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Abstract—This paper proposes a method for the identi-
fication of evolving fuzzy Takagi-Sugeno systems based on
the Optimally-Pruned Extreme Learning Machine (OP-ELM)
methodology. We describe ELM which is a simple yet accurate
and fast learning algorithm for training single-hidden layer
feed-forward artificial neural networks (SLFNs) with random
hidden neurons. We then describe the OP-ELM methodology
for building ELM models in a robust and generic manner.
Leveraging on the previously proposed Online Sequential
ELM method and the OP-ELM, we propose an identification
method for self-developing or evolving neuro-fuzzy systems.
This method follows a random projection based approach to
extracting evolving fuzzy rulebases. A comparison is performed
over a diverse collection of datasets against well known evolving
neuro-fuzzy methods, namely DENFIS and eTS. It is shown
that the method proposed is robust and competitive in terms
of accuracy and speed.

I. INTRODUCTION

Evolving, online or adaptive intelligent systems are meant

to be applied on sequential data or streams of data. These sys-

tems distinguish themselves from traditional, offline learning

methods and previous online methods in that their structure

(in addition to their parameters) evolves in order to account

for new data.

The interest in self-developing artificial neural network

methods can be tracked back to some early works in the

field [1]. During the last decade there has been an increase

of interest in this field and in particular within the area of

evolving fuzzy systems for modeling and control [2]. Some

recent advances include DENFIS [3], and the more general

Evolving Connectionist Systems framework [4], and evolving

Takagi-Sugeno (eTS) [5] as well as its variants [6].

For instance, evolving TS fuzzy systems [5] combine

supervised and unsupervised learning techniques to evolve

the TS model structure as well as its parameters as new

data become available. This way, new rules can be added,

existing rules can be reorganized, and in general any aspect

of an evolving fuzzy inference model is subject to self-

development.

Evolving fuzzy systems represent a relative recent step be-

yond the paradigms of self-tunning neuro-fuzzy systems [7]

and online neuro-fuzzy systems [5]. In general, the evolving

approach implies the need for simple, one-pass training meth-

ods as opposed to traditional, iterative algorithms. Evolving
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fuzzy systems are particularly useful for online prediction

and predictive control. Among other advantages, evolving

fuzzy systems provide an inherent capability for novelty de-

tection and an enhanced robustness against nonstationarities.

This paper proposes a method for the identification

of evolving fuzzy Takagi-Sugeno systems based on the

Optimally-Pruned Extreme Learning Machine (OP-ELM)

methodology. We leverage in three previous developments:

the ELM learning method, introduced by Huang et al. [8], the

OP-ELM methodology, introduced by Miche et al. [9], and

the online sequential ELM algorithm, introduced by Liang et

al. [10] and extended for fuzzy systems by Rong et al. [11].

ELM challenges conventional learning methods and the-

ories. ELM has been shown to be accurate and fast both

theoretically and experimentally. Indeed, ELM is extremely

fast but can achieve a performance in terms of generalization

comparable to other accurate yet costly learning techniques.

OP-ELM has been introduced by Miche et al. [9] in order

to improve the robustness of ELM models. This is achieved

through a three stages methodology which includes steps for

fast ranking of hidden neurons and model selection.

Rong et al. [11] have previously shown that single hidden-

layer feedforward neural networks (SLFNs) can be regarded

as equivalent to fuzzy inference systems. They use this

equvalence in order to derive an online sequential method

for fuzzy systems (OS-Fuzzy-ELM) based on the online

sequential ELM [10].

Here we introduce an evolving approach to the identifi-

cation of evolving Takagi-Sugeno fuzzy inference systems

based on the original offline OP-ELM methodology and

the OS-ELM online learning algorithm. We exploit the

equivalence between SLFNs and FIS, and bring the good

performance and robustness of the OP-ELM methodology

together with the online approach of OS-ELM in order to

define the evolving fuzzy OP-ELM (eF-OP-ELM).

The paper is organized as follows. Section II describes

the ELM, the OP-ELM methodology and the OS-ELM

sequential learning algorithm. In section III we introduce the

evolving fuzzy OP-ELM (eF-OP-ELM) modeling approach

for building evolving fuzzy inference systems. Then, in

section IV a comparative analysis is performed against other

well-known alternatives. Section V discusses results with

an emphasis on the interpretability achieved through the

OP-ELM model selection scheme. Finally we give some

concluding remarks.

II. ELM

The Extreme Learning Machine (ELM) [8], [12] is a

simple yet effective learning algorithm for training single-
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hidden-layer feed-forward artificial neural networks (SLFNs)

with random hidden nodes. In ELM, the hidden neuron pa-

rameters are randomly assigned whereas the output weights

are analytically determined. ELM is a unified framework

of generalized SLFNs that has the universal approximation

capability for a wide range of hidden node types. The training

process for ELM can be several orders of magnitude faster

than traditional learning algorithms for feed-forward neural

networks, while attaining similar or even better approxima-

tion capabilities.

Let us consider a dataset consisting of M observations

(xj ,yj) ∈ Rd1 × Rd2 , being d1 the dimension of the

input space and d2 the dimension of the output space. An

SLFN with N neurons in the hidden layer is defined by the

following expression:

N∑
i=1

βif(xj , ci, ai), 1 ≤ j ≤ M,

where f(·) is the activation function and βi ∈ R are

the output weights. Let us illustrate two widely studied

architectures of SLFNs: SFLNs with hidden additive nodes

and radial basis function (RBF) networks which use RBF

nodes in the hidden layer. Additive nodes have the form

f(ci · xj + bi), where wj ∈ Rd
1 are the input weights and bi

the biases. RBFs have the form f(||xj−ci

bi
||), where wj ∈ Rd

1

are the centers and bi the widths of the RBF nodes.

If the SFLN perfectly fits the data, then the difference

between the estimated outputs ŷi and the actual output values

is zero and thus the following holds:

N∑
i=1

βif(xj , ci, ai) = yj , 1 ≤ j ≤ M,

which can be written as:

Hβ = Y, (1)

with

H =

 f(x1, c1, a1) . . . f(x1, cN , aN )
...

. . .
...

f(xM , c1, a1) . . . f(xM , cN , aN )

 ,

β = (βT
1 , . . . , βT

N ) and Y = (yT
1 , . . . ,yT

M )T .

In the ELM method, the hidden layer, H, is generated

in in a random way, independenly of the training dataset.

Then, the output weights of the SLFN, β can be determined

analytically. The estimated output weights are computed as:

β̂ = H†Y, (2)

where H† is the Moore-Penrose generalized inverse of H.

For the applicable implementation methods refer to [10], [8].

As pointed out by Huang [13] the ELM theory claims that

parameter tuning is not required. This approach challenges

conventional learning methods and theories.

It has been theoretically shown that for function approx-

imation all the parameters of the hidden nodes can be

randomly generated without any prior knowledge. In [8]

it is proved that the hidden-layer output matrix can be

computed (and achieves an approximation error as small

as desired) for N ≤ M , under the assumption that the

activation function is infinitely differentiable. The universal

approximation capability of ELM has been proved in [12].

This way, ELM is a extremely fast method [8], several

orders of magnitude faster than traditional feedforward neural

networks methods while competitive in terms of accuracy.

As a final remark, ELM only requires the number of neu-

rons in the hidden layer to be specified, as opposed to other

learning methods which often have several hyperparameters

to be tuned.

A. Optimally-Pruned ELM (OP-ELM)

The Optimally Pruned Extreme Learning Machine (OP-

ELM) models [9], [14], [15] is a methodology based on the

ELM. OP-ELM models are built in three stages and use

Gaussian, sigmoid and linear kernels in general. First, an

ELM is constructed, then, an exact ranking of the neurons in

the hidden layer is performed, and finally the decision on how

many neurons are pruned is made based on an exact leave-

one-out error estimation method. These stages are performed

by means of fast methods and lead to extremely fast yet

accurate models.

OP-ELM has been shown to provide a compromise be-

tween the speed of ELM and the accuracy and robustness

of other much more computationally intensive methods. OP-

ELM models achieve roughly the same level of accuracy as

that of other well known computational intelligence meth-

ods [9], [14], such as Support Vector Machines and Least

Squares Support Vector Machines [16], Gaussian Processes

and Multilayer Perceptrons [17], while being significantly

faster.

As explained above, only one parameter has to be tuned

in order to build accurate ELM models: the number of

hidden neurons. In principle the only feasible approaches to

a sensible tuning of the number of hidden neurons are based

on the definition of validation subsets. This is the approach

used generally in the literature [8], [10].

However, validation approaches such as cross-validation

and bootstrapping methods raise several issues. In partic-

ular, computational cost increases significantly, which is

specially troublesome for online, adaptive and possibly real-

time systems. In addition, validation methods assume the

different subsets used for training, validation and test are

drawn from the same population. For systems that evolve or

exhibit nonstationarity, whether statistical or dynamical, this

assumption may lead to wrong models.

The OP-ELM method introduced a sound approach to the

selection of the subset of best nodes in such a way that

unuseful neurons are pruned. This brings in a fundamen-

tal advantage for evolving methods besides enhancing the

robustness of ELM models against irrelevant and redundant

variables [9]. In what follows we outline the 3 stages of the

OP-ELM methodology.

1) Construction of an initial SLFN: This step is per-

formed using the standard ELM algorithm for a large enough
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number of neurons N 1.

2) Ranking of Hidden Neurons: The Multiresponse Sparse

Regression (MRSR) [19] algorithm is applied in order to rank

the hidden neurons according to their accuracy. MRSR is in

essence a generalization of the least angle regression (LARS)

algorithm, and is thus able to find an exact ranking for linear

problems. Since in a ELM model the output is linear with

respect to the randomly initialized hidden nodes, the MRSR

ranking within the OP-ELM methodology is exact. This way,

the variables for the MRSR algorithm, hi (the outputs of the

hidden nodes or columns of the hidden node matrix, H), are

ranked exactly by their performance.

3) Model Selection: Once a ranking of the the kernel has

been obtained. the best number of neurons for the model

has to be chosen. Methods based on offline validation, such

as leave-one-out are often used for this kind of task. They

can be however extremely expensive in computational terms

and quickly become unaffordable for large datasets or online,

evolving or time constrained systems.

However, the LOO can be directly calculated for linear

models by using the PRESS (PREdiction Sum of Squares)

statistics, which provides the following closed-form expres-

sion for the LOO error of linear models:

εPRESS
i =

yi − hibi

1− hiPhT
i

,

where i denotes the ith hidden node, and P is defined as

P = (HT H)−1, being H the hidden layer output matrix.

The optimal number of neurons can be found by estimating

the LOO error for different numbers of nodes (already ranked

by accuracy) and selecting the number of neurons L such that

minimizes the error:

L = argmin
j∈{1,...,N}

j∑
i=1

εPRESS
i (3)

It has been shown that the ranking (previous) stage of the OP-

ELM method has two positive effects: convergence is faster

and the number of neurons required to achieve the lowest

LOO error is lower [9].

B. Online Sequential ELM (OS-ELM)

The original ELM method is designed for offline model-

ing. However thanks to the simplicity of the computations

in the ELM method, it is possible to define efficient online

extensions for ELM. Liang et al. [10] have proposed the

OS-ELM algorithm which we outline in this section for the

purposes of providing all the equations used in the next

section.

The algorithm first computes a standard ELM model for

an initialization training set, with output matrix Y0, hidden

nodes matrix H0, and solution β(0) = (HT
0 H0)−1HT

0 Y0,

using the Moore-Penrose generalized inversion according

to 2. Let us define K0 = HT
0 H0. Then, for each new

1By default the initial number of neurons used in the OP-ELM Tool-
box [18], [14] is 100.

observation or chunk of observations the model is updated

online by means of the following recursive expressions:

β(k+1) = β(k) + Pk+1HT
k+1(Yk+1 −Hk+1β

k), (4)

Pk+1 = Pk −PkHT
k+1(I + Hk+1PkHT

k+1)
−1Hk+1Pk,

(5)

where Pk+1 = K−1
k+1. These recursive update rules are

obtained by using the Sherman-Morrison-Woodbury formula

for computing the inverse of a rank-k correction of matrices.

We refer to [10] for the full details.

III. EVOLVING FUZZY OP-ELM

The rules of a Takagi-Sugeno (TS) fuzzy inference model,

applied to a certain input xj , can be generally expressed

as [5]:

Ri : IF(xj1 is Ai1) AND . . . AND (xjd1 is Aid1), THEN

(yj1 is βi1) . . . (yjd2 is βid2),

where d1 is the dimension of the input space, d2 is the

dimension of the output space, i = 1, . . . , L for a rulebase

consisting of L rules, and Aik, (k = 1, . . . , d1; i = 1, . . . , L)
are the fuzzy sets for the kth input variable xj in the ith
rule. βik(k = 1, . . . , d2; i = 1, . . . , L) are crisp values,

linear combinations of the input variables in the form βik =
qik,0 + qik,1x1 + . . . + qik,d1xd1 for a first-order TS model.

For each fuzzy set, Aik, the degree of membership of a

given input xj is specified by its corresponding member-

ship function µAik
(xj). A nonconstant piecewise continuous

membership function f(c, a) can be considered as in [11].

This kind of function includes most common membership

functions such as Gaussian and triangular as well as virtually

all practical possibilities. The membership function can thus

be defined by any bounded nonconstant piecewise continuous

membership function as follows:

µAik
(xj ; cki, ai) = f(xj ; cki, ai),

where ak and cjk are the parameters of the membership

function f(·) for the ith rule and the kth component of the

input vectors, xj .

In a fuzzy inference system of this type, the output of

the model is computed as the weighted sum of the output of

each rule, where the weights are the activation degrees of the

rules. Thus, the system output ŷj for an input xj is given as

follows:

ŷj =
∑L

i=1 βiRi(xj ; ci, ai)∑L
i=1 Ri(xj ; ci, ai)

=
L∑

i=1

βif(x; , ci, ai), (6)

where βi = (βi1, . . . , βim), and f(·) can be seen as a

normalized rule:

f(xj ; , ci, ai) =
Ri(xj ; ci, ai)∑L
i=1 Ri(xj ; ci, ai)

. (7)

According to the equivalence between generalized SFLN

and FIS, Rong. et al. have established the interpretation of
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OS-ELM as an online fuzzy model [11] applicable to both

regression and classification problems. As noted in [11] f as

expressed in (7) is what can be called a fuzzy basis function

(FBF) [20].

In (6) it is evident that a FIS is equivalent to a generalized

SLFN, where f(·) represents the output functions of the

hidden layer and β represents the output weight vector. This

way, the output functions of the hidden nodes of the SLFN

are equivalent to the FBFs of the FIS, which in turn are based

on the membership functions.

Note this equivalence is used in [11] to develop an online

method for the identification of fuzzy inference systems

of the Takagi-Sugeno type (OS-Fuzzy-ELM). Note though

that this method is online (as OS-ELM [10]) yet not fully

evolving, i.e., the system self-tunes in an online manner but

the system structure (rulebase) does not evolve.

As a particular case of fuzzy or neuro-fuzzy system, an

evolving TS fuzzy system can be represented as a neural

network [21]. We show in what follows how to generalize

for an online learning approach the following two elements in

the OP-ELM methodology: the LARS-based ranking process,

and the PRESS statistics-based estimation of the LOO error.

Following the equivalence betwen the structure of SFLN

and FIS, the latter can be expressed in terms of the former:

F(xj) =
L∑

i=1

βif(xj ; ci, ai) = tj , (8)

for a certain number of rules L. In the TS type models the

consequent of each fuzzy rule is a linear equation of the input

variables. If the coefficients, qik,j , k = 1 . . . d2, j = 1 . . . d1,

of the linear equations are arranged in a matrix of parameters

of the model for the ith rule as follows:

qi =

 qi1,0 . . . qid2,0

...
. . .

...

qi1,d1 . . . qid2,d1

 ,

then βi = xT
jeqi, where xje = [1,xT

je]
T is obtained by

appending a 1 to the input vector in order to generate a

linear equation. This way, expanding β in 8, the output of

the model can be expressed as follows:

F(xj) =
L∑

i=1

xT
jeqif(xj ; ci, ai) = yj , j = 1, . . . ,M.

The above expression in compact form is:

HQ = Y,

which is a generalization of (1), with:

Q =

 q1

...

qL

 .

Since a TS FIS is equivalent to an SLFN, the ELM learning

method can be applied to a fuzzy system. Thus, given that H
is initialized randomly and Y is known, Q can be computed

online using the same approach as in OS-ELM, as developed

in [11] for OS-Fuzzy-ELM.

In the evolving fuzzy OP-ELM (eF-OP-ELM), the output

of the TS model is as follows:

F(j,xj) =
L(j)∑
i=1

xT
ieqi(j)f(xj , ci(j), ai(j)) = yj , (9)

which in compact form can be expressed as:

H(j)Q(j) = Y(j), j ≥ 1,

for xj being the last observation available. Here, H(j) is

an evolving matrix, i.e., L(j) (the number of rules or nodes

in the hidden layer of the equivalent ELM) can evolve as

well as the input membership functions and the consequent

parameters. In this method the rulebase is fully evolving and

thus the hidden nodes matrix takes the following form:

H(j)=

 f(xk, c1(j), a1(j)) . . . f(xk, cL(j)(j), aL(j))
...

. . .
...

f(xj , c1(j), a1(j)) . . . f(xj , cL(j)(j), aL(j))

 ,

where 1 ≤ k ≤ j, L(j) is the evolving number of rules,

ci(j) ∈ C and ai(j) ∈ A are the parameters of the input

membership functions, and C and A are sets of parameters

values generated randomly in the initizalization stage.

Putting all pieces together, we can describe how the

components of an evolving TS fuzzy inference system are

defined in the eF-OP-ELM method:

• The antecedents (or “IF” part) belong to a set of

antecedents that is created randomly by generating the

sets of parameters C and A.

• The concrete subset of rules are selected as in the 2nd

and 3rd stages of the OP-ELM methodology.

• The corresponding consequents (or “THEN” part) are

generated analytically using the ELM method, accord-

ing to (2).

The eF-OP-ELM algorithm consists of the following steps:

Algorithm 1 Evolving Fuzzy OP-ELM (eF-OP-ELM)

1: A set of antecedents is created randomly by generating

the sets of parameters C and A, of cardinality N .

2: For a given initialization dataset consisting of M
observations (xj ,yj) ∈ Rd1 × Rd2 , an M -by-N matrix

of hidden nodes, H0(j), j = M, is generated by applying

the fuzzy basis functions as in (7).

3: The fuzzy rules in H0(j) are ranked and the best

number of rules are selected (as in (3)) following the OP-

ELM methodology. The result, H(j), j = M , allows for

the computation of Q(j), j = M, (as in (2)). The initial

evolving TS model, F(·), is generated with the form of (9).

4: When a new observation, xj , becomes available:

4.1: Update H0(j) with the new observation and apply

the 2nd and 3rd stage of the OP-ELM methodology in

order to generate the evolving H(j).
4.2 Find the analytical solution for Q(j). The model

output at time j can now be computed.
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IV. EXPERIMENTS

In principle, the ELM based methods described in previous

sections can be applied to both regression and classification

problems in general. In this section we concentrate on

regression and time series prediction problems.

Two well known methods in the field of evolving fuzzy

systems are taken as reference: DENFIS and eTS. DENFIS

(Dynamic evolving nerual-fuzzy inference system) [3]). is

one implementation of the more general ECOS (Evolving

Connectionist Systems) framework. eTS was applied using

global parameter estimation with a recursive least squares

filter (RLS), and the default parameters of the implementa-

tion used, detailed later on in this section. For both DENFIS

and eTS, first-order TS systems were built. In addition, OS-

Fuzzy-ELM is considered as a reference. Note though that

while it is an online method it is not fully evolving, as

detailed in previous sections.

We compare these methods against eF-OP-ELM, the

method proposed in this paper which is implemented as

described in previous sections, with a maximum number of

neurons of 100. Even though the standard OP-ELM uses

three different kinds of kernels, here we only use kernels of

Gaussian type for simplicity´s sake.

For OS-Fuzzy-ELM the same validation approach origi-

nally proposed in [11] is used. The initial training data is

randomly split into two nonoverlapping subsets for training

(75%) and validation (25%). The optimal number of rules is

selected such that the validation error is minimized. Different

numbers of rules are evaluated, with the number increasing

by 1 in the range [1, 100]. Within this range and for each case,

the average cross-validation error for 25 trials is computed.

The block size is set to 1. Finally, the OS-Fuzzy-ELM with

the lowest average cross-validation error is selected.

The main characteristics of the datasets used are shown

in table I. The datasets were chosen in order to find a

compromise between the following objectives: a) easing

comparison with the related literature, b) selecting datsets for

a broad range of characteristics (variables, size, dynamical

behavior, etc.). In particular, some datasets represent clearly

nonstationary processes (being thus the target of evolving

systems), while some others lie in the domain of regression

problems where nonstationarity is not much relevant.

The first 7 datasets are well known regression

problems in the field of machine learning. Some

of them are benchmarks from the UCI Machine

Learning Repository [22] and can be also found online

from http://www.liaad.up.pt/ ltorgo/Regression/DataSets.html.

These are included in order to analyze general regression

problems and ease comparison with the literature on related

ELM based methods [9], [11], [10].

The last 6 datasets represent time series. Mackey-Glass

is a well-known example of chaotic system [23] that can

describe a complex physiological process. Here we included

a synthetic instance for comparison purposes [5], [3]. The

dataset is generated using the 4th order Runge-Kutta method

TABLE I

DATASETS: NUMBER OF INPUTS, TRAINING OBSERVATIONS AND TEST

OBSERVATIONS

Dataset # Inputs Training length Test length

Abalone 8 2784 1393
Auto-MPG 7 258 134
Bank 8 3000 1500
Breast Cancer 32 129 65
Delta Ailerons 5 4752 2377
Servo 4 111 56
Stocks 9 633 317
Mackey-Glass 4 500 -
Santa Fe Laser 3 988 9093
ENSO 3 465 400
Sunspots 7 2085 1000
Darwin SLP 5 904 467
Internet2 4 708 730

with time step 0.1 s for the following differential equation:

ẋ(t) =
0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t).

The initial conditions and delay parameter are x(0) =
1.2, x(t) = 0 for t < 0, τ = 17, and the value of the series

85 steps ahead (x(t + 85)) has to be modeled based on 4

inputs: x(t), x(t− 6), x(t− 12) and x(t− 18). Refer to [3]

for the full details required to generate the dataset. In order

to replicate the subseries of 500 values used in [5], the values

selected for prediction (shown in figure 1) lie in the range

x(443.2), . . . , x(493.1).
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Fig. 1

MACKEY-GLASS TIME SERIES: 500 SAMPLES TO BE PREDICTED.

The Santa Fe Laser dataset of the Santa Fe time series

competition [24], [25]. represents the intensity of a far-

infrared-laser in a chaotic state, measured in a physics

laboratory experiment. The series is a cross-cut through

periodic to chaotic pulsations of the laser, and can be

closely modeled analytically [25]. This series is a remarkable

example of noise-free complicated behavior in a clean,

stationary, low-dimensional physical system for which the

underlying dynamics is well understood. In this case, the

next value, x(t + 1)) has to be modeled based on 3 inputs:

x(t), x(t− 1), x(t− 2) and x(t− 12). This subset of inputs

is optimal for a maximum regressor size of 12 [26].

The ENSO series is the data set from the ESTSP 2007

time series prediction competition [27]. This dataset consists

of 875 samples of temperatures of the El Niño-Southern
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Oscillation phenomenon. y(t + 1) has to be predicted using

y(t), y(t− 2), and y(t− 7) as inputs.

We also analyzed the series of monthly averaged sunspot

numbers covering from January 1749 through December

2007, as provided by the National Geographical Data Center

from the US National Oceanic and Atmospheric Administra-

tion2. Given the yearly periodicity of the series, a maximum

regressor size of 12 was defined. y(t + 12) (next year) has

to be predicted using y(t), y(t− 1), y(t− 2), y(t− 3), y(t−
4), y(t− 8) and y(t− 10).

The Internet2 time series represents the total amount of

aggregated incoming traffic in the routers of the Abilene

network, the Internet2 backbone. The series consists of 1458

daily averages from the 4th of January of 2003 through the

31st of December of 2006. The data are available from the

Abilene Observatory [29]. y(t + 7) (next week) has to be

predicted using y(t), y(t− 2), y(t− 4), and y(t− 11). Refer

to [26], [30], [31] for further descriptions and other details

to reproduce results for the 6 time series datasets.

In table I training and tests subsets are distinguished. Note

that the training set is in fact a sequence and is defined as the

sequence of values beginning at the first observation, while

the test set is defined as the sequence of last observations.

This way, training and out-of-sample or test errors for offline

methods can be analyzed while accounting for the evolution

in time of the datasets and its effects on models.

Training and test errors for offline modeling are shown

in table II for OP-ELM and DENFIS in offline mode, as

well as the number of hidden nodes or fuzzy rules identified

and the time required. These results are intended to give an

approximate estimation of the errors that can be achieved

using some related offline methods and is not meant to

be exhaustive. It should be noted that we provide training

and test errors so that the resuls shown in this paper can

be compared with the literature on online methods, such

as [10], [11]. We focus our analysis however on the evolving

modeling of the datasets, where the datasets are modeled

sequentially as a whole and no distinction is made between

training, validation and test subsets.

Errors are shown as nondimensional error index (NDEI):

The root mean square error (RMSE) divided by the standard

deviation of the target sequence. The NDEI is used in order

to ease comparison with previous results in the literature of

evolving systems, such as [5], [3]. Note however that other

references dealing with the methods applied in this paper use

as error measure the RMSE for the dataset normalized in the

range [0, 1], as in [11], [10], or the absolute MSE [9].

Table III shows the NDEI, the standard deviation of the

nondimensional errors (NDE), the final number of rules and

the time required for the online training of evolving methods.

The time column shows the processor time consumed for the

learning process on the same environment3.

2The series is available online from http://www.ngdc.noaa.gov/stp/SOLAR/.
The International Sunspot Number is produced by the Solar Influence Data
Analysis Center (SIDC) at the Royal Observatory of Belgium [28].

3A standard PC with 4 GB of RAM, and a Intel(R) Core(TM)2 CPU 6300
at 1.86GHz, running Matlab R2008b on the GNU/Linux operating system.
Tests were run with no significative competing load.

TABLE II

OFFLINE MODELING ERRORS FOR TRAINING AND TEST SUBSETS.

Dataset Method Training NDEI Test NDEI Rules Time (s)

Abalone
DENFIS 3.22 3.91 20 2.42

OP-ELM 6.39e-1 6.91e-1 38 2.94

Auto-
MPG

DENFIS 1.88 2.53 31 1.23

OP-ELM 2.87e-1 6.45e-1 32 6.50

Bank
DENFIS 7.85e-1 7.49e-1 730 2.57e+2

OP-ELM 2.12e-1 2.20e-1 88 1.18e+1

Breast
Cancer

DENFIS 3.16e-1 2.25 21 1.01

OP-ELM 8.76e-1 1.26 5 4.00e-2

Delta
Ailerons

DENFIS 5.31e-1 5.37e-1 87 5.47e+1

OP-ELM 5.48e-1 5.41e-1 4 2.33e+1

Servo
DENFIS 3.95e-1 5.50e-1 46 8.80e-1

OP-ELM 2.03e-1 5.91e-1 59 4.70e-1

Stocks
DENFIS 8.12e-2 2.06 19 2.21

OP-ELM 8.05e-2 2.42 99 1.34

Santa Fe
Laser

DENFIS 2.33e-1 2.34e-1 25 3.60

OP-ELM 1.34e-1 1.50e-1 48 8.80e-1

ENSO
DENFIS 1.41e-1 1.73e-1 13 1.19

OP-ELM 1.39e-1 1.79e-1 23 8.80e-1

Sunspots
DENFIS 6.20e-1 6.55e-1 32 9.47

OP-ELM 6.12e-1 6.10e-1 42 7.05e-1

Darwin
SLP

DENFIS 3.88e-1 4.34e-1 34 4.13

OP-ELM 3.95e-1 4.44e-1 35 1.77

Internet2
DENFIS 5.85e-1 9.00e-1 27 2.50

OP-ELM 6.00e-1 7.73e-1 24 1.32

Finally, we give some implementation details. For DENFIS

we used the implementation available from the Knowledge

Engineering and Discovery Research Institute (KEDRI)

http://www.aut.ac.nz/research/research-institutes/kedri/books.

For OS-ELM the implementation by Huang available

from http://www3.ntu.edu.sg/home/egbhuang/ was

employed. Tests with eTS were performed using

the eFSLab toolbox [32], availabe online from

http://eden.dei.uc.pt/˜dourado/. The OP-ELM Toolbox [14]

was used with modifications to implement the eF-OP-ELM.

For eF-OP-ELM, the size of the initial sequence and the

maximum number of rules are 50, while the maximum

number of observations in H0(j) is set to 500. In general,

default options were used.

V. DISCUSSION

For the regression problems, both OS-Fuzzy-ELM and eF-

OP-ELM show overall comparable or better accuracy than

DENFIS and eTS, with a notable exception for Stocks. This

dataset is considerably nonstationary. If the properties of the

datasets are considered, the advantages of evolving methods

over OS-Fuzzy-ELM for nonstationary series become clear.

For the Stocks dataset and the time series datasets (last

7, except Mackey-Glass and ENSO in part), the evolving

options yield in general better results than OS-Fuzzy-ELM.

This comparison should interpreted with care, and confirms

the capability of evolving methods to better handle dynamical

changes.

Considering the evolving methods, eF-OP-ELM achieves a

NDEI comparable to that of DENFIS and eTS in most cases.

More specifically, eF-OP-ELM yields the lowest NDEI for 5

out of the 13 datasets.
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TABLE III

ACCURACY, COMPLEXITY AND COMPUTATIONAL TIME COMPARISON

(BEST NDEI FOR EVOLING METHODS IN BOLDFACE).

Dataset Method NDEI std NDE Rules Time (s)

Abalone

DENFIS 7.14e-1 5.16e-1 9 1.52e+1

eTS 7.47e-1 4.85e-1 20 2.05e+1

OS-Fuzzy-ELM 7.43e-1 5.33e-1 18 3.73e+1

eF-OP-ELM 6.98e-1 4.82e-1 19 9.64e+2

Auto-
MPG

DENFIS 1.40 1.09 41 1.61

eTS 1.21 8.40e-1 23 2.66

OS-Fuzzy-ELM 1.13 6.73e-1 37 4.01e+1

eF-OP-ELM 6.63e-1 4.68e-1 22 4.21e+1

Bank

DENFIS 2.79e-1 1.82e-1 933 2.68e+2

eTS 3.53e-1 2.50e-1 15 1.00e+2

OS-Fuzzy-ELM 2.69e-1 1.80e-1 27 3.95e+1

eF-OP-ELM 3.32e-1 2.76e-1 16 1.10e+3

Breast
Cancer

DENFIS 1.36 8.93e-1 54 2.70

eTS 1.23 8.11e-1 14 1.88e+1

OS-Fuzzy-ELM 9.25e-1 5.07e-1 80 5.33e+1

eF-OP-ELM 9.13e-1 5.19e-1 7 1.36e+1

Delta
Ailerons

DENFIS 6.30e-1 4.45e-2 85 4.9e+1

eTS 6.23e-1 4.37e-1 1 8.56

OS-Fuzzy-ELM 5.68e-1 3.95e-1 7 3.28e+1

eF-OP-ELM 8.26e-1 6.33e-1 16 9.31e+1

Servo

DENFIS 6.50e-1 4.26e-1 64 9.09e-1

eTS 4.01e-1 3.13e-1 10 4.39e-1

OS-Fuzzy-ELM 4.76e-1 3.25e-1 25 1.75e+1

eF-OP-ELM 3.21e-1 2.31e-1 45 1.24e+1

Stocks

DENFIS 1.31e-1 8.75e-2 19 2.77

eTS 5.71e-1 4.26e-1 97 9.79e+2

OS-Fuzzy-ELM 2.23 1.93 95 6.13e+1

eF-OP-ELM 2.23e-1 1.52e-1 50 1.11e+2

Mackey-
Glass

DENFIS 3.75e-1 2.51e-1 21 1.52

eTS 3.35e-1 2.19e-1 31 1.66

OS-Fuzzy-ELM 4.24e-1 2.41e-1 30 3.23e+1

eF-OP-ELM 2.42e-1 1.64e-1 50 6.18e+1

Santa
Fe
Laser

DENFIS 2.31e-1 2.00e-1 39 4.19e+1

eTS 4.61e-1 3.67e-1 52 3.12e+2

OS-Fuzzy-ELM 9.99e-1 6.04e-1 50 5.58e+1

eF-OP-ELM 4.33e-1 4.11e-1 28 3.23e+3

ENSO

DENFIS 1.71e-1 1.05e-1 16 2.17

eTS 2.00e-1 1.27e-1 44 2.14e+1

OS-Fuzzy-ELM 2.34e-1 1.48e-1 14 2.54e+1

eF-OP-ELM 2.13e-1 1.34e-1 16 3.46e+1

Sunspots

DENFIS 6.18e-1 4.28e-1 37 1.20e+1

eTS 8.10e-1 5.61e-1 33 8.06e+1

OS-Fuzzy-ELM 9.04e-1 5.72e-1 9 3.43e+1

eF-OP-ELM 6.32e-1 4.15e-1 25 5.13e+2

Darwin
SLP

DENFIS 4.84e-1 3.03e-1 38 6.18

eTS 4.01e-1 2.48e-1 17 1.38e+1

OS-Fuzzy-ELM 7.40e-1 4.31e-1 10 3.03e+1

eF-OP-ELM 5.11e-1 3.03e-1 14 1.53e+2

Internet2

DENFIS 5.70e-1 4.64e-1 29 3.94

eTS 6.54e-1 5.48e-1 47 2.80e+1

OS-Fuzzy-ELM 9.69e-1 5.76e-1 8 2.18e+1

eF-OP-ELM 5.91e-1 4.31e-1 19 1.61e+2

The Stock series is highly nonstationary. The results for OS-Fuzzy-ELM
were obtained using an initialization training sequence of (500 + number
of nodes) observations. For shorter sequences, the structure identified in
the initialization stage is unable to yield sensible results.

In terms of computational time, all the methods provide

satisfactory results, with DENFIS being the fastest in most

cases (as an exception it is significantly slower for the Bank

and Delta Ailerons datasets). Conversely, eF-OP-ELM is

the slowest method in most cases, with some exceptions.

Nonetheless, it can be observed that both DENFIS and eTS

take a much higher time for some particular cases, while the

eF-OP-ELM method is not affected by this problem.

In general, eF-OP-ELM exhibits similar levels of respon-

siveness and stability as eTS and DENFIS, though achieving

in general a more compact rulebase. As an example we show

the evolution of the number of rules and absolute error for

the Darwin SLP dataset in figures 2 and 3, respectively. Also,

we note that eF-OP-ELM identifies rules ranked by accuracy,

which should ease the interpretation process.
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VI. CONCLUSIONS

An approach to the identification of evolving fuzzy infer-

ence systems based on OP-ELM has been proposed. The

approach extends OP-ELM in order to get a fast, online

evolving learning algorithm. The new method has been
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shown to be competitive in terms of accuracy and speed.

It constitutes a case of application of a random projection

method to indentifying evolving fuzzy systems.

In the proposed method, eF-OP-ELM, a set of simple

fuzzy rules is generated randomly, with random structure

for the antecedents and random values for the parameters

of input membership functions. Then, a generalized LARS

method is used to rank the fuzzy basis functions (or nor-

malized fuzzy rules) according to their accuracy evaluated

on recent samples. Finally, the best number of fuzzy rules is

selected by performing a fast computation of the leave-one-

out validation error based on the PRESS statistics.

The contribution of the method proposed in this paper,

eF-OP-ELM is twofold. First, as opposed to the original

proposal of OP-ELM which is an offline method, eF-OP-

ELM addresses online learning. Second, as opposed to OS-

Fuzzy-ELM, eF-OP-ELM is not only online but also a

fully evolving fuzzy method where both the structure and

parameters of the model evolve.

The method is general and can be applied in areas such

as process control, time series prediction and autonomous

systems. Its accuracy compares favorably against other well

known evolving fuzzy methods, namely DENFIS and eTS,

as well as the online method OS-Fuzzy-ELM. From the

perspective of fuzzy logic, the model selection approach of

OP-ELM provides a way to extract compact, interpretable

fuzzy systems based on a random projection scheme.

A number of future research directions open up. In par-

ticular, regarding direct extensions of eF-OP-ELM, we can

mention the possibility of a chunk-by-chunk learning mode,

and the use of faster model selection approaches recently

proposed. Further work is also needed in order to study the

impact of different types of membership functions and fuzzy

operators on performance and interpretability.
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