k correction of matrices.
We refer to [10] for the full details.

III. EVOLVING Fuzzy OP-ELM

The rules of a Takagi-Sugeno (TS) fuzzy inference model,
applied to a certain input x;, can be generally expressed
as [5]:

Ri : IF(LUjl is Azl) AND ... AND (mjdl is Aid1)> THEN
(yj1is Bi1) .- (Yjds 18 Bidy )

where d; is the dimension of the input space, do is the
dimension of the output space, ¢+ = 1,..., L for a rulebase
consisting of L rules, and A, (k=1,...,dy;i=1,...,L)
are the fuzzy sets for the kth input variable x; in the ith
rule. Bix(k = 1,...,dy;i = 1,...,L) are crisp values,
linear combinations of the input variables in the form S, =
Qik,0 + Gk, 171 + ...+ Qik,d, Tq, for a first-order TS model.

For each fuzzy set, A;x, the degree of membership of a
given input z; is specified by its corresponding member-
ship function f14,, (x;). A nonconstant piecewise continuous
membership function f(c,a) can be considered as in [11].
This kind of function includes most common membership
functions such as Gaussian and triangular as well as virtually
all practical possibilities. The membership function can thus
be defined by any bounded nonconstant piecewise continuous
membership function as follows:

Py (X5 Cris ai) = f(X55 Criy aq),

where aj and c;;, are the parameters of the membership
function f(-) for the ith rule and the kth component of the
input vectors, ;.

In a fuzzy inference system of this type, the output of
the model is computed as the weighted sum of the output of
each rule, where the weights are the activation degrees of the
rules. Thus, the system output y; for an input x; is given as
follows:

YL BB ) _
L= 1= = /62 X5, ¢, a5),  (6)
Vi Sy Ri(xjiciia;) z=Zl It )

where 3, = (Bi1,. .-
normalized rule:

,Bim), and f(-) can be seen as a

Ri(xj; ¢, ai)
T .
> i Ri(xj3 ¢iy aq)

According to the equivalence between generalized SFLN
and FIS, Rong. et al. have established the interpretation of

)

f(xj;7ciaai) =
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OS-ELM as an online fuzzy model [11] applicable to both
regression and classification problems. As noted in [11] f as
expressed in (7) is what can be called a fuzzy basis function
(FBF) [20].

In (6) it is evident that a FIS is equivalent to a generalized
SLEN, where f(-) represents the output functions of the
hidden layer and 3 represents the output weight vector. This
way, the output functions of the hidden nodes of the SLFN
are equivalent to the FBFs of the FIS, which in turn are based
on the membership functions.

Note this equivalence is used in [11] to develop an online
method for the identification of fuzzy inference systems
of the Takagi-Sugeno type (OS-Fuzzy-ELM). Note though
that this method is online (as OS-ELM [10]) yet not fully
evolving, i.e., the system self-tunes in an online manner but
the system structure (rulebase) does not evolve.

As a particular case of fuzzy or neuro-fuzzy system, an
evolving TS fuzzy system can be represented as a neural
network [21]. We show in what follows how to generalize
for an online learning approach the following two elements in
the OP-ELM methodology: the LARS-based ranking process,
and the PRESS statistics-based estimation of the LOO error.

Following the equivalence betwen the structure of SFLN
and FIS, the latter can be expressed in terms of the former:

L

Flxj) =) Bif (xjicinai) = b5, ®)
i=1

for a certain number of rules L. In the TS type models the

consequent of each fuzzy rule is a linear equation of the input

variables. If the coefficients, g1 j,k =1...d2,5 =1...dy,

of the linear equations are arranged in a matrix of parameters

of the model for the ith rule as follows:

di1,0 did2,0
qi1.d, Qid>,dy
then 3, = xJTeq,;, where xj. = [l,xfe]T is obtained by

appending a 1 to the input vector in order to generate a
linear equation. This way, expanding 3 in 8, the output of
the model can be expressed as follows:

L
F(x;) = ZXJTEQif(Xj;Ci,ai) =yj, j=1....M.
i=1

The above expression in compact form is:
HQ=Y,
which is a generalization of (1), with:
q1
Q pm—
qL

Since a TS FIS is equivalent to an SLEN, the ELM learning
method can be applied to a fuzzy system. Thus, given that H
is initialized randomly and Y is known, Q can be computed

online using the same approach as in OS-ELM, as developed
in [11] for OS-Fuzzy-ELM.

In the evolving fuzzy OP-ELM (eF-OP-ELM), the output
of the TS model is as follows:

L(3)

Flix) =Y xteqi(i) f (x5, ¢i(4), i (5)) =5, (9
i=1
which in compact form can be expressed as:

H()QU) = Y()).
for x; being the last observation available. Here, H(j) is
an evolving matrix, i.e., L(j) (the number of rules or nodes
in the hidden layer of the equivalent ELM) can evolve as
well as the input membership functions and the consequent

parameters. In this method the rulebase is fully evolving and
thus the hidden nodes matrix takes the following form:

f(xk,e1(j),a1(d) - f(xn, ey (d) ar(d))

J=1

H(j)= : . :
f(xj.e1(5),a1(3)) - f(xj,er)() ac(h))
where 1 < k < j, L(j) is the evolving number of rules,
c;(j) € C and a;(j) € A are the parameters of the input
membership functions, and C' and A are sets of parameters
values generated randomly in the initizalization stage.
Putting all pieces together, we can describe how the
components of an evolving TS fuzzy inference system are
defined in the eF-OP-ELM method:
o The antecedents (or “IF” part) belong to a set of
antecedents that is created randomly by generating the
sets of parameters C' and A.
o The concrete subset of rules are selected as in the 2nd
and 3rd stages of the OP-ELM methodology.
o The corresponding consequents (or “THEN” part) are
generated analytically using the ELM method, accord-
ing to (2).
The eF-OP-ELM algorithm consists of the following steps:

Algorithm 1 Evolving Fuzzy OP-ELM (eF-OP-ELM)
1: A set of antecedents is created randomly by generating
the sets of parameters C' and A, of cardinality N.
2: For a given initialization dataset consisting of M
observations (x;,y;) € R% x R%, an M-by-N matrix
of hidden nodes, Hy(j),j = M, is generated by applying
the fuzzy basis functions as in (7).
3: The fuzzy rules in Hy(j) are ranked and the best
number of rules are selected (as in (3)) following the OP-
ELM methodology. The result, H(j),j = M, allows for
the computation of Q(j),7 = M, (as in (2)). The initial
evolving TS model, F(-), is generated with the form of (9).
4: When a new observation, x;, becomes available:

4.1: Update Hg(j) with the new observation and apply
the 2nd and 3rd stage of the OP-ELM methodology in
order to generate the evolving H(j).

4.2 Find the analytical solution for Q(j). The model
output at time j can now be computed.
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IV. EXPERIMENTS

In principle, the ELM based methods described in previous
sections can be applied to both regression and classification
problems in general. In this section we concentrate on
regression and time series prediction problems.

Two well known methods in the field of evolving fuzzy
systems are taken as reference: DENFIS and eTS. DENFIS
(Dynamic evolving nerual-fuzzy inference system) [3]). is
one implementation of the more general ECOS (Evolving
Connectionist Systems) framework. eTS was applied using
global parameter estimation with a recursive least squares
filter (RLS), and the default parameters of the implementa-
tion used, detailed later on in this section. For both DENFIS
and eTS, first-order TS systems were built. In addition, OS-
Fuzzy-ELM is considered as a reference. Note though that
while it is an online method it is not fully evolving, as
detailed in previous sections.

We compare these methods against eF-OP-ELM, the
method proposed in this paper which is implemented as
described in previous sections, with a maximum number of
neurons of 100. Even though the standard OP-ELM uses
three different kinds of kernels, here we only use kernels of
Gaussian type for simplicity’s sake.

For OS-Fuzzy-ELM the same validation approach origi-
nally proposed in [11] is used. The initial training data is
randomly split into two nonoverlapping subsets for training
(75%) and validation (25%). The optimal number of rules is
selected such that the validation error is minimized. Different
numbers of rules are evaluated, with the number increasing
by 1 in the range [1, 100]. Within this range and for each case,
the average cross-validation error for 25 trials is computed.
The block size is set to 1. Finally, the OS-Fuzzy-ELM with
the lowest average cross-validation error is selected.

The main characteristics of the datasets used are shown
in table I. The datasets were chosen in order to find a
compromise between the following objectives: a) easing
comparison with the related literature, b) selecting datsets for
a broad range of characteristics (variables, size, dynamical
behavior, etc.). In particular, some datasets represent clearly
nonstationary processes (being thus the target of evolving
systems), while some others lie in the domain of regression
problems where nonstationarity is not much relevant.

The first 7 datasets are well known regression
problems in the field of machine learning. Some
of them are benchmarks from the UCI Machine

Learning Repository [22] and can be also found online

from http://www.liaad.up.pt/ Itorgo/Regression/DataSets.html.

These are included in order to analyze general regression
problems and ease comparison with the literature on related
ELM based methods [9], [11], [10].

The last 6 datasets represent time series. Mackey-Glass
is a well-known example of chaotic system [23] that can
describe a complex physiological process. Here we included
a synthetic instance for comparison purposes [5], [3]. The
dataset is generated using the 4th order Runge-Kutta method

TABLE I
DATASETS: NUMBER OF INPUTS, TRAINING OBSERVATIONS AND TEST
OBSERVATIONS

Dataset # Inputs | Training length | Test length
Abalone 8 2784 1393
Auto-MPG 7 258 134
Bank 8 3000 1500
Breast Cancer 32 129 65
Delta Ailerons 5 4752 2377
Servo 4 111 56
Stocks 9 633 317
Mackey-Glass 4 500 -
Santa Fe Laser 3 988 9093
ENSO 3 465 400
Sunspots 7 2085 1000
Darwin SLP 5 904 467
Internet2 4 708 730

with time step 0.1 s for the following differential equation:

o 02zt —7)
=T

The initial conditions and delay parameter are z(0) =
1.2,2(t) =0 for t < 0,7 = 17, and the value of the series
85 steps ahead (x(t + 85)) has to be modeled based on 4
inputs: z(t),x(t — 6), x(t — 12) and z(t — 18). Refer to [3]
for the full details required to generate the dataset. In order
to replicate the subseries of 500 values used in [5], the values
selected for prediction (shown in figure 1) lie in the range
x(443.2),...,2(493.1).

—0.1x(%).

1.4

" 3l % it %
" Lo A AV A d1 A A
RN tiy AV sl NN P T P
s bt l M T VT AE L Y v
T sbbd Moo R YP AL LT rf v 3T 4]
O R T T T RS T RN S A
06 YOO M8 ] LA 1 5
0s b ¥ U i ¥
¥ i E:
Fig. 1

MACKEY-GLASS TIME SERIES: 500 SAMPLES TO BE PREDICTED.

The Santa Fe Laser dataset of the Santa Fe time series
competition [24], [25]. represents the intensity of a far-
infrared-laser in a chaotic state, measured in a physics
laboratory experiment. The series is a cross-cut through
periodic to chaotic pulsations of the laser, and can be
closely modeled analytically [25]. This series is a remarkable
example of noise-free complicated behavior in a clean,
stationary, low-dimensional physical system for which the
underlying dynamics is well understood. In this case, the
next value, (¢ + 1)) has to be modeled based on 3 inputs:
x(t),z(t — 1), 2(t — 2) and a(¢t — 12). This subset of inputs
is optimal for a maximum regressor size of 12 [26].

The ENSO series is the data set from the ESTSP 2007
time series prediction competition [27]. This dataset consists
of 875 samples of temperatures of the El Nifio-Southern

1343



Oscillation phenomenon. y(t + 1) has to be predicted using
y(t),y(t —2), and y(t — 7) as inputs.

We also analyzed the series of monthly averaged sunspot
numbers covering from January 1749 through December
2007, as provided by the National Geographical Data Center
from the US National Oceanic and Atmospheric Administra-
tion?. Given the yearly periodicity of the series, a maximum
regressor size of 12 was defined. y(¢ + 12) (next year) has
to be predicted using y(t),y(t — 1), y(t —2),y(t —3), y(t —
4),y(t — 8) and y(t — 10).

The Internet2 time series represents the total amount of
aggregated incoming traffic in the routers of the Abilene
network, the Internet2 backbone. The series consists of 1458
daily averages from the 4th of January of 2003 through the
31st of December of 2006. The data are available from the
Abilene Observatory [29]. y(t + 7) (next week) has to be
predicted using y(t), y(t —2),y(t —4), and y(t — 11). Refer
to [26], [30], [31] for further descriptions and other details
to reproduce results for the 6 time series datasets.

In table I training and tests subsets are distinguished. Note
that the training set is in fact a sequence and is defined as the
sequence of values beginning at the first observation, while
the test set is defined as the sequence of last observations.
This way, training and out-of-sample or test errors for offline
methods can be analyzed while accounting for the evolution
in time of the datasets and its effects on models.

Training and test errors for offline modeling are shown
in table II for OP-ELM and DENFIS in offline mode, as
well as the number of hidden nodes or fuzzy rules identified
and the time required. These results are intended to give an
approximate estimation of the errors that can be achieved
using some related offline methods and is not meant to
be exhaustive. It should be noted that we provide training
and test errors so that the resuls shown in this paper can
be compared with the literature on online methods, such
as [10], [11]. We focus our analysis however on the evolving
modeling of the datasets, where the datasets are modeled
sequentially as a whole and no distinction is made between
training, validation and test subsets.

Errors are shown as nondimensional error index (NDEI):
The root mean square error (RMSE) divided by the standard
deviation of the target sequence. The NDEI is used in order
to ease comparison with previous results in the literature of
evolving systems, such as [5], [3]. Note however that other
references dealing with the methods applied in this paper use
as error measure the RMSE for the dataset normalized in the
range [0,1], as in [11], [10], or the absolute MSE [9].

Table III shows the NDEI, the standard deviation of the
nondimensional errors (NDE), the final number of rules and
the time required for the online training of evolving methods.
The time column shows the processor time consumed for the
learning process on the same environment’.

2The series is available online from http://www.ngdc.noaa.gov/stp/SOLAR/.
The International Sunspot Number is produced by the Solar Influence Data
Analysis Center (SIDC) at the Royal Observatory of Belgium [28].

3 A standard PC with 4 GB of RAM, and a Intel(R) Core(TM)2 CPU 6300
at 1.86GHz, running Matlab R2008b on the GNU/Linux operating system.
Tests were run with no significative competing load.

TABLE I
OFFLINE MODELING ERRORS FOR TRAINING AND TEST SUBSETS.

Dataset Method | Training NDEI | Test NDEI | Rules | Time (s)
Abalone DENFIS 3.22 3.91 20 2.42
OP-ELM 6.39-1 6.91e-1 38 2.94
Auto- DENFIS 1.88 2.53 31 1.23
MPG OP-ELM 2.87e-1 6.45¢e-1 32 6.50
Bank DENFIS 7.85e-1 7.49¢-1 730 | 2.57e+2
OP-ELM 2.12e-1 2.20e-1 88 1.18e+1
Breast DENFIS 3.16e-1 2.25 21 1.01
Cancer OP-ELM 8.76e-1 1.26 5 4.00e-2
Delta DENFIS 5.31e-1 5.37e-1 87 | 5.47e+l1
Ailerons OP-ELM 5.48e-1 5.41e-1 4 2.33e+1
Servo DENFIS 3.95e-1 5.50e-1 46 8.80e-1
OP-ELM 2.03e-1 5.91e-1 59 4.70e-1
Stocks DENFIS 8.12e-2 2.06 19 2.21
OP-ELM 8.05e-2 2.42 99 1.34
Santa Fe DENFIS 2.33e-1 2.34e-1 25 3.60
Laser OP-ELM 1.34e-1 1.50e-1 48 8.80e-1
DENFIS 1.41e-1 1.73e-1 13 1.19
ENSO OP-ELM 1.39¢-1 1.79-1 23 8.80e-1
Sunspots DENFIS 6.20e-1 6.55e-1 32 9.47
OP-ELM 6.12¢-1 6.10e-1 42 7.05¢e-1
Darwin DENFIS 3.88e-1 4.34e-1 34 4.13
SLP OP-ELM 3.95e-1 4.44e-1 35 1.77
Internet2 DENFIS 5.85e-1 9.00e-1 27 2.50
OP-ELM 6.00e-1 7.73e-1 24 1.32

Finally, we give some implementation details. For DENFIS
we used the implementation available from the Knowledge
Engineering and Discovery Research Institute (KEDRI)
http://www.aut.ac.nz/research/research-institutes/kedri/books.
For OS-ELM the implementation by Huang available

from http://www3.ntu.edu.sg/home/egbhuang/ was
employed. Tests with eTS were performed using
the eFSLab toolbox [32], availabe online from

http://eden.dei.uc.pt/"dourado/. The OP-ELM Toolbox [14]
was used with modifications to implement the eF-OP-ELM.
For eF-OP-ELM, the size of the initial sequence and the
maximum number of rules are 50, while the maximum
number of observations in Hy(j) is set to 500. In general,
default options were used.

V. DISCUSSION

For the regression problems, both OS-Fuzzy-ELM and eF-
OP-ELM show overall comparable or better accuracy than
DENFIS and eTS, with a notable exception for Stocks. This
dataset is considerably nonstationary. If the properties of the
datasets are considered, the advantages of evolving methods
over OS-Fuzzy-ELM for nonstationary series become clear.
For the Stocks dataset and the time series datasets (last
7, except Mackey-Glass and ENSO in part), the evolving
options yield in general better results than OS-Fuzzy-ELM.
This comparison should interpreted with care, and confirms
the capability of evolving methods to better handle dynamical
changes.

Considering the evolving methods, eF-OP-ELM achieves a
NDEI comparable to that of DENFIS and eTS in most cases.
More specifically, eF-OP-ELM yields the lowest NDEI for 5
out of the 13 datasets.
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TABLE III
ACCURACY, COMPLEXITY AND COMPUTATIONAL TIME COMPARISON
(BEST NDEI FOR EVOLING METHODS IN BOLDFACE).

In terms of computational time, all the methods provide
satisfactory results, with DENFIS being the fastest in most
cases (as an exception it is significantly slower for the Bank

Dataset Method NDEI | std NDE | Rules | Time (s) and Delta Ailerons datasets). Conversely, eF-OP-ELM is

DENFIS 7.14e-1 | 5.16e-1 9 1.52e+1 the slowest method in most cases, with some exceptions.

- eTS 747e-1 | 4.85e-1 | 20 |2.05e+1 Nonetheless, it can be observed that both DENFIS and eTS

OS-Fuzzy-ELM | 7.43e-1 | 5.33e-1 18 | 3.73e+1 take a much higher time for some particular cases, while the
eF-OP-ELM | 6.98e-1 | 4.82e-1 | 19 | 9.64e+2 eF-OP-ELM method is not affected by this problem.

DENFIS 140 1.09 41 161 In general, eF-OP-ELM exhibits similar levels of respon-

Auto- eTs 121 | 8.40e-1 | 23 2.66 siveness and stability as eTS and DENFIS, though achieving

MPG | OS-Fuzzy-ELM | 1.13 | 6.73e-1 | 37 | 4.0le+] in general a more compact rulebase. As an example we show

eF-OP-ELM | 6.63e-1 | 4.68e-1 | 22 | 4.21e+l the evolution of the number of rules and absolute error for

DENFIS 2.79e-1 | 1.82e-1 | 933 | 2.68e+2 the Darwin SLP dataset in figures 2 and 3, respectively. Also,

Bank eTS 3.53e-1 | 2.50e-1 | 15 | 1.00e+2 we note that eF-OP-ELM identifies rules ranked by accuracy,

OS-Fuzzy-ELM | 2.69¢-1 | 1.80e-1 27 | 3.95e+1
eF-OP-ELM | 3.32e-1 | 2.76e-1 16 | 1.10e+3

which should ease the interpretation process.

DENFIS 136 | 8.93e-1 | 54 2.70 40
Breast eTS 1.23 8.11e-1 14 1.88e+1 35 |
Cancer | OS-Fuzzy-ELM | 9.25¢-1 | 5.07e-1 | 80 | 5.33e+1

eF-OP-ELM | 9.13e-1 | 5.19¢-1 7 | 1.36e+1 30 ]

DENFIS 6.30e-1 | 4.45¢-2 | 85 | 4.9e+l . as ,
Delta eTS 6.23e-1 | 4.37c-1 1 8.56

Ailerons | OS-Fuzzy-ELM | 5.68¢-1 | 3.95e-1 | 7 | 3.28e+1
eF-OP-ELM | 8.26e-1 | 6.33¢-1 | 16 |93le+l
DENFIS 6.50e-1 | 426e-1 | 64 | 9.09-1

Number of Rules
)
S

Serve eTS 401e-1 | 3.13e-1 | 10 | 4.39%-1 :
OS-Fuzzy-ELM | 4.76e-1 | 3.25e-1 25 | 1.75e+1 3 ]
¢F-OP-ELM | 3.21e-1 | 23le-1 | 45 | 1.2de+l . ‘ ‘ ‘ ‘ ‘ ‘
DENFIS 1.318-1 8753-2 19 277 0 200 400 Go(z)bservaliD"SSOO 1000 1200 1400
Stocks eTS 571e-1 | 426e-1 | 97 |9.79e+2 Fig. 2
OS-Fuzzy-ELM | 223 1.93 95 | 6.13e+l EVOLUTION OF THE NUMBER OF RULES. DARWIN SLP DATASET.
¢F-OP-ELM | 223e-1 | 1.52e-1 | 50 | I.11e+2 DENFIS (CONT.), ETS (DASHED), EF-OP-ELM (SHORT-DASHED).
DENFIS 375e-1 | 2.51e-1 | 21 1.52
Mackey- eTS 335e-1 | 2.19%-1 | 31 1.66
Glass OS-Fuzzy-ELM | 4.24e-1 | 2.41le-1 | 30 |3.23e+1
eF-OP-ELM | 2.42e-1 | 1.6de-1 | 50 | 6.18e+1 4 -
DENFIS 2.31e-1 | 2.00e-1 | 39 | 4.19e+1 ; Lo SN S
IS:"e‘ma eTS 46le-l | 3.67e-1 | 52 |3.12e+2 bt *+ N f e H#I P R
Laser OS-Fuzzy-ELM | 9.99e-1 | 6.04e-1 50 | 5.58e+1 | i;: iﬁmiﬁﬂ% ¢:H;: fi}i ;E;%%&# &; jfi &T%; ;iég%tg*f%+
¢F-OP-ELM | 433¢-1 | 4.1le-1 | 28 |3.23¢+3 » ﬁ%ﬁ@#& ﬂﬁ%@?ﬁ%@%ﬁ@%&%ﬁﬁ T
DENFIS [ 17le-1| 1.05e-1 | 16 [ 217 : iﬁ%@?ﬁ %ﬁ%ﬂ@ R e jm SIS
ENSO eTS 2.00e-1 | 1.27e-1 44 | 2.14e+1 2K ﬂrﬁ;ﬁ &t::L :ﬁ}agﬁf:&&+%f¢ tlfi o #{h e {t ol
OS-Fuzzy-ELM | 2.34e-1 | 148e-1 | 14 | 2.54e+1 e S TN 1 2o s
cF-OP-ELM | 2.13¢-1 | 1341 | 16 | 346e+1 B A R S0 RN N s
DENFIS 6.18e-1 | 428¢-1 | 37 | 1.20e+l ) T -
Sunspots eTS 8.10e-1 | 5.61e-1 33 8.06e+1 . *
OS-Fuzzy-ELM | 9.04e-1 | 5.72e-1 9 3.43e+1 0 200 400 600 800 1000 1200 1400
eF-OP-ELM | 6.32e-1 | 4.15e-1 | 25 | 5.13e+2 Oservations
DENFIS | 4841 | 3.03e-1 | 38 | 618 Fig. 3
Darwin TS 4.01e-1 2 48e-1 17 13841 EVOLUTION OF THE ABSOLUTE ERROR. EF-OP-ELM MODEL. DARWIN
SLP  [OS-Fuzzy-ELM | 7.40e-1 | 431e-1 | 10 | 3.03e+1 SLP DATASET.
eF-OP-ELM | 5.11e-1 | 3.03e-1 | 14 | 1.53e+2
DENFIS 570e-1 | 4.6de-1 | 29 | 3.94
Internet2 eTS 6.54e-1 | 5.48e-1 47 2.80e+1 VI. CONCLUSIONS

OS-Fuzzy-ELM | 9.69e-1 | 5.76e-1 8 2.18e+1
eF-OP-ELM | 591e-1 | 4.31e-1 19 | 1.61le+2

An approach to the identification of evolving fuzzy infer-
ence systems based on OP-ELM has been proposed. The

The Stock series is highly nonstationary. The results for OS-Fuzzy-ELM approach extends OP-ELM in order to get a fast, online

were obtained using an initialization training sequence of (500 + number  evolving learning algorithm. The new method has been
of nodes) observations. For shorter sequences, the structure identified in
the initialization stage is unable to yield sensible results.
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shown to be competitive in terms of accuracy and speed.
It constitutes a case of application of a random projection
method to indentifying evolving fuzzy systems.

In the proposed method, eF-OP-ELM, a set of simple
fuzzy rules is generated randomly, with random structure
for the antecedents and random values for the parameters
of input membership functions. Then, a generalized LARS
method is used to rank the fuzzy basis functions (or nor-
malized fuzzy rules) according to their accuracy evaluated
on recent samples. Finally, the best number of fuzzy rules is
selected by performing a fast computation of the leave-one-
out validation error based on the PRESS statistics.

The contribution of the method proposed in this paper,
eF-OP-ELM is twofold. First, as opposed to the original
proposal of OP-ELM which is an offline method, eF-OP-
ELM addresses online learning. Second, as opposed to OS-
Fuzzy-ELM, eF-OP-ELM is not only online but also a
fully evolving fuzzy method where both the structure and
parameters of the model evolve.

The method is general and can be applied in areas such
as process control, time series prediction and autonomous
systems. Its accuracy compares favorably against other well
known evolving fuzzy methods, namely DENFIS and eTS,
as well as the online method OS-Fuzzy-ELM. From the
perspective of fuzzy logic, the model selection approach of
OP-ELM provides a way to extract compact, interpretable
fuzzy systems based on a random projection scheme.

A number of future research directions open up. In par-
ticular, regarding direct extensions of eF-OP-ELM, we can
mention the possibility of a chunk-by-chunk learning mode,
and the use of faster model selection approaches recently
proposed. Further work is also needed in order to study the
impact of different types of membership functions and fuzzy
operators on performance and interpretability.

REFERENCES

[1] J. Platt, “A resource-allocating network for function interpolation,”
Neural Comput., vol. 3, no. 2, pp. 213-225, Jun. 1991.

[2] P. Angelov, D. Filev, and N. Kasabov, “Evolving fuzzy systems—
preface to the special section,” IEEE Trans. Fuzzy Syst., vol. 16, no. 6,
pp- 1390-1392, Dec. 2008.

[3] N. K. Kasabov and Q. Song, “DENFIS: Dynamic Evolving Neural-
Fuzzy Inference System and Its Application for Time-Series Predic-
tion,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144—154, Apr. 2002.

[4] N. Kasabov, Evolving Connectionist Systems: The Knowledge Engi-
neering Approach, 2nd ed. Springer, Jul. 2007.

[51 P. P. Angelov and D. P. Filev, “An approach to online identification
of Takagi-Sugeno fuzzy models,” IEEE Trans. Syst. Man Cybern. B,
vol. 34, no. 1, pp. 484-498, Feb. 2004.

[6] ——, “Simpl_eTS: A simplified method for learning evolving Takagi-
Sugeno fuzzy models,” in Proc. IEEE Int. Conf. Fuzzy Syst., Reno,
NV, USA, May 2005, pp. 1068-1073.

[7]1 F. J. Moreno-Velo, 1. Baturone, A. Barriga, and S. Sanchez-Solano,
“Automatic Tuning of Complex Fuzzy Systems with Xfuzzy,” Fuzzy
Sets Syst., vol. 158, no. 18, pp. 2026-2038, Sep. 2007.

[8] G.-B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489—
501, Dec. 2006.

[9] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse,
“OP-ELM: Optimally pruned extreme learning machine,” IEEE Trans.
Neural Netw., vol. 21, no. 1, pp. 158-162, Jan. 2010.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

1346

N.-Y. Liang, G.-B. Huang, G.-B. Huang, P. Saratchandran, and N. Sun-
dararajan, “A fast and accurate online sequential learning algorithm for
feedforward networks,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp.
1411-1423, Nov. 2006.

H.-J. Rong, N. Sundararajan, G.-B. Huang, and P. Saratchandran,
“Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear
system identification and prediction,” Fuzzy Sets Syst., vol. 157, no. 9,
pp. 1260-1275, Jan. 2006.

G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximaion using
incremental constructuve feedforward networks with random hidden
nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul.
2006.

G.-B. Huang, “Reply to "comment on the extreme learning machine”,”
IEEE Trans. Neural Netw., vol. 19, no. 8, pp. 1495-1496, Aug. 2008.
Y. Miche, A. Sorjamaa, and A. Lendasse, “OP-ELM: Theory, Experi-
ments and a Toolbox,” in Proc. Int. Conf. Artif. Neural Netw., ser. Lect.
Notes Comput. Sci, vol. 5163, Prague, Czech Republic, Sep. 2008, pp.
145-154.

A. Sorjamaa, Y. Miche, R. Weiss, and A. Lendasse, “Long-Term
Prediction of Time Series using NNE-based Projection and OP-ELM,”
in Proc. Inter. Jt. Conf. Neural Netw., Hong Kong, China, Jun. 2008,
pp. 2675-2681.

B. Scholkopf and A. J. Smola, Learning with Kernels. Support Vector
Machines, Regularization, Optimization, and Beyond.  Cambridge,
MA, USA: MIT Press, 2002, ISBN: 0262194759.

S. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Prentice Hall, Aug. 1998, ISBN: 978-0132733502.

A. Lendasse, A. Sorjamaa, and Y. Miche, “The OP-ELM toolbox,”
http://www.cis.hut.fi/projects/tsp/index.php?page=opelm, Jan. 2010,
Time Series Prediction and Chemoinformatics Group. Department
of Information and Computer Science. Aalto University School of
Science.

T. Simild and J. Tikka, “Multiresponse sparse regression with appli-
cation to multidimensional scaling,” in Proc. Int. Conf. Artif. Neural
Netw., vol. 3967, Warsaw, Poland, Sep. 2005, pp. 97-102.

X.-J. Zeng and M. G. Singh, “Approximation theory of fuzzy systems—
MIMO case,” IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 219-235, May
1995.

P. Angelov and D. Filev, “Flexible models with evolving structure,”
Int. J. Intell. Syst., vol. 19, no. 4, pp. 327-340, Apr. 2004.

A. Asuncion and D. J. Newman, “UCI Machine Learning
Repository,” Feb. 2010, University of California, Irvine, Center
for Machine Learning and Intelligent Systems. [Online]. Available:
http://archive.ics.uci.edu/ml/

M. C. Mackey and L. Glass, “Oscillations and Chaos in Physiological
Control Systems,” Sci., vol. 197, no. 4300, pp. 287-289, Jul. 1977.
“The Santa Fe Time Series Competition Data. Data Set
A: Laser generated data,” Mar. 2010. [Online]. Available:
http://www-psych.stanford.edu/~andreas/Time- Series/SantaFe.html

A. Weigend and N. Gershenfeld, Times Series Prediction: Forecasting
the Future and Understanding the Past. Addison-Wesley Publishing
Company, 1994.

F. Montesino Pouzols, A. Lendasse, and A. Barriga, “Autoregressive
time series prediction by means of fuzzy inference systems using
nonparametric residual variance estimation,” Fuzzy Sets Syst., vol. 161,
no. 4, pp. 471-497, Feb. 2010.

“ESTSP: European Symposium on Time Series Prediction,” Feb.
2010. [Online]. Available: http://www.estsp.org

R. A. M. Van der Linden and the SIDC Team, “Online Catalogue
of the Sunspot Index,” RWC Belgium, World Data Center for the
Sunspot Index, Royal Observatory of Belgium, years 1748-2007,
http://sidc.oma.be/html/sunspot.html, Jan. 2008.
“The Internet2 Observatory,” Jul. 2008.
http://www.internet2.edu/observatory/

F. Montesino Pouzols, A. Lendasse, and A. Barriga, “Fuzzy Inference
Based Autoregressors for Time Series Prediction Using Nonparametric
Residual Variance Estimation,” in Proc. IEEE Int. Conf. Fuzzy Syst.,
Hong Kong, China, Jun. 2008, pp. 613-618.

——, “xftsp: a Tool for Time Series Prediction by Means of Fuzzy
Inference Systems,” in Proc. IEEE Int. Conf. on Intell. Syst., Varna,
Bulgaria, Sep. 2008, pp. 2-2-2-7.

A. Dourado, L. Aires, and J. Victor, “eFSLab: Developing evolving
fuzzy systems from data in a friendly environment,” in Proc. 10th Eur.
Control Conf., Prague, Czech Republic, Aug. 2009, pp. 922-927.

[Online]. Available:



