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Abstract This paper proposes an approach to the iden-
tification of evolving fuzzy Takagi—Sugeno systems based
on the optimally pruned extreme learning machine
(OP-ELM) methodology. First, we describe ELM, a simple
yet accurate learning algorithm for training single-hidden
layer feed-forward artificial neural networks with random
hidden neurons. We then describe the OP-ELM method-
ology for building ELM models in a robust and simplified
manner suitable for evolving approaches. Based on the
previously proposed ELM method, and the OP-ELM
methodology, we propose an identification method for self-
developing or evolving neuro-fuzzy systems applicable to
regression problems. This method, evolving fuzzy opti-
mally pruned extreme learning machine (eF-OP-ELM),
follows a random projection based approach to extracting
evolving fuzzy rulebases. In this approach systems are not
only evolving but their structure is defined on the basis of
randomly generated fuzzy basis functions. A comparative
analysis of eF-OP-ELM is performed over a diverse
collection of benchmark datasets against well known
evolving neuro-fuzzy methods, namely eTS and DENFIS.
Results show that the method proposed yields compact
rulebases, is robust and competitive in terms of accuracy.

F. M. Pouzols (X)) - A. Lendasse

Department of Information and Computer Science,
Aalto University School of Science and Technology,
P.O. Box 15400, 00076, Aalto, Espoo, Finland
e-mail: federico.pouzols @tkk.fi

A. Lendasse
e-mail: amaury.lendasse @tkk.fi

Keywords Evolving fuzzy systems - Extreme
learning machine - Optimally pruned extreme
learning machine - Evolving Takagi—Sugeno -
Regression - Time series

1 Introduction

Evolving, online or adaptive intelligent systems are meant
to be applied on sequential data or streams of data.
Evolving systems distinguish themselves from traditional,
offline learning methods and previous online or adaptive
methods in that their structure (in addition to their
parameters) gradually evolves in order to account for new
data. In general, any aspect of an evolving system,
including the learning mechanism, is subject to self-adap-
tation (Angelov et al. 2010).

The interest in self-developing artificial neural network
methods can be tracked back to some early works in the field
(Platt 1991). During the last decade there has been an
increase of interest in this field and in particular within the
area of evolving fuzzy systems for modeling, classification
and control (Angelov et al. 2008, 2010). The need for such
systems arises in a variety of contexts and successful appli-
cations can be found in areas such as process industry,
autonomous systems, intelligent agents, signal processing
and bioinformatics, among others (Kasabov 2007; Angelov
et al. 2010). Some recent advances in evolving neuro-fuzzy
systems include DENFIS (Kasabov and Song 2002), and the
more general Evolving Connectionist Systems framework
(Kasabov 2007), FLEXFIS (Lughofer 2008), and evolving
Takagi—Sugeno (eTS) (Angelov and Filev 2004b) as well as
its variants (Angelov and Filev 2005; Angelov et al. 2010).

For instance, evolving TS fuzzy systems (Angelov and
Filev 2004b) combine supervised and unsupervised
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learning techniques to identify and evolve the TS model
structure as well as its parameters as new data become
available. This way, new rules can be added, existing rules
can be reorganized, and in general any aspect of an evolving
fuzzy inference model is subject to self-development.

Evolving fuzzy systems represent a relative recent step
beyond the paradigms of self-tuning neuro-fuzzy systems
(Moreno-Velo et al. 2007) and online neuro-fuzzy systems
(Angelov and Filev 2004b). In most situations, the evolving
approach implies the need for simple, one-pass learning
methods as opposed to traditional, iterative algorithms.
Evolving fuzzy systems are particularly useful for online
prediction and predictive control. Among other advantages,
evolving fuzzy systems provide an inherent capability for
novelty detection and an enhanced robustness against
nonstationarities.

To date, identification methods proposed for evolving
fuzzy systems rely on traditional approaches, such as
structure-oriented or, more often, cluster-oriented identifi-
cation (Angelov et al. 2010; Kasabov 2007) or hybrid
approaches. The aim of this paper is to define an alternative
approach to the identification of evolving fuzzy systems
based on the concept of random projections.

Recent results in machine learning and computational
intelligence have led to an increase of interest in methods
based on random projections (Miche et al. 2010a;
Achlioptas 2003; Fradkin and Madigan 2003). These sys-
tems have proved to be comparable to traditional approa-
ches for identification purposes (Feng et al. 2009; Miche
et al. 2010b; Liang et al. 2006; Miche et al. 2010a). This
paradigm seems specially suitable for evolving intelligent
systems for data streams, and can provide an alternative
approach to identifying evolving fuzzy systems.

This paper proposes a method for the identification of
evolving Takagi—Sugeno fuzzy inference systems (FIS)
based on the optimally pruned extreme learning machine
(OP-ELM) methodology. We leverage in three previous
developments: the ELM learning method, introduced by
Huang et al. (2006b), the OP-ELM methodology, intro-
duced by Miche et al. (2010b), and the online sequential
ELM algorithm, introduced by Liang et al. (2006) and
extended for fuzzy systems by Rong et al. (2009).

The (ELM) (Huang et al. 2006a, b) is a simple yet
effective learning algorithm for training single-hidden-
layer feed-forward artificial neural networks (SLFNs) with
random hidden nodes. ELM challenges conventional
learning methods and theories. ELM has been shown to be
accurate and fast both theoretically and experimentally.
Indeed, ELM is a remarkably fast method but can achieve a
performance in terms of generalization comparable to other
accurate yet costly learning techniques.

OP-ELM has been introduced by Miche et al. (2010b) in
order to improve the robustness of ELM models. This is
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achieved through a three stages methodology which
includes steps for fast ranking of hidden neurons as well as
model selection.

Rong et al. (2009) have previously shown that SLFNs
can be regarded as equivalent to FIS. They use this
equivalence in order to derive an online sequential method
for fuzzy systems (OS-Fuzzy-ELLM) based on the online
sequential ELM (Liang et al. 2006; Rong et al. 2009). Here
we introduce an evolving approach to the identification of
evolving Takagi—Sugeno fuzzy inference systems based on
the original offline OP-ELM methodology. We exploit the
equivalence between SLFNs and FIS, and bring the good
performance and robustness of the OP-ELM methodology
together with an online approach in order to define the
evolving fuzzy OP-ELM (eF-OP-ELM). This method fol-
lows a random projection based approach to extracting
evolving fuzzy rulebases. In this approach systems are not
only evolving but their structure is defined in terms of
randomly generated fuzzy basis functions.

When compared with previous ELM methods, the con-
tribution of the method proposed in this paper, eF-OP-ELM
is twofold. First, as opposed to the original proposal of
OP-ELM which is an offline method, eF-OP-ELLM addresses
online learning. Second, as opposed to OS-Fuzzy-ELM,
eF-OP-ELM is a fully evolving fuzzy method where both
the structure and all the parameters of the model evolve in
an online manner. This way, we bring into the field of
evolving intelligent systems the alternative identification
approach of ELM as well as the robustness of the OP-ELM
methodology.

The paper is organized as follows. Section 2 describes
the ELM, the OP-ELM methodology and the OS-ELM
sequential learning algorithm. In Sect. 3 we introduce the
evolving fuzzy OP-ELM (eF-OP-ELM) modeling approach
for building evolving fuzzy inference systems. Then, in
Sect. 4 a comparative analysis is performed against other
well-known alternatives. Section 5 discusses results.
Finally we give some concluding remarks. Appendix
describes an incremental initialization procedure for
eF-OP-ELM.

2 Extreme learning machine

The extreme learning machine (ELM) (Huang et al. 2006a, b)
is a simple yet effective learning algorithm for training
SLFNs with random hidden nodes. In ELM, the hidden
neuron parameters are randomly assigned whereas the
output weights are analytically determined. ELM is a
unified framework of generalized SLFNs that has the uni-
versal approximation capability for a wide range of hidden
node types (see Huang et al. 2006a for a proof and dis-
cussion of the topic). The training process for ELM can be
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several orders of magnitude faster than traditional learning
algorithms for feed-forward neural networks, while
attaining comparable or even better approximation and
generalization capabilities.

Let us consider a dataset consisting of M observations
(x;,y,) € R% x R% with d, the dimension of the input
space and d, the dimension of the output space. An SLFN
with N neurons in the hidden layer is defined by the fol-
lowing expression:

N
D B, cia), 1<j<M,
i=1

where f(-) is the activation function and f; € R are the
output weights. Let us illustrate two widely studied archi-
tectures of SLFNs: SFLNs with hidden additive nodes and
radial basis function (RBF) networks which use RBF nodes
in the hidden layer. Additive nodes have the form f(c; -
X; + a;), where ¢; € R are the input weights and a; the
biases. RBFs have the form f(|[=%||), where ¢; € R? are
the centers and a; the spreads or radii of the RBF nodes.

If the SFLN perfectly fits the data, then the difference
between the estimated outputs y; and the actual output
values is zero and thus the following holds:

N
N Bf(xena) =y, 1<j<M,
i=1

which can be written as:
HE=Y, (1)
with
f(xi,¢1,a1) f(x1,en,an)
H = z B : :
f(xu,¢1,a1) f(Xm; ens an)

p=(p",....p%) and Y=(yI,....y.)". In the ELM
method, the hidden layer output matrix, H, is generated
in a random way, independently of the training dataset.
Then, the output weights of the SLFN, f can be determined
analytically. The estimated output weights are computed
as:

p=H'Y, (2)

where H' is the Moore—Penrose pseudoinverse (or natural
inverse) of H. For the applicable implementation methods,
usually based on singular value decomposition, refer to
(Liang et al. 2006; Huang et al. 2006b). As pointed out by
Huang (2008) the ELM theory claims that parameter tuning
is not required. This approach challenges conventional
learning methods and theories.

It has been theoretically shown that for function
approximation all the parameters of the hidden nodes can
be randomly generated without any prior knowledge. In

(Huang et al. 2006b) it is proved that the hidden layer
output matrix can be computed and achieves an approxi-
mation error as small as desired for N <M, under the
assumption that the activation function is infinitely differ-
entiable. The universal approximation capability of ELM
has been proved in (Huang et al. 2006a).

This way, ELM is a extremely fast method (Huang et al.
2006b), several orders of magnitude faster than traditional
feedforward neural networks methods while competitive in
terms of accuracy. As a final remark, for a given type of
activation function, ELM only requires the number of
neurons in the hidden layer to be specified, as opposed to
other learning methods which commonly have several
hyperparameters to be tuned.

2.1 Optimally Pruned ELM

The optimally pruned extreme learning machine
(OP-ELM) (Miche et al. 2008, 2010b; Sorjamaa et al.
2008) is a methodology based on the ELM. OP-ELM
models are built in three stages and use Gaussian, sigmoid
and linear kernels in general. First, an ELM is constructed,
then, an exact ranking of the neurons in the hidden layer is
performed, and finally the decision on how many neurons
are pruned is made based on an exact leave-one-out error
estimation method (Miche et al. 2010b; Myers 2000), as
described in the next subsections. These stages are per-
formed by means of fast methods and lead to extremely fast
yet accurate models.

ELM OP-ELM has been shown to provide a compro-
mise between the speed of ELM and the accuracy and
robustness of other much more computationally intensive
methods. OP-ELM models achieve roughly the same level
of accuracy as that of other well known computational
intelligence methods (Miche et al. 2008, 2010b), such as
Support Vector Machines (Scholkopf and Smola 2002) and
Least Squares Support Vector Machines (Suykens et al.
2002), Gaussian Processes and Multilayer Perceptrons
(Haykin 1998), while being significantly faster.

As explained above, for a given type of activation
function, only one parameter has to be tuned in order to
build accurate ELM models: the number of hidden neurons.
In principle the only feasible approaches to a sensible
tuning of the number of hidden neurons are based on the
definition of validation subsets. This is the approach used
generally in the literature (Huang et al. 2006b; Liang et al.
2006).

However, validation approaches such as cross-validation
and bootstrapping methods raise several issues. In partic-
ular, computational cost increases significantly, which is
specially troublesome for online, adaptive and possibly
real-time systems. In addition, validation methods assume
the different subsets used for training, validation and test
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are drawn from the same population. For systems that
evolve or exhibit nonstationarity, whether statistical or
dynamical, this assumption may lead to wrong models.
The OP-ELM method introduced a sound approach to
the selection of the subset of best nodes in such a way that
less relevant neurons are pruned. This brings in a funda-
mental advantage for evolving methods besides enhancing
the robustness of ELM models against irrelevant and
redundant variables (Miche et al. 2010b). In what follows
we outline the three stages of the OP-ELM methodology.

2.1.1 Construction of an initial SLFN

This step is performed using the standard ELM algorithm
for a large enough number of neurons N.' While the ori-
ginal ELM proposal uses sigmoid kernels, and ELM
models are usually defined on the basis of a single type of
activation function or kernel, in the OP-ELM methodology
three types of kernels are used in combination for better
robustness and generality. The following types are used:
Sigmoid, Gaussian and linear. Refer to (Miche et al. 2008,
2010b) for the details about the procedure followed to
randomly initialize the parameters of these types of
functions.

2.1.2 Ranking of hidden neurons

As second step in the OP-ELM methodology, the mul-
tiresponse sparse regression (MRSR) algorithm (Simild and
Tikka 2005) is applied in order to rank the hidden neurons
according to their accuracy. MRSR is in essence a gener-
alization of the well-known least angle regression (LARS)
algorithm (Efron et al. 2004), and is thus able to find an
exact ranking for linear problems. Since in a ELM model
the output is linear with respect to the randomly initialized
hidden nodes, the MRSR ranking within the OP-ELM
methodology is exact.

The MRSR algorithm is defined as follows. For a
M x N regressor matrix X, each column is added one by
one to the model in successive steps of the algorithm. This
way, for step k, the model is defined as Yr = XW", where
Y¥ is the model output. The weight matrix, W* has k
nonzero rows at the kth step of the MRSR algorithm. For
the full details refer to (Simild and Tikka 2005). It should
be noted that, similarly to LARS, MRSR is a variable
ranking rather than selection algorithm.

This way, the variables for the MRSR algorithm within
the OP-ELM methodology, h; (the outputs of the hidden
nodes or columns of the hidden layer output matrix, H), are
ranked exactly by their performance.

' By default the initial number of neurons used in the OP-ELM
Toolbox (Lendasse et al. 2010; Miche et al. 2008) is 100.
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2.1.3 Model selection

Once a ranking of the kernel has been obtained the best
number of neurons for the model has to be chosen. Meth-
ods based on offline validation, such as leave-one-out are
often used for this kind of task. They can be however
extremely expensive in computational terms and quickly
become unaffordable for large datasets or online, evolving
or time constrained systems.

However, the LOO can be directly calculated for linear
models by using the PRESS (PREdiction Sum of Squares)
statistics (Myers 2000; Birattari et al. 1999), which pro-
vides a closed-form expression for the LOO error of linear
models. For OP-ELM models it is as follows:

PRESS _ v; — h;b;
: 1 — h;Ph”

where i denotes the ith hidden node, h; are the columns of
the ranked hidden layer output matrix (H), b; are the output
weights of the SLEN, and P is defined as P = (H'H) .

The optimal number of neurons can be found by esti-
mating the LOO error for different numbers of nodes
(already ranked by accuracy) and selecting the number of
neurons L such that minimizes the error:

i
L = argmin Z oPRESS (3)

Jje{l,..N} =1
It has been shown that the ranking (previous) stage of the
OP-ELM method has two positive effects: convergence is
faster and the number of neurons required to achieve the
lowest LOO error is lower (Miche et al. 2010b).

2.2 Online sequential ELM

The original ELM method is designed for offline modeling.
However thanks to the simplicity of the computations in
the ELM method, it is possible to define efficient online
extensions for ELM. Liang et al. (2006) have proposed the
OS-ELM algorithm which we outline in this section and
will be used as a reference method for experiments in the
next sections.

The algorithm first computes a standard ELM model for
an initialization training set, with output matrix Y, hidden
nodes matrix Hy, and solution ﬁ<0) = (H] HO)_IHgYO7
using the Moore—Penrose generalized inversion according
to (2). Let us define Ky = HgHO. Then, for each new
observation or chunk of observations the model is updated
online efficiently by means of the following recursive
expressions:

ﬂ(kJrl) — ﬂ(k) +Pk+ng+l(Yk+] — Hk_Hﬁ(k))? (4)

P =P —PH!  (I+H PH ) He Py, (5)
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where Py = Kkj:]. These recursive update rules are
obtained by using the Sherman—Morrison—Woodbury for-
mula for computing the inverse of a rank-k correction of
matrices (Higham 2002). Refer to (Liang et al. 2006) for
the full details.

As a special case, when the online update of the model is
done by single data samples, (X;,1, Yxi1), as opposed to
data chunks, Eqs. 4 and 5 take the following simplified
forms, respectively:

A = B0 L P by (YI{H - hl{+1ﬂ<k)>7
th]{JrlPk

P =P — ——
i 1+hl, Pehy,

where by = [f(Xki1,¢1,a1). . f (Xer1, ens an)]-

3 Evolving fuzzy OP-ELM

The rules, R;, of a Takagi—Sugeno (TS) fuzzy inference
model, applied to a certain input X;, can be generally
expressed as (Angelov and Filev 2004b):

R’ : TF(xj; is A;1) AND...AND (xj4,is Aig, ),
THEN (yjl is ﬁil)' . '(yjdz is ﬁidz)v

where d; is the dimension of the input space, d, is the
dimension of the output space, i = 1, ..., L for a rulebase
consisting of L rules, and Ay, (k= 1, ...,d;;i=1, ..., L)
are the fuzzy sets for the kth input variable, xj, in the ith
rule. B (k =1, ..., dy; i = 1, ..., L) are crisp values, linear
combinations of the input variables in the form f; =
qi,0 + Gik1Xj1 + - - + Gika, Xja, for a first-order TS model.
For each fuzzy set, A;, the degree of membership of a
given input x; is specified by its corresponding member-
ship function s, (xj). A nonconstant piecewise continuous
membership function f{¢, a) can be considered as in (Rong
et al. 2009). This kind of function includes most common
membership functions such as Gaussian and triangular as
well as virtually all practical possibilities. The membership
function can thus be defined by any bounded nonconstant
piecewise continuous membership function as follows:

Ia,, (Xjis Cin, @i) = f (X Cix, @),

where a; and c;, are the parameters of the membership
function f{-) for the ith rule and the kth component of the
input vectors X;, x; with k =1, ..., d.

In a fuzzy inference system of this type, the output of the
model is computed as the weighted sum of the output of each
rule, where the weights are the activation degrees of the rules.
Thus, the system output y; for an input x; is given as follows:

L

(x;5¢:,a;)

= T PR 00a) NS g, (©)
ZZ 1R(X/’c[7al i=1

where R;(-) denotes the activation degree of the ith rule for
input x;, B; = (i1, .-, Pim), and F(-) can be seen as a
normalized rule:

Ri(xj; ¢, ai
F(xj; ¢, a;) = M7 (7)
2ini Ri(xji e, ai)
with Ri(Xj,Ci,a,‘) = Uy, (le;c,-],ai) AND ... AND uAidl

('xjdl > Cid,y ai)'

According to the equivalence between generalized
SFLN and FIS, (Rong et al. 2009) have established the
interpretation of OS-ELM as an online fuzzy model
applicable to both regression and classification problems.
As noted in (Rong et al. 2009) F as expressed in (7) is what
can be called a fuzzy basis function (FBF) (Zeng and
Singh, 1995).

In (6) it is evident that a FIS is equivalent to a gen-
eralized SLFN, where the F(-) represent the output func-
tions of the hidden layer and the f; represent the output
weight vector. This way, the output functions of the hidden
nodes of the SLFN are equivalent to the FBFs of the FIS,
which in turn are based on the membership functions.

This equivalence is used in (Rong et al. 2009) to develop
an online method for the identification of fuzzy inference
systems of the Takagi—Sugeno type (OS-Fuzzy-ELM).
Note though that this method is online [as OS-ELM (Liang
et al. 2006)] yet not fully evolving, i.e., the system self-
tunes in an online manner but the system structure (rule-
base) is set in an initialization phase.

As a particular case of fuzzy or neuro-fuzzy system, an
evolving TS fuzzy system can be represented as a neural
network (Angelov and Filev 2004a). We show in what
follows how to extend for an online learning approach the
following two elements in the OP-ELM methodology: the
LARS-based ranking process, and the PRESS statistics-
based estimation of the LOO error.

Following the equivalence between the structure of
SFLN and FIS, the latter can be expressed in terms of the
former:

L

> BF(cna) =y, (8)

i=1

F(x)) =

for a certain number of fuzzy rules L. In the TS type
models the consequent of each fuzzy rule is a linear
equation of the input variables. If the coefficients, g j, kK =

. dy, j=1,...,d;, of the linear equations are arranged
in a matrix of parameters of the model for the ith rule as
follows:
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qgi10 -+ Gid0
= i
qil.d, qidy d,
for i=1,..,L, then B, = jTeql-, where X, = [l,XjT]T is

obtained by appending a 1 to the input vector in order
to generate a linear equation. This way, expanding p;
in (8), the output of the model can be expressed as
follows:

L

F(xj) = ZXjTeti(Xﬁciaai) =y, Jj=1...M.
i=1

The above expression in compact form is:

HQ =Y,

which is a generalization of (1), with

H-= H(X],...,XN,Cl,.
= [)C};F(Xj;cl,dl), ..

..,Cr,ag.. .,aL)

. X};F(Xj; Cr, ClL)]

redefined as the hidden layer output matrix (or fuzzy basis
function output matrix) weighted by the extended input
vectors, and with Q being the output parameter matrix of
the TS model:

q1 qi1,0

qid>,0
, with q; = :

Q= :
qL qil 4,

Since a TS FIS is equivalent to an SLFN, the ELM learning
method can be applied to a fuzzy system. Furthermore,
given that H is initialized randomly and Y is known, Q
can be computed online using the same approach as in
ELM.

In the evolving fuzzy OP-ELM (eF-OP-ELM) proposed
here, the structure of the rulebase can change as new
observations become available. Hence, the output of the TS
model can be expressed as follows:

L(j)

Fl,x) = Y xba()f (x5, ), ail)) = v;, ©)
i=1

qid, d,

where both the parameters of the fuzzy basis functions (or
rule antecedents) and the consequent parameters evolve. In
compact form an eF-OP-ELM model can be expressed as:

H()QU) = Y(), Jj=1

for x; being the last available observation of inputs. Here,
H(j) is an evolving matrix, i.e., L(j) (the number of rules or
nodes in the hidden layer of the equivalent ELM) can
evolve as well as the input membership functions [through
parameters c¢,(j) and a,(j)] and the consequent parameters,
q;(j). In this method the rulebase is fully evolving and thus
the hidden layer output matrix takes the following form:

F(xx, €1(j), a1(j)) F(x, e (), ac (i)
F(xj, ¢1(7), a1(j)) F(xj, e (), ar ()

where 1 < k < j defines a sliding window on the incoming
data stream, L(j) is the evolving number of rules, ¢(j) € C
and a,(j) € A are the parameters of the input membership
functions, and C and A are sets of parameters values gen-
erated randomly. Here, we consider O-order TS models for
simplicity, and thus the x;, in (9) verify x,, = 1.

Note that the hidden layer output matrix can be seen as a
matrix of outputs of fuzzy basis functions. Putting all
pieces together, we can describe how the components of an
evolving TS fuzzy inference system are defined in the
eF-OP-ELM method:

e The antecedents (“IF” part) belong to a set of
antecedents that is created randomly by generating
the sets of parameters C and A at the initialization stage.

e The number of fuzzy rules and concrete subset of rules
are selected as in the 2nd and 3rd stages of the OP-ELM
methodology.

e The corresponding consequents (“THEN” part) are
generated analytically using the ELM method, accord-
ing to (2).

The eF-OP-ELM algorithm consists of the following
steps:

Algorithm 1 Evolving Fuzzy OP-ELM (eF-OP-ELM)

1: Create an ordered set of antecedents by generating the sets of parameters C' and A (of cardinality V).

2: Generate an M-by-N matrix, Ho(j),j = M, by applying the N fuzzy basis functions as in (7), for a

given initialization sequence consisting of M observations (x;,y;) € R x Rz,

3: Rank the fuzzy basis function outputs in Ho () using the MRSR algorithm, and select the best number

of rules (as in (3)). The result, H(j), j = M, allows for the computation of Q(5),j = M, (as in (2)), and

the initial evolving TS model F (), with the form of (9).

4: For each a new input-output observation, (x;,y;) with j > M, do:

4.1: Update Hq (j) with the new observation, rank the fuzzy basis function outputs in Ho (j) and select

the best number of rules in order to generate H(j).

4.2: Find the analytical solution for Q(7) (as in (2)) and compute the model output, 7; + 1.
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Note that an initialization stage is considered here for
simplicity, as the initialization sequence is small enough so
as to be negligible in many applications. An incremental
learning algorithm for the initial observations can be found
in Appendix. This incremental algorithm can be seamlessly
integrated into the basic algorithm above, where it would
replace the first three steps.

This way, the fuzzy rule antecedents are ranked by
the MRSR algorithm (described in Sect. 2.1.2), whereas
the optimum number of rules is selected according to
(3), following the same scheme as the OP-ELM
methodology.

In the implementation that will be used in the next
section, C and A are sets of random centers and radii,
respectively, for Gaussian functions, and are generated
following an scheme similar to that of the offline OP-ELM
method (Miche et al. 2008, 2010b). More specifically, the
sets C and A are initially generated randomly with a uni-
form distribution. The values for the centers ¢; € C are
randomly selected from the observed data points, similarly
as in (Poggio and Girosi, 1989). The radii, a; € A are
randomly drawn in the range between percentiles 20% and
80% of the distance distribution of the input space, as
proposed in (Scholkopf and Smola, 2002) and assessed for
OP-ELM models in (Miche et al. 2010b).

To accommodate for new data, the following update
procedure is applied on the sets of antecedent parameters.
For each new observation, x;, a new center and radius are
generated. The center is defined by the new observation,
whereas the radius is generated randomly within the
updated input distance distribution, according to the
scheme described above. The corresponding new fuzzy
basis function replaces the worst ranked basis function in
Ho()).

The rulebases of eF-OP-ELM models are evolved in
step 4.1 by adding new rows and possibly removing old
rows, generating Hy(j), and then ranking and selecting the
best number of rules in order to compute H(j). In the initial
matrix, Hy(j), which can be seen as a pool of potentially
useful fuzzy basis functions, a maximum set of rules is
defined, then the best subset of rules is dynamically
selected. The number of columns of Hy(j) is given by the
cardinality of the sets of parameters C and A, N. In practice,
N does not need to be high. In the next section N = 50 is
used for the reported experiments.

Thus, the size of the initialization sequence can be set to
a small value, M > N. In this paper, M = N = 50. Note
that the cardinality of the parameters set, N, imposes a
ceiling on the maximum number of fuzzy rules that can be
identified in practice. In addition, ranking and selection of
rules can be effectively performed with a reduced subset of
recent values. In this paper, the maximum length of the
sequence of inputs used for the ranking stage, i.e., the

maximum number of rows of the Hy(j) and H(j) matrices is
500, and thus j — kK + 1 < 500. The product T-norm is
used for conjunction operations as well as product infer-
ence of rules. The fuzzy mean method is used for
defuzzification.

4 Experimental results

For our experiments, two well known methods in the field
of evolving fuzzy systems are taken as reference: DENFIS
and eTS. DENFIS (Dynamic evolving neural-fuzzy
inference system) (Kasabov and Song 2002)). is one
implementation of the more general ECOS (Evolving
Connectionist Systems) framework (Kasabov 2007). eTS
(Angelov and Filev 2004b) was applied using global
parameter estimation with a recursive least squares filter
(RLS), and the default parameters of the implementation
used, detailed later on in this section. For both DENFIS and
eTS, first-order TS systems were built. In addition,
OS-Fuzzy-ELM is considered as a reference. Note though
that while it is an online method it is not fully evolving, as
detailed in previous sections.

We compare these methods against eF-OP-ELM, the
method proposed in this paper which is implemented as
described in previous sections, with a maximum number of
rules of 50. Even though the standard OP-ELM uses three
different kinds of kernels, here we only use kernels of
Gaussian type for simplicity’s sake.

For OS-Fuzzy-ELM the same validation approach
originally proposed in Rong et al. (2009) is used. The
initial training data is randomly split into two nonover-
lapping subsets for training (75%) and validation (25%).
The optimal number of rules is selected such that the val-
idation error is minimized. Different numbers of rules are
evaluated, with the number increasing by 1 in the range
[1, 100]. Within this range and for each case, the average
cross-validation error for 25 trials is computed. The block
size is set to 1. Finally, the OS-Fuzzy-ELM with the lowest
average cross-validation error is selected. We should note
however that this approach may require a high computa-
tional effort in the context of evolving systems. In general,
the length of the initialization training subsequence is set to
(50 + number of rules).

The main characteristics of the datasets used are shown
in Table 1. The datasets were chosen in order to find a
compromise between the following objectives: (a) easing
comparison with the related literature, and (b) selecting
datasets for a broad range of characteristics (variables, size,
dynamical behavior, etc.). In particular, some datasets
represent clearly nonstationary processes, while some
others lie in the domain of regression problems where
nonstationarity is not relevant in all cases.
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Table 1 Datasets: number of inputs, training observations and test
observations

Dataset # Inputs Training length Test length
Abalone 2,784 1,393
Auto-MPG 7 258 134
Bank 8 3,000 1,500
Boston Housing 13 337 317
Breast Cancer 32 129 65
California Housing 8 13,760 6,880
Delta Ailerons 5 4,752 2,377
Delta Elevators 6 6,344 3,173
Servo 4 111 56
Stocks 9 633 317
Darwin SLP 5 904 467
ENSO 3 465 400
GSTA 4 1,028 520
Internet2 4 708 730
Mackey-Glass 4 500 -
NAO 7 1,146 572
Santa Fe Laser 3 988 9,093
Sunspots 7 2,085 1,000
Tree Rings 8 1,013 511

The first ten datasets are machine learning benchmarks for regression
problems while the last nine datasets correspond to time series

The first ten datasets are well known regression prob-
lems in the field of machine learning. These datasets are
benchmarks from the UCI Machine Learning Repository
(Asuncion and Newman 2010) or the StatLib repository
(StatLib 2010), and can be also found online from http://
www.liaad.up.pt/ ~ Itorgo/Regression/DataSets.htm. These
are included in order to analyze general regression prob-
lems and ease comparison with the literature on related
ELM based methods (Miche et al. 2010b; Rong et al. 2009;
Liang et al. 2000).

The last nine datasets correspond to diverse time series
applications. The Darwin SLP time series consists of
monthly values of the Darwin Sea sea level pressure (SLP)
for the years 1882—1998. The dataset can be found at the
Time Series Data Library (Hyndman 2010). The SLP for
the next month, y(# + 1) has to be predicted using five
known values from the past, y(t — 11), y(t — 6), y(t — 3),
y(t — 2), and y(r — 1). The ENSO series is the data set from
the ESTSP 2007 time series prediction competition
(ESTSPO7 2010). This dataset consists of 875 samples of
temperatures of the El Nifio-Southern Oscillation phenome-
non. y(t + 1) has to be predicted using y(f), y(t — 2), and
¥(t — 7) as inputs.

The global surface temperature anomaly (GSTA) time
series consists of monthly global (land and ocean com-
bined) temperature anomaly indexes, as provided by the
National Climatic Data Center of the National Oceanic and
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Fig. 1 GSTA time series: 1,560 monthly temperature anomaly values

Atmospheric Administration, available online at http:/
www.ncdc.noaa.gov/oa/climate/research/anomalies.  This
data set is generated from anomalies on a 5° x 5° grid
across Earth’s land and ocean surfaces. Temperature
anomalies are defined as deviations from the average on the
1901-2000 period. The time series consists of 1560 values,
spanning from January 1880 through December 2009. In
this case the problem is defined as that of predicting
y(t + 1) (anomaly for next month) as a function of
y(@®), y(t — 1), y(t — 2) and y(r — 6). As an example, the
GSTA series is depicted in Fig. 1.

The Internet2 time series represents the total amount of
aggregated incoming traffic in the routers of the Abilene
network, the Internet2 backbone. The series consists of
1,458 daily averages from the 4 January 2003 through the
31 December 2006. The data are available from the Abi-
lene Observatory (Internet2Observatory 2008). y(t + 7)
(next week) has to be predicted using y(f), y(t — 2), y(t — 4),
and y(t — 11).

Mackey—Glass is a well-known example of chaotic
system (Mackey and Glass 1977) that can describe a
complex physiological process. Here we included a syn-
thetic instance for comparison purposes (Angelov and Filev
2004b; Kasabov and Song 2002). The dataset is generated
using the 4th order Runge-Kutta method with time step 0.1
s for the following differential equation:

i(r) = 0.2x(t — 1)

TG0 0.1x(z).

The initial conditions and delay parameter are x(0) =
1.2,x(f) = 0 for t<0,7 = 17, and the value of the series
85 steps ahead (x( + 85)) has to be modeled based on 4
inputs: x(f), x(t — 6), x(t — 12) and x(+ — 18). Refer to
(Kasabov and Song 2002) for the full details required to
generate the dataset. In order to replicate the subseries of
500 values used in (Angelov and Filev 2004b), the values
selected for prediction (shown in Fig. 2) lie in the range
x(443.2), ..., x(493.1).
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Fig. 2 Mackey—Glass time series: 500 samples to be predicted

The NAO time series corresponds to the North Atlantic
Oscillation index (Hurrell and Deser 2009) as provided by
the Climate Analysis Section, NCAR, Boulder, available
on line at http://www.cgd.ucar.edu/cas/jhurrell/indices.
html. The series describes the temporal evolution of the
NAO phenomenon, which plays a key role in the dynamics
of the Northern Hemisphere climate. Monthly indices are
defined from January 1865 through August 2009. The next
month’s index, y(# + 1) has to be predicted based on seven
inputs representative of previous seasons within a year and
ahalf: y(2), y(t — 1), y(t — 3), y(t = 5), y(t — 7), y(t — 12),
and y(r — 14).

The Santa Fe Laser dataset of the Santa Fe time series
competition (SantaFeLaser 2010; Weigend and Gershen-
feld 1994). represents the intensity of a far-infrared-laser in
a chaotic state, measured in a physics laboratory experi-
ment. The series is a cross-cut through periodic to chaotic
pulsations of the laser, and can be closely modeled ana-
lytically (Weigend and Gershenfeld 1994). This series is a
remarkable example of noise-free complicated behavior in
a clean, stationary, low-dimensional physical system for
which the underlying dynamics is well understood. In this
case, the next value, y(t + 1) has to be modeled based on
three inputs: y(f), y(t — 1), y(t — 2) and y(t — 12). This
subset of inputs is optimal for a maximum regressor size of
12 (Montesino Pouzols et al. 2010).

We also analyzed the series of monthly averaged sun-
spot numbers covering from January 1749 through
December 2007, as provided by the National Geographical
Data Center from the US National Oceanic and Atmo-
spheric Administration.? Given the yearly periodicity of the
series, a maximum regressor size of 12 was defined.
¥(t + 12) (next year) has to be predicted using y(#), y(r — 1),
Wt —=2), y(t = 3), ¥t — 4), y(r — 8) and y(r — 10).

2 The series is available online from http:/www.ngdc.noaa.gov/
stp/SOLAR/. The International Sunspot Number is produced by the
Solar Influence Data Analysis Center (SIDC) at the Royal Observa-
tory of Belgium (Van der Linden and the SIDC Team 2008).

Finally, the series of tree rings contains yearly measures
of tree rings widths in dimensionless units. This series was
measured in Argentina for the 441-1974 period and cor-
responds to the arge030 dataset of the Time Series Data
Library (Hyndman 2010). In this case, y(t + 1) (width for
the next year) has to be predicted using the 10 previous
values y(t — 9), ..., y(t), except y(t —4) and y(t — 6).
Further descriptions of these datasets and other details to
reproduce results for the time series datasets can be found
in the literature (Montesino Pouzols et al. 2008a, b, 2010).

In Table 1 training and tests subsets are distinguished.
Note that the training set is in fact a sequence and is defined
as the sequence of values beginning at the first observation,
while the test set is defined as the sequence of last obser-
vations. This way, training and out-of-sample or test errors
for offline methods can be analyzed while accounting for the
evolution in time of the datasets and its effects on models.

Training and test errors for offline modeling for OP-ELM
and DENFIS (in offline mode) are listed in Tables 2 and 3,
for the regression and time series benchmarks, respectively.
The tables also show the number of hidden nodes or fuzzy
rules identified as well as the time required.

Table 2 Offline modeling errors for training and test subsets

Dataset Method  Training  Test Rules Time
NDEI NDEI (s)

Abalone DENFIS 3.21e+00 3.89e+00 20 9.20e4-00
OP-ELM 6.33e—01 6.91e—01 58 9.83e4-00
Auto-MPG DENFIS 1.44e+00 1.97e+00 31 1.24e4+-00
OP-ELM 2.90e—01 6.30e—01 32 9.00e—01
Bank DENFIS 1.04e+00 1.09e+00 730 1.48e+02
OP-ELM 2.09¢e—01 2.18e—01 103 1.34e+01
Boston DENFIS 1.97e+00 2.47e+00 59 2.26e+00
Housing OP-ELM 2.13e—01 6.62e+00 88 2.45e+-00
Breast DENFIS 3.32e—01 3.93e+00 40 2.27e+00
Cancer OP-ELM 7.61e—01 2.17e+400 16 1.94e+-00
California  DENFIS 5.29¢e—01 6.47e—01 61 1.21e402
Housing OP-ELM 5.04e—01 6.43e—01 103 4.18e+01
Delta DENFIS 5.32e—01 5.37e—01 87 4.56e+01
Ailerons  Op.ELM 5.36e—01 542e—01 90  2.45e+01
Delta DENFIS 5.94e—01 5.94e—01 202 1.36e+02
Elevators  Op.ELM 5.96e—01 5.92e—01 101  2.84e+01
Servo DENFIS 4.36e—01 5.22e—01 47 1.03e+00
OP-ELM 3.83e—01 4.60e—01 19 5.80e—01
Stocks DENFIS 8.12e—02 2.09e¢+00 19 1.78e+00
OP-ELM 7.73e—02 2.51e+00 109 2.62e+00

Regression benchmarks
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Table 3 Offline modeling errors for training and test subsets

Dataset Method  Training Test Rules Time
NDEI NDEI (s)
Darwin SLP DENFIS 3.88¢—01 4.34e—01 34  2.50e+00
OP-ELM 3.90e—01 4.39e—01 40  3.45e+4-00
ENSO DENFIS 1.4le—01 1.73e—01 13  9.10e—01
OP-ELM 141le—01 1.76e—01 18 1.20e+00
GSTA DENFIS 5.20e—01 5.49¢e—01 24  2.40e+00
OP-ELM 5.18e—01 5.27e—01 14  4.14e+00
Internet2 DENFIS 5.85e—01 9.00e—01 27  1.64e+00
OP-ELM 5.74e—01 8.62e—01 49  2.34e400
NAO DENFIS 8.98¢e—01 1.11e400 161  1.09e+01
OP-ELM 9.66e—01 1.0le—01 27  3.55e+00
Santa Fe Laser DENFIS 2.34e—01 2.34e—01 25 2.17e400
OP-ELM 1.14e—01 1.30e—01 63  2.70e+00
Sunspots DENFIS 6.21e—01 6.55e—01 32  7.56e+00
OP-ELM 6.10e—01 6.09e—01 47  8.43e+00
Tree Rings DENFIS 7.03e—01 8.31e—01 102  9.74e+00
OP-ELM 7.75e—01 7.72e—01 7 3.29e+00

Time series benchmarks

These results are intended to give an approximate esti-
mation of the errors that can be achieved using some related
offline methods and is not meant to be exhaustive. It should
be noted that we provide training and test errors so that the
results shown in this paper can be compared with the liter-
ature on online methods, such as Liang et al. 2006 and Rong
et al. 2006. We focus our analysis however on the evolving
modeling of the datasets, where the datasets are modeled
sequentially as a whole and no distinction is made between
training, validation and test subsets.

Errors are given as nondimensional error index (NDEI):
The root mean square error (RMSE) divided by the stan-
dard deviation of the target sequence. That is,

where M is the total number of samples, y; is the target
output, y; the model output, and std(y;) is the sample
standard deviation of the target output. The NDEI is used
in order to ease comparison with previous results in the
literature of evolving systems, such as (Angelov and Filev
2004b; Kasabov and Song 2002). Note however that other
references dealing with the ELM related methods applied
in this paper use different error measures, such as the
RMSE for the dataset normalized in the range [0, 1], as in
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(Rong et al. 2006; Liang et al. 2006; Rong et al. 2009), or
the absolute MSE (Miche et al. 2010b).

Considering now online and evolving methods, Tables 4
and 5 show the NDEI, the standard deviation of the non-
dimensional errors (NDE), the final number of rules and the
time required for online training. The time column shows
the processor time consumed for the learning process on
the same environment. The lowest NDEI values achieved
by the evolving methods for each dataset are highlighted in
bold face. For this study, we employed a standard PC with
8 GB of RAM, and an Intel® Core™ 2 Quad CPU Q9550
supporting a maximum frequency of 2.83 GHz, running
Matlab R2009b on the GNU/Linux operating system. Tests
were run with no significative competing load.

Finally, we specify some implementation details for the
sake of reproducibility. For DENFIS we used the imple-
mentation available from the Knowledge Engineering and
Discovery Research Institute (KEDRI) (http://www.aut.
ac.nz/research/research-institutes/kedri/books). For OS-ELM
the implementation by Huang et al. available from
http://www3.ntu.edu.sg/home/egbhuang/ was employed.
Tests with eTS were performed using the eFSLab toolbox
(Dourado et al. 2009), available online from http://eden.
dei.uc.pt/ ~ dourado. The OP-ELM Toolbox (Miche et al.
2008) was used with modifications to implement the
eF-OP-ELM. In general, default parameters were used.

5 Discussion

For the regression benchmarks, both OS-Fuzzy-ELM and
eF-OP-ELM are overall comparable or better in terms of
accuracy than DENFIS and eTS, with some exceptions,
specially for the Stocks dataset. This dataset, for which OS-
Fuzzy-ELM performs poorly, is considerably nonstationary.
If the properties of the datasets are considered, the advantages
of evolving methods over OS-Fuzzy-ELM for nonstationary
series become clear. For the Stocks dataset and for most of the
time series datasets (with exceptions for GSTA and Tree
Rings), the evolving options yield in general better results
than OS-Fuzzy-ELM. This comparison has to be interpreted
with care, and would merely confirm the capability of
evolving methods to better handle dynamical changes.
Considering the three evolving methods included in the
tables, eF-OP-ELLM achieves a NDEI in some cases better
and in general comparable to that of DENFIS and eTS.
More specifically, eF-OP-ELM is the best or second best
method in terms of NDEI for six out of the nine time series
benchmarks and nine out of the ten regression benchmarks.
In terms of computational time, all the methods provide
satisfactory results, with DENFIS being the fastest in most
cases (as an exception it is significantly slower for the Bank
dataset). Conversely, eF-OP-ELM is the slowest method in
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Table 4 Comparison in terms

. Dataset Method NDEI Std NDE Rules Time (s)
of accuracy, complexity and
computational time Abalone DENFIS 7.14e—01 5.16e—01 9 6.65e-+00
eTS 7.47¢—01 4.85¢—01 20 1.32e+01
OS-Fuzzy-ELM 7.64e—01 5.25e—01 4 9.35e+401
eF-OP-ELM 6.92¢—01 4.71e—01 23 1.34e+03
Auto-MPG DENFIS 1.40e+00 1.09e+00 41 9.80e—01
eTS 1.22e4-00 8.40e—01 23 5.10e—01
OS-Fuzzy-ELM 1.13e+-00 6.73e—01 37 7.41e+01
eF-OP-ELM 6.52e—01 4.60e—01 40 6.59e+01
Bank DENFIS 2.79e¢—01 1.81e—01 933 1.40e+-02
eTS 3.48¢—01 2.46e—01 15 1.17e+401
OS-Fuzzy-ELM 2.44e—01 1.69e—01 52 8.15e+01
eF-OP-ELM 3.30e—01 2.71e—01 16 1.54e+03
Boston Housing DENFIS 2.89e+-00 1.23e+-00 52 2.21e400
eTS 9.02e—01 8.56e—01 24 6.60e—01
OS-Fuzzy-ELM 9.60e—01 6.70e—01 8 7.72e+01
eF-OP-ELM 8.44e—01 5.67e—01 40 9.40e+01
Breast Cancer DENFIS 1.36e+4-00 8.93e—01 54 2.74e+-00
eTS 1.25e+-00 8.31e—01 14 2.80e—01
OS-Fuzzy-ELM 9.46e—01 5.62¢e—01 70 2.08e+01
eF-OP-ELM 9.34e—01 5.34e—01 16 1.81e+01
California Housing DENFIS 4.68e—01 3.67e—01 57 1.37e+01
eTS 1.45e4-00 9.17e—01 46 3.14e+01
0OS-Fuzzy-ELM 1.88e+00 9.72e—01 3 6.52e+01
eF-OP-ELM 6.67¢—01 4.84e—01 12 1.88e+4-03
Delta Ailerons DENFIS 6.30e—01 4.45¢—01 85 2.75e+01
eTS 6.23e—01 4.37e—01 1 3.82e+00
OS-Fuzzy-ELM 5.66e—01 3.93e—01 7 7.07e+01
eF-OP-ELM 8.15e—01 6.29¢—01 17 3.32e+403
Delta Elevators DENFIS 6.95¢—01 4.53e—01 214 7.70e+01
eTS 3.04e+00 2.89e+00 29 9.72e+01
OS-Fuzzy-ELM 9.14e—01 5.36e—01 5 7.30e+01
eF-OP-ELM 9.12e—01 6.33e—01 14 1.05e4-03
Regression benchmarks. The Servo DENFIS 6.50e—01 4.26e—01 64 5.60e—01
stock series is highly eTS 4.01e—01 3.13e—01 10 1.50e—01
nonstationary. The results for OS-F _ELM 3.78e—01 2.68¢—01 29 1.10e4-01
0OS-Fuzzy-ELM were obtained ezy 7oe Hoe Alet
using an initialization training ¢F-OP-ELM 3.21e—01 231e—01 45 1.89e401
sequence of (500 4+ number of
nodes) observations. For shorter Stocks DENFIS 1.31e—01 8.75e—02 19 2.20e4-00
sequences, the structure eTS 5.71e—01 4.26e—01 97 6.01e-+00
identified in the initialization 0S-Fuzzy-ELM 1.92e+00 1.70e+00 90 4.81e+01
stage is unable to yield sensible eF-OP-ELM 2.40e—01 1.73e—01 50 2.19e+02
results
most cases, with some exceptions. Nonetheless, it can be In general, eF-OP-ELM exhibits adequate responsive-

observed that both DENFIS and eTS take a much higher  ness and stability, though achieving in general a more
time for some particular cases, while the eF-OP-ELM  compact rulebase than DENFIS and eTS. As an example,
method is not affected by this problem. we show the evolution of the number of rules for the GSTA

@ Springer



54

Evolving Systems (2010) 1:43-58

Table 5 Comparison in terms

of accuracy, complexity and Dataset Method NDEI std NDE Rules Time (s)

computational time Darwin SLP DENFIS 4.84e—01 3.03e—01 38 3.34e+00
eTS 4.01e—01 2.48e—01 17 1.91e+00

OS-Fuzzy-ELM 7.87e—01 4.46e—01 7 5.69e+01

eF-OP-ELM 5.29¢—01 3.23e—01 15 3.30e+02

ENSO DENFIS 1.71e—-01 1.05e—01 16 1.34e+00
eTS 2.00e—01 1.27e—01 44 1.94e+-00

OS-Fuzzy-ELM 2.55e—01 1.74e—01 16 4.96e+01

eF-OP-ELM 2.10e—01 1.32e—01 19 1.76e+02

GSTA DENFIS 4.05e—01 2.69e—01 17 2.32e+00
eTS 3.56e—01 2.33e—01 36 2.44e+00

OS-Fuzzy-ELM 3.60e—01 2.35e—01 5 6.39e+01

eF-OP-ELM 4.09¢e—01 2.67e—01 13 3.49e+-02

Internet2 DENFIS 5.70e—01 4.64e—01 29 2.41e+00
eTS 6.54e—01 5.48e—01 47 3.92e400

0OS-Fuzzy-ELM 9.51e—01 5.65e—01 25 3.97e+01

eF-OP-ELM 6.18e—01 4.54e—01 21 3.16e+02

Mackey-Glass DENFIS 3.75e—01 2.51e—01 21 9.60e—01
eTS 3.35e—01 2.19e—01 31 8.60e—01

OS-Fuzzy-ELM 4.33e—01 2.34e—01 27 6.30e+01

eF-OP-ELM 2.38e—01 1.61e—01 50 9.97e+01

NAO DENFIS 1.17e+00 7.09e—01 187 1.16e+01
eTS 1.04e+4-00 6.05e—01 13 1.80e+00

OS-Fuzzy-ELM 1.01e—01 5.789-01 9 9.03e+-01

eF-OP-ELM 9.98e—01 5.67e—01 7 1.05e+02

Santa Fe Laser DENFIS 2.31e—01 2.00e—01 39 2.60e+01
eTS 4.61e—01 3.67e—01 52 9.10e+01

OS-Fuzzy-ELM 9.32e—01 5.70e—01 50 6.44e+01

eF-OP-ELM 4.19e—01 3.97e—01 26 6.36e+03

Sunspots DENFIS 6.18e—01 4.28e—01 37 7.25e+00
eTS 8.10e—01 5.61e—01 33 1.06e+-01

OS-Fuzzy-ELM 8.98¢—01 5.67e—01 7 6.99¢+01

eF-OP-ELM 6.30e—01 4.20e—01 30 8.88e+02

Tree Rings DENFIS 9.5%e—01 6.24e—01 119 7.53e+4-00
eTS 7.14e—01 4.57e—01 37 4.72e+00

0OS-Fuzzy-ELM 7.94e—01 5.11e—01 8 7.78e+01

eF-OP-ELM 8.41e—01 5.36e—01 20 3.48e+02

Time series benchmarks

and Tree Rings time series in Figs. 3 and 4, respectively.
The evolution of the absolute error for the same two cases
is depicted in Figs. 5 and 6, respectively. Finally, we note
that eF-OP-ELM identifies rules ranked by accuracy, which
should ease the interpretation process.

It should be noted that some of the sequences analyzed
come from highly nonstationary systems, specially in the
dynamical sense. The application cases considered include
some remarkable cases of processes where nonstationarity,
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drift points, sudden regime shifts, and transitions between
chaotic states are well documented. This is the case for
instance for the GSTA (Tsonis et al. 2007; Wu et al.
2007), Santa Fe Laser (SantaFeLaser 2010; Weigend and
Gershenfeld 1994) and Internet2 series (Internet2Observa-
tory, 2008). For example, the clear increase and sudden peak
in the number of rules that can be observed in Fig. 3 after
observation 600 for the GSTA series corresponds to the
climate shift that happened around 1910, after which global
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climate transitioned to a completely new state. A similar but
slightly effect can be observed for the climate shifts occured
around 1940 and 1970. Regarding the machine learning
benchmarks, the experiments shown consider several cases
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where temporal and spatial nonstationary behavior has been
identified (Asuncion and Newman 2010).

The constant evolution of the number of rules just reflects
the fact that the dynamical complexity of the streams is
evolving, with abrupt changes at some points. An ef-OP-
ELM model can be seen as a projection of the target dataset
on a space or basis of expansion defined by the fuzzy basis
functions (the ELM machinery). The number of FBFs
required to model the system can be seen as an indicator of its
(evolving) complexity in terms of that basis of expansion.

Let us now discuss interpretability issues in the context
of the method proposed. Automatic, data-driven identifi-
cation methods for fuzzy systems can suffer from inter-
pretability issues in general (Mikut et al. 2005; Zhou and
Gan 2008). Pruning and post-processing steps are often
required (Ramos and Dourado 2006) in order to attempt an
interpretation of results by experts. Recently, research
directions toward interpretable fuzzy rule based systems
have led to results related to the granular computing par-
adigm in data maning and machine learning (Zadeh 1997,
Pedrycz 2005; Yager 2008; Leite et al. 2009). These
research efforts lay out an approach and a number of
principles, where concepts such as proximity, similarity,
indistinguishability, specificity or functionality are central.
While the approach followed in this paper may appear in
contradiction with the cited works, it should be noted that
this paper proposes an alternative identification approach.

The fact that the antecedent parameters are generated
following a process where a random projection is involved
does not necessarily mean that the rules show a random
arrangement in the sense of meaningless. As explained in
Sect. 3, the parameters are generated within certain ranges
that are related to the distribution of the incoming data. In
fact, this approach can help discover underlying structures in
the incoming streams. Furthermore, experimental results
support the fact that the number of rules identified by
eF-OP-ELM can be in actuality comparable or significantly
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lower as compared with more traditional approaches repre-
sented by DENFIS and eTS. In addition, the fuzzy basis
functions (and consequently the fuzzy rules) are exactly
ranked by accuracy, which can be of help in the interpretation
process.

Regarding direct extensions of the eF-OP-ELM dis-
cussed here, we can mention the use of faster model
selection approaches recently proposed, as well as the
possibility of a chunk-by-chunk learning mode. Further
work is needed as well to analyze the impact of different
types of membership functions and fuzzy operators on
performance and interpretability.

6 Conclusions

An approach to the identification of evolving fuzzy infer-
ence systems based on the OP-ELM methodology has been
proposed. The approach extends OP-ELM in order to get a
fast, online evolving learning algorithm. The new method
has been shown to be competitive in terms of accuracy and
compactness. It constitutes a case of application of a ran-
dom projection method to identifying evolving fuzzy
systems.

The proposed method, eF-OP-ELM, randomly gener-
ates a set of simple antecedents of fuzzy rules, with
random structure for the antecedents and random values
for the parameters of input membership functions of
Gaussian type. Then, a generalized LARS method is used
to rank the fuzzy basis functions (or normalized fuzzy
rules) according to their accuracy. The best number of
fuzzy rules is selected by performing a fast computation
of the leave-one-out validation error based on the PRESS
statistics. Finally, the consequents parameters are deter-
mined analytically.

The method is general and can be applied in areas such
as time series prediction, process control, robotics and
autonomous systems. Its accuracy compares favorably
against other well known methods in the field of evolving

fuzzy systems, namely DENFIS and eTS, as well as the
online method OS-Fuzzy-ELM.

From the perspective of evolving systems and fuzzy
logic, the method proposed here provides an alternative
approach to identifying evolving fuzzy systems. In essence,
it has been shown that a random projection scheme such as
ELM is competitive in terms of accuracy and rulebase
compactness as compared with traditional approaches. In
particular, the model selection approach of OP-ELM pro-
vides a way to extract compact fuzzy rulebases based on
the ELM scheme. In view of these results, the random
projection approach is not only an appealing alternative but
it also seems worth being investigated further in the context
of evolving systems.
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Appendix: Incremental initialization of eF-OP-ELM

This appendix discusses an incremental procedure for the
initialization of ef-OP-ELM models. It was not included in
previous sections for clarity’s sake and may not be required
in many practical setups, as the number of samples
required for batch initialization (as explained in Sect. 3) is
small.

The incremental algorithm presented here can start with
the first data sample and continues until the minimum
initialization number of samples has been observed. More
specifically, the initialization continues until the number of
observations reaches M, the maximum number of ante-
cedent parameters generated for Hy(j). The procedure
consists of the following steps, which can replace steps 1, 2
and 3 in Algorithm 1:

Algorithm 2 Incremental Initialization of Evolving Fuzzy OP-ELM (eF-OP-ELM)

1: Create an empty ordered set of antecedent parameters (centers and radii), C' and A, and an empty matrix

of fuzzy basis functions, Ho (0).

2: For each new input-output observation, (x;,y;), with j = 1,..., M, do:

2.1: Generate a new center and radius and add them to the sets of antecedent parameters C' and A.

2.2: Add an additional column (with the newly created antecedent) and an additional row (for the newly

observed sample) to Ho (j).

2.3: Rank the fuzzy rule antecedents in H () and select the best number of rules in order to generate

H(j).

2.4: Find the analytical solution for Q(j) (as in (2)) and compute the model output, §;41.
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This way, during step 2, a total of j fuzzy basis functions
are available when j input-output samples have been
observed. That is, Hy(j) has j rows (observations) and j
columns (fuzzy basis functions), which are then subject to
ranking ans selection in the next steps. In step 2.1, the
procedure used to generate the centers and radii from a
uniform random distribution follows the same scheme as
described in Sect. 3.
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