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a b s t r a c t

The problem of selecting the patterns to be learned by any model is usually not considered by the time

of designing the concrete model but as a preprocessing step. Information theory provides a robust

theoretical framework for performing input variable selection thanks to the concept of mutual

information. Recently the computation of the mutual information for regression tasks has been

proposed so this paper presents a new application of the concept of mutual information not to select

the variables but to decide which prototypes should belong to the training data set in regression

problems. The proposed methodology consists in deciding if a prototype should belong to or not to the

training set using as criteria the estimation of the mutual information between the variables. The

novelty of the approach is to focus in prototype selection for regression problems instead of

classification as the majority of the literature deals only with the last one. Other element that

distinguishes this work from others is that it is not proposed as an outlier detector but as an algorithm

that determines the best subset of input vectors by the time of building a model to approximate it. As

the experiment section shows, this new method is able to identify a high percentage of the real data set

when it is applied to highly distorted data sets.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The task of selecting an adequate subset of input vectors that
are included in a training set when classifying, approximating or
predicting an output is a relevant task that, if accomplished
correctly, can provide storage and computational savings and
improve the accuracy of the results. This problem can be tackled
from different perspectives: outlier detection or instance selection
of noise-free data. The concept of outlier was firstly introduced by
Grubbs in [1] as: ‘‘yan outlying observation, or outlier, is one that
appears to deviate markedly from other members of the sample in
which it occursy’’. This concept was later extended by Barnett
and Lewis [2] as: ’’yAn observation (or subset of observations)
which appears to be inconsistent with the remainder of that set of
datay’’. Many other notations (novelty detection, anomaly
detection, noise detection, deviation detection, exception mining)
have been used for this problem [3].

Instance selection of noise-free data aims at determining a
subset of the initial training data set in such a way that the
accuracy of the model is not decreased but the computational cost
and storage requirements are diminished. This approach is
ll rights reserved.
usually applied to large databases where the amount of data is
large and noise in the instance is not present. These situations are
specially important in biomedical applications and data mining
where the amount of noise-free data is enormous [4–6].

The work presented in this paper fits in the definition of
outlier. This definition does not bound the way in which an outlier
differs from the other elements, thus, an outlier could be
considered as a different element in the input space (one
dimension, a group of dimensions) or the output space. However,
in classification problems, since the classes are predefined
beforehand, the outlier is in the input vector space. Because the
term outlier is mostly used in problems related to classification
and the set of input vectors in regression problems has been
denoted as instances or prototypes, this paper will use this last
notation.

To sum up, the problem tackled in this paper can be
formulated as: given a set of input/output pairs (prototypes or
instances with continuous output), it is desired to identify the
elements that could be erroneous.

The majority of the research in outlier/instance/prototype
selection has been focused in classification problems [7,8],
although few works aimed at solving problems for continuous
output. For example, in [9] is presented a method to select the
input vectors when using the k-NN algorithm as model, thus, this
methodology does not permit the selection of the input vectors

www.elsevier.com/locate/neucom
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before designing more complex models such as neural networks.
In [10], a genetic algorithm is used to select both the feature and
the input subsets, however, it is only suitable for linear regression
models.

Three main approaches have been used in order to optimize
the set of inputs that the training algorithm will use: incremental,
decremental and batch. The incremental approach starts from an
empty set of input vectors and defines the training set adding
input vectors iteratively [11]. The opposite perspective is taken in
the decremental approach that starts considering all the input
vectors available and, following a prefixed criteria, proceeds to
remove the non-desired instances [12]. There are other techni-
ques such as the batch method that iterates several times before
deleting the instance from the training set, setting a flag on the
instances that could be removed in next iterations [13]. Recently,
evolutionary algorithms [7], boosting-based algorithms [14], and
pruning techniques [15] have also been applied to this problem.

The work developed in this paper is framed within the
decremental approach since it considers the whole data set at
the beginning. The criteria to remove the input vectors has been
taken from the method used to perform feature selection. The
problem of feature selection consists in finding an adequate
subset of variables in such a way that it is possible to train more
accurate models. If the set of input data has redundant or
irrelevant data, the training can result in an overfitted model with
poor generalization capabilities [16,17]. Furthermore, if the
dimensionality is not reduced, some local approximator models
suffer from the curse of dimensionality, making it impossible to
design accurate models [18].

To tackle the feature selection problem, two main streams
have been followed: filter and wrapper methods. The filter
approach consists of a preprocessing of the input data so the
model is built afterwards [19]. The wrapper approach attempts to
design the model at the same time that performs the variable
selection [20]. The concepts of entropy and mutual information
(MI) make the Information theory an interesting framework for
filtering approaches. The MI will be used in order to decide which
input vectors should be included or not in the training data set.
This new approach is possible thanks to the possibility of
computing the MI for continuous variables. Thus, it will be
possible to identify outliers and noise input vectors from the data
set, providing as output a subset of input vectors which are
adequate to be used to design the regression model.

The rest of the paper is organized as follows: Section 2
presents the formulation of MI and describes the method used to
compute it, then, Section 3 introduces the new methodology to
select the input vectors. Section 4 includes a variety of experi-
ments to verify the proposed approach and, finally, Section 5
draws the conclusions.
2. Prototype selection based on mutual information

This section firstly describes the concept of mutual informa-
tion, then, the algorithm to perform the prototype selection is
introduced.
2.1. Mutual information

Given a single-output multiple input function approximation
or classification problem, with input variables X ¼ [x1, x2, y, xd]
and output variable Y ¼ y, the main goal of a modeling problem is
to reduce the uncertainty on the dependent variable Y. According
to the formulation of Shannon, and in the continuous case, the
uncertainty on Y is given by its entropy defined as

HðYÞ ¼�

Z
mY ðyÞlogmY ðyÞdy, ð1Þ

considering that the marginal density function mY ðyÞ can be
defined using the joint probability density function mX,Y of X and Y

as

mY ðyÞ ¼

Z
mX,Y ðx,yÞdx: ð2Þ

Given that we know X, the resulting uncertainty of Y conditioned
to known X is given by the conditional entropy, defined by

HðY ,XÞ ¼�

Z
mXðxÞ

Z
mY ðyjX ¼ xÞlogmY ðyjX ¼ xÞdy dx: ð3Þ

The joint uncertainty on the [X,Y] pair is given by the joint
entropy, defined by

HðX,YÞ ¼�

Z
mX,Y ðx,yÞlogmX,Y ðx,yÞdx dy: ð4Þ

The mutual information (also called cross-entropy) between X

and Y can be defined as the amount of information that the group
of variables X provide about Y, and can be expressed as
IðX,YÞ ¼HðYÞ�HðY jXÞ. In other words, the mutual information
I(X,Y) is the decrease of the uncertainty on Y once we know X. Due
to the mutual information and entropy properties, the mutual
information can also be defined as

IðX,YÞ ¼HðXÞþHðYÞ�HðXjYÞ, ð5Þ

leading to

IðX,YÞ ¼

Z
mX,Y ðx,yÞlog

mX,Y ðx,yÞ

mXðxÞmY ðyÞ
dx dy: ð6Þ

Thus, only the estimate of the joint PDF between X and Y is needed
to estimate the mutual information between two groups of
variables.

Estimating the joint probability distribution can be performed
using a number of techniques. As mentioned already, histograms
and kernel density estimators have been used for this purpose
[21]. Although there exists a variety of algorithms to calculate the
mutual information between variables, this paper uses the
approach presented in [22] which is based on the k-nearest
neighbors.
2.2. Estimating the mutual information using the k-nearest

neighbors

There is extensive literature about estimators based on the k-
nearest neighbors for the entropy, but it has been only recently
extended to the MI [23].

We define the space Z ¼ {X,Y} and we will use the maximum
norm for any pair of points z ¼ (x,y) and z0 ¼ ðx0,y0Þ,

Jz�z0J¼maxfJx�x0J,Jy�y0Jg, ð7Þ

although any other norm could be used. Denote by eðiÞ the
distance from a point zi to its k-th nearest neighbor and by exðiÞ

and eyðiÞ the distances between the same points projected into the
X and Y subspaces. Obviously eðiÞ ¼maxfexðiÞ,eyðiÞg.

We will count the number nx(i) of points xj whose distance
from xi is strictly less than eðiÞ, and similarly for y instead of x. The
estimate for MI is then (see [23] for a proof of the convergence of
this estimator)

Î1ðX,YÞ ¼cðkÞ�
1

N

XN

i ¼ 1

½cðnxðiÞþ1ÞþcðnyðiÞþ1Þ�þcðNÞ, ð8Þ
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Fig. 1. (a) Original target function and (b) distorted data set.

Table 1
Parameters for the function f1.

RBF centers Radii Weights

0.484 0.237 �0.387

0.151 0.530 0.284

0.781 0.091 �0.208

0.100 0.405 0.103

0.294 0.104 0.464
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where c is the digamma function given by

cðtÞ ¼
G0ðtÞ
GðtÞ

¼
d

dt
lnGðtÞ ð9Þ

with

GðtÞ ¼
Z 1

0
ut�1e�u du: ð10Þ

Function c satisfies the recursion equation cðxþ1Þ ¼cðtÞþ1=x

and cð1Þ ¼ C where C ¼ �0.5772156yis the Euler–Mascheroni
constant.

Another alternative is to replace nx(i) and ny(i) by the number
of points with Jxi�xjJrexðiÞ=2 and Jyi�yjJreyðiÞ=2. The estimate
for MI is then

Î2ðX,YÞ ¼cðkÞ�
1

k
�

1

N

XN

i ¼ 1

½cðnxðiÞÞþcðnyðiÞÞ�þcðNÞ: ð11Þ

In this paper this second estimator is used, which is the one
implemented in [24]. See [23] for an extended explanation.

As can be noted, this MI estimator has a dependency on the
value chosen for k (k-th nearest neighbor). As it is recommended
in [25] for a tradeoff between variance and bias, in the examples, a
mid-range value for k (k ¼ 6) will be used.

2.3. Prototype selection using mutual information

The idea that motivates this paper is: since the MI is able to let
us know how much information from the output can be retrieved
using the different variables starting from a set of input vectors
(prototypes), it would be possible that if a significant prototype is
removed from the set of input vectors, the amount of MI that
could be retrieved would be decreased. On the other hand, if an
insignificant prototype is deleted from the original set, the
amount of MI should not be decreased. These two sentences are
correct, however, there are situations where they might not be
completely true. For example, if there are outliers, they will
probably provide a significant amount of MI but they should not
be considered. On the other hand, if the output of the system
remains constant, the amount of information will not fluctuate if
similar prototypes are removed.

Thus, in order to make an objective evaluation of how relevant
an input vector is, it is necessary to consider the loss of MI with
respect to its neighbors in such a way that, if the loss of MI is
similar to the prototypes near xi, this input vector must be
included in the filtered data set. The algorithm proposed to
calculate the reduced set of prototypes is described in Algorithm 1
Algorithm 1. MI prototype selection.
1.
 Calculate the K nearest neighbors in the input space

of xi ¼ (xi 1, xi 2, y, xid) for i ¼ 1yn (nn [xi, j] for j ¼ 1yK)
2.
 for ¼ i¼1yn
Calculate the mutual information value I(X,Y)i when
removing xi from X
end

3.
 Normalize I(X,Y)i in [0,1]

4.
 for i¼1yn
Cdiff¼0

for j¼1yK
diff ¼ IðX,YÞi�IðX,YÞnn½xi ,j�
if diff 4a

Cdiff¼Cdiff + 1
end

if Cdiff oK
Select prototype

else
Discard prototype

end
end
where d is the number of dimensions, n the number of input
vectors, a is a predefined threshold that determines how different
the MI should be with respect to the neighbors and K is the
number of neighbors to be considered in the comparisons. The
value of a must be set manually and determines the sensitivity or
the specificity of the algorithm. As the experiments have shown, a
value of 0.05 could be a good compromise between those two
objectives.

When calculating how much of MI was lost, two approaches
could be taken: (1) to calculate the MI between the complete set
of variables and the output or (2) to compute the MI between each
variable and the output. With the MI estimator used in the



ARTICLE IN PRESS

Table 4
Sensitivity (true positive rate, TPR) and false positive rate (FPR) of the algorithm

using several values of a and K for function f1.
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experiments, no difference between those two approaches
could be seen, however, other implementations should be
analyzed.
Fig. 2. Filtered data (stars) and original data (circles).

Table 3
Approximation errors (normalized root mean squared error, NRMSE) obtained

when training the networks using the different data sets.

Data set Train Test

Original 0.027 0.027

Distorted 0.773 0.432

Selected 0.451 0.188
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Fig. 3. Approximation made by the RBFNN trained with the data before prototype selection (a) and after the selection (b).

a K¼1 K¼3 K¼5

Sensitivity

0.005 0.8603 0.9751 1.0

0.015 0.8953 0.9850 1.0

0.025 0.9377 0.9900 1.0

0.035 0.9576 0.9975 1.0

0.045 0.9651 0.9975 1.0

0.055 0.9751 1.0 1.0

0.065 0.9800 1.0 1.0

0.075 0.9850 1.0 1.0

0.085 0.9850 1.0 1.0

0.095 0.9875 1.0 1.0

FPR

0.005 0.1520 0.4480 0.6160

0.015 0.1560 0.4800 0.6640

0.025 0.1600 0.5000 0.6880

0.035 0.1760 0.5320 0.7240

0.045 0.1880 0.5680 0.7600

0.055 0.1960 0.5920 0.7880

0.065 0.2040 0.6160 0.8040

0.075 0.2120 0.6400 0.8240

0.085 0.2160 0.6680 0.8520

0.095 0.2200 0.6800 0.8560
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Fig. 4. ROC curve for the function f1. Circles were computed using K¼1, stars with

K¼2 and diamonds with K¼3.

Table 2
Confusion matrix for the one dimensional synthetic function.

Predicted Actual Total

Positive Negative

Positive 391 55 446

Negative 9 195

Total 400 250
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Fig. 5. (a) Original target function and (b) distorted data set (diamonds) with the original training data (dots).

Table 5
Confusion matrix for the synthetic function f4.

Predicted Actual Total

Positive Negative

Positive 302 106 408

Negative 98 94

Total 400 200

Table 6
Sensitivity (true positive rate, TPR) and false positive rate (FPR) of the algorithm

using several values of a and K for function f4.

a K¼1 K¼3 K¼5

Sensitivity

0.005 0.611 0.844 0.917

0.015 0.652 0.877 0.930

0.025 0.675 0.890 0.932

0.035 0.702 0.905 0.940

0.045 0.715 0.915 0.950

0.055 0.747 0.927 0.962

0.065 0.777 0.937 0.972

0.075 0.792 0.945 0.977

0.085 0.807 0.947 0.982

0.095 0.827 0.957 0.985

FPR

0.005 0.400 0.590 0.690

0.015 0.425 0.625 0.720

0.025 0.445 0.645 0.730

0.035 0.465 0.670 0.750

0.045 0.490 0.695 0.775

0.055 0.520 0.715 0.800

0.065 0.540 0.735 0.810

0.075 0.555 0.750 0.825

0.085 0.575 0.770 0.850

0.095 0.605 0.810 0.870

Table 7
Approximation errors (normalized root mean squared error) obtained after

training the networks (ICFA and OVI algorithm) using the different data sets.

Time series Error (original) Error (outliers) Error (filtered)

ICFA
Logistic 0.0001 0.136 0.027

Henon 0.009 0.158 0.044

Electric 0.281 0.707 0.416

MCglass 0.031 0.177 0.138

OVI
Logistic 0.021 0.143 0.032

Henon 0.037 0.152 0.042

Electric 0.342 0.773 0.449

MCglass 0.024 0.175 0.142

The test data set is the original data without noise.
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3. Experiments

This section presents the results of applying the new algorithm
to highly distorted data sets, some artificially generated and some
taken from real life problems.
3.1. Experiment 1: one dimensional synthetic function

The data set was generated synthetically so it was possible to
know exactly which input vectors were the originals and which
the noisy ones. The target was a one dimensional function
(Fig. 1(a)) that was generated using a Gaussian radial basis
function neural network (RBFNN) with randomly chosen
parameters, which are shown in Table 1.

The original data set consists of 400 equally distributed
prototypes and their corresponding output. This data set was
modified adding a set of 250�2 (X, Y) random values in [0,1] from
a uniform distribution, obtaining a new data set of 650 prototypes
of dimension 1 with one output. This data set is represented in
Fig. 1(b).

The proposed method was applied using the value 0.05 for the
threshold a and 1 for K, obtaining a filtered data set of size 446.
The results of the classification are shown in Table 2. The
algorithm discriminated the 78.2% of the incorrect prototypes
and identified correctly the 97.7% of the original prototypes. Fig. 2
depicts the results, where the circles represent the original
prototypes and the stars represent the prototypes selected from
the distorted data set. If a star is included in a circle, it means that
the original prototype was chosen correctly.

To evaluate the utility and effectiveness of the proposed
approach, several RBFNNs were designed using the three different
data sets: original, distorted and filtered. Each network was
trained using these three data sets and the test set was generated
using the original function and it consisted of 1000 noise-free
homogeneously distributed points. The methodology to design
the RBFNN was: first, initialize the centers with the algorithm
ICFA (Improved Clustering for Function Approximation) proposed
in [26], then apply k-NN to get a first value for the radii and then,
apply a local search to make a fine tuning of these parameters. As
it was expected, thanks to the prototype selection, the approx-
imation errors (Table 3) that can be obtained are much smaller
than if no prototype selection was made. Fig. 3 shows the
approximations of the original function by the RBFNNs generated
using the distorted data and using the data after the prototype
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Fig. 6. Filtered data (stars) and original data (circles).
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selection. The error is measured using the normalized root mean
squared error (NRMSE) which is a common measure to evaluate
the quality of the approximations [27].

Regarding the effect of the K and a parameters, Table 4
shows the sensitivity (true positive rate, TPR¼ TP=ðTPþFNÞ) and
the false positive rate (FPR) (specificity ¼ 1�FPR ) of the
algorithm when modifying these parameters. These values are
represented as a ROC curve in Fig. 4. As the results show, the
smaller the K and a are, the more restrictive the algorithm
becomes, allowing to identify a significant number of noisy points
although discarding many original points. Nonetheless, the
behavior of the algorithm shows to be quite adequate,
performing a good prototype selection.

3.2. Experiment 2: two dimensional synthetic function

Secondly, a two dimensional synthetic function f4 (in order to
keep the original name) represented in Fig. 5(a) and defined in
Eq. (12) was used. The function f4 was presented in [28] and it has
been used as a benchmark in [29–31] due to its high variable
output. First, 400 input vectors were generated using f4, then, 200
input vectors were generated using random values in [0,1] from a
uniform distribution, creating the remaining complete data set as
it is depicted in Fig. 5(b):

f4ðx1,x2Þ ¼ 1:9½1:35þex1 sinð13ðx1�0:6Þ2Þe�x2 sinð7x2Þ�, x1,x2A ½0,1�:

ð12Þ

Table 5 shows the confusion matrix of an execution for function f4.
The results are not as impressive as in the previous one but the
function presents a high variability in the output and the
sampling is not very high. Furthermore, the amount of noisy
points introduced is really high so the results could be considered
satisfactory. Table 6 shows the sensitivity of FPR of the algorithm
and Fig. 7 depicts these data.

3.3. Experiment 3: time series prediction

In order to evaluate the proposed approach in time series
prediction, new experiments have been developed. The data sets
used are
(1)
1 Available at http://www.ucei.berkeley.edu/CSEM/datamine/ISOdata/
Logistic: The Logistic map is a demographic model that has
been popularized by [32] as an example of simple nonlinear
system that exhibits complex, chaotic behavior. It is drawn
from Eq. (13).

yðtÞ ¼ 4yt�1ð1�yt�1Þ: ð13Þ

Hénon: The Hénon map is one of the most studied dynamical
(2)

2 See http://www.mathworks.com/products/fuzzylogic/?BB=1
systems. The canonical Hénon map takes points in the plane
following [33]:

xnþ1 ¼ ynþ1�1:4x2
n ,

ynþ1 ¼ 0:3xn: ð14Þ

Electric: Daily electric load data in California1 (the original
(3)

load data are sampled every hour).
(4)
 Mackey–Glass: The Mackey–Glass time series is approximated
from the differential equation (15) [34]. It is a widely used
benchmark for generalization abilities of time series predic-
tion methods. The series is continuous and it is obtained by
integrating Eq. (15) with a numerical integration method such
as the fourth order Runge–Kutta method. The data for this
time series were obtained from the mgdata.dat file included
in the Fuzzy Logic Toolbox2 from the Matlab software.

dxðtÞ

dt
¼

0:2xðt�tÞ
1þx10ðt�17Þ

�0:1xðtÞ: ð15Þ
A new approach to test the methodology must be taken. The
reason is because in time series prediction the definition of the set
of input vectors X is made using the output variable Y and the
regressors. Thus, adding random input vectors with random
outputs, as it was done in the previous experiments, would not
respect the nature of the problem. Hence, the data sets were
distorted in the following way:
(1)
 adding noise to the original normalized output: for each point,
a random value was added or subtracted;
(2)
 adding outliers: pure random values were introduced in
random positions within the series.
Therefore, the data sets were highly distorted. In order to
evaluate the utility of the proposed approach, it is not possible to
find out which input vectors are pure outliers because, depending
on the regressors, an outlier can be included in several input
vectors. Then, to be able to evaluate the quality of the proposed
data filtering method, the following steps are followed:
(1)
 Generate a model that predicts the original ‘‘clean’’ time
series.
(2)
 Generate a model that predicts the distorted time series.

(3)
 Generate a model that predicts the filtered time series.
A priori, it could seem trivial to guess that the model
approximating the filtered data will perform better than the
model approximating the distorted data set as the outliers have

http://www.ucei.berkeley.edu/CSEM/datamine/ISOdata/
http://www.mathworks.com/products/fuzzylogic/?BB=1
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been removed. So, in order to analyze the quality of the models,
the original time series were given to them as test data. The
results are shown in Table 7 where a radial basis function neural
network was designed using the deterministic methodology
proposed in [35] with five Gaussian neurons. The value of the
two parameters a and K were chosen after performing several
runs. Each time series was distorted by adding 50 random
outliers. Fig. 6 shows the results provided so, figures for the first
two time series represent the input vectors and the output since
the dimension of the input vectors is one and two. The other two
Fig. 8. Original input vectors and the outputs for the original data set (stars), outliers (d

for time series three and four representing the original output (top), the distorted outp
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Fig. 7. ROC curve for the function f4. Circles were computed using K¼1, stars with

K¼2 and diamonds with K¼3.
figures represent just the value of the outputs for the sake of
clarity. As these figures show, for the four time series the results
are quite satisfactory since the number of outliers identified is
high, this is reflected in smaller approximation errors when the
original output is given to the trained models. For the case of the
first two time series, the approximation errors are very close to
the ones obtained with the original output. For the other two, due
to the high dimensionality of the problem, the approximation
errors differ a bit more although it is quite clear that, after the
filtering, the approximation obtained is better. In order to perform
a fair comparison for the model, other algorithm (output-value
based initializer, OVI) presented in [36] was used to train the
model. The approximation errors obtained with this algorithm are
higher with the original data although the networks generated are
able to generalize increasing the performance when the filtered
data set was given as input (Figs. 7 and 8).
4. Conclusions and further work

This paper has presented a possible approach to solve the
problem of selecting adequate data samples before using any
model to approximate a function. This new method is based on
the concept of mutual information which was used before for
feature selection. The main difference between the already
existing approaches and the proposed one is that is oriented to
data sets with a continuous output value instead of a predefined
set of labels and with the global perspective that the MI provides
of the complete data set. As the experiments have shown, the
method seems quite effective selecting the correct prototypes
with a high accuracy. Although the algorithm performance is
quite robust, further work could consider a comparison among
other different ways of calculating the mutual information and
the parallelization of the algorithm.
ots) and filtered data set (circles) for time series one (a) and two (b). Plotted output

ut (middle) the filtered output (bottom).
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[26] A. Guillén, J. González, I. Rojas, H. Pomares, L.J. Herrera, O. Valenzuela, A.
Prieto, Using fuzzy logic to improve a clustering technique for function
approximation, Neurocomputing 70 (16–18) (2007) 2853–2860.

[27] A. Guillén, H. Pomares, I. Rojas, J. González, L.J. Herrera, F. Rojas, O. Valenzuela,
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