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Abstract This paper proposes an approach to the iden-

tification of evolving fuzzy Takagi–Sugeno systems based

on the optimally pruned extreme learning machine

(OP-ELM) methodology. First, we describe ELM, a simple

yet accurate learning algorithm for training single-hidden

layer feed-forward artificial neural networks with random

hidden neurons. We then describe the OP-ELM method-

ology for building ELM models in a robust and simplified

manner suitable for evolving approaches. Based on the

previously proposed ELM method, and the OP-ELM

methodology, we propose an identification method for self-

developing or evolving neuro-fuzzy systems applicable to

regression problems. This method, evolving fuzzy opti-

mally pruned extreme learning machine (eF-OP-ELM),

follows a random projection based approach to extracting

evolving fuzzy rulebases. In this approach systems are not

only evolving but their structure is defined on the basis of

randomly generated fuzzy basis functions. A comparative

analysis of eF-OP-ELM is performed over a diverse

collection of benchmark datasets against well known

evolving neuro-fuzzy methods, namely eTS and DENFIS.

Results show that the method proposed yields compact

rulebases, is robust and competitive in terms of accuracy.

Keywords Evolving fuzzy systems � Extreme

learning machine � Optimally pruned extreme

learning machine � Evolving Takagi–Sugeno �
Regression � Time series

1 Introduction

Evolving, online or adaptive intelligent systems are meant

to be applied on sequential data or streams of data.

Evolving systems distinguish themselves from traditional,

offline learning methods and previous online or adaptive

methods in that their structure (in addition to their

parameters) gradually evolves in order to account for new

data. In general, any aspect of an evolving system,

including the learning mechanism, is subject to self-adap-

tation (Angelov et al. 2010).

The interest in self-developing artificial neural network

methods can be tracked back to some early works in the field

(Platt 1991). During the last decade there has been an

increase of interest in this field and in particular within the

area of evolving fuzzy systems for modeling, classification

and control (Angelov et al. 2008, 2010). The need for such

systems arises in a variety of contexts and successful appli-

cations can be found in areas such as process industry,

autonomous systems, intelligent agents, signal processing

and bioinformatics, among others (Kasabov 2007; Angelov

et al. 2010). Some recent advances in evolving neuro-fuzzy

systems include DENFIS (Kasabov and Song 2002), and the

more general Evolving Connectionist Systems framework

(Kasabov 2007), FLEXFIS (Lughofer 2008), and evolving

Takagi–Sugeno (eTS) (Angelov and Filev 2004b) as well as

its variants (Angelov and Filev 2005; Angelov et al. 2010).

For instance, evolving TS fuzzy systems (Angelov and

Filev 2004b) combine supervised and unsupervised

F. M. Pouzols (&) � A. Lendasse

Department of Information and Computer Science,

Aalto University School of Science and Technology,

P.O. Box 15400, 00076, Aalto, Espoo, Finland

e-mail: federico.pouzols@tkk.fi

A. Lendasse

e-mail: amaury.lendasse@tkk.fi

123

Evolving Systems (2010) 1:43–58

DOI 10.1007/s12530-010-9005-y



learning techniques to identify and evolve the TS model

structure as well as its parameters as new data become

available. This way, new rules can be added, existing rules

can be reorganized, and in general any aspect of an evolving

fuzzy inference model is subject to self-development.

Evolving fuzzy systems represent a relative recent step

beyond the paradigms of self-tuning neuro-fuzzy systems

(Moreno-Velo et al. 2007) and online neuro-fuzzy systems

(Angelov and Filev 2004b). In most situations, the evolving

approach implies the need for simple, one-pass learning

methods as opposed to traditional, iterative algorithms.

Evolving fuzzy systems are particularly useful for online

prediction and predictive control. Among other advantages,

evolving fuzzy systems provide an inherent capability for

novelty detection and an enhanced robustness against

nonstationarities.

To date, identification methods proposed for evolving

fuzzy systems rely on traditional approaches, such as

structure-oriented or, more often, cluster-oriented identifi-

cation (Angelov et al. 2010; Kasabov 2007) or hybrid

approaches. The aim of this paper is to define an alternative

approach to the identification of evolving fuzzy systems

based on the concept of random projections.

Recent results in machine learning and computational

intelligence have led to an increase of interest in methods

based on random projections (Miche et al. 2010a;

Achlioptas 2003; Fradkin and Madigan 2003). These sys-

tems have proved to be comparable to traditional approa-

ches for identification purposes (Feng et al. 2009; Miche

et al. 2010b; Liang et al. 2006; Miche et al. 2010a). This

paradigm seems specially suitable for evolving intelligent

systems for data streams, and can provide an alternative

approach to identifying evolving fuzzy systems.

This paper proposes a method for the identification of

evolving Takagi–Sugeno fuzzy inference systems (FIS)

based on the optimally pruned extreme learning machine

(OP-ELM) methodology. We leverage in three previous

developments: the ELM learning method, introduced by

Huang et al. (2006b), the OP-ELM methodology, intro-

duced by Miche et al. (2010b), and the online sequential

ELM algorithm, introduced by Liang et al. (2006) and

extended for fuzzy systems by Rong et al. (2009).

The (ELM) (Huang et al. 2006a, b) is a simple yet

effective learning algorithm for training single-hidden-

layer feed-forward artificial neural networks (SLFNs) with

random hidden nodes. ELM challenges conventional

learning methods and theories. ELM has been shown to be

accurate and fast both theoretically and experimentally.

Indeed, ELM is a remarkably fast method but can achieve a

performance in terms of generalization comparable to other

accurate yet costly learning techniques.

OP-ELM has been introduced by Miche et al. (2010b) in

order to improve the robustness of ELM models. This is

achieved through a three stages methodology which

includes steps for fast ranking of hidden neurons as well as

model selection.

Rong et al. (2009) have previously shown that SLFNs

can be regarded as equivalent to FIS. They use this

equivalence in order to derive an online sequential method

for fuzzy systems (OS-Fuzzy-ELM) based on the online

sequential ELM (Liang et al. 2006; Rong et al. 2009). Here

we introduce an evolving approach to the identification of

evolving Takagi–Sugeno fuzzy inference systems based on

the original offline OP-ELM methodology. We exploit the

equivalence between SLFNs and FIS, and bring the good

performance and robustness of the OP-ELM methodology

together with an online approach in order to define the

evolving fuzzy OP-ELM (eF-OP-ELM). This method fol-

lows a random projection based approach to extracting

evolving fuzzy rulebases. In this approach systems are not

only evolving but their structure is defined in terms of

randomly generated fuzzy basis functions.

When compared with previous ELM methods, the con-

tribution of the method proposed in this paper, eF-OP-ELM

is twofold. First, as opposed to the original proposal of

OP-ELM which is an offline method, eF-OP-ELM addresses

online learning. Second, as opposed to OS-Fuzzy-ELM,

eF-OP-ELM is a fully evolving fuzzy method where both

the structure and all the parameters of the model evolve in

an online manner. This way, we bring into the field of

evolving intelligent systems the alternative identification

approach of ELM as well as the robustness of the OP-ELM

methodology.

The paper is organized as follows. Section 2 describes

the ELM, the OP-ELM methodology and the OS-ELM

sequential learning algorithm. In Sect. 3 we introduce the

evolving fuzzy OP-ELM (eF-OP-ELM) modeling approach

for building evolving fuzzy inference systems. Then, in

Sect. 4 a comparative analysis is performed against other

well-known alternatives. Section 5 discusses results.

Finally we give some concluding remarks. Appendix

describes an incremental initialization procedure for

eF-OP-ELM.

2 Extreme learning machine

The extreme learning machine (ELM) (Huang et al. 2006a, b)

is a simple yet effective learning algorithm for training

SLFNs with random hidden nodes. In ELM, the hidden

neuron parameters are randomly assigned whereas the

output weights are analytically determined. ELM is a

unified framework of generalized SLFNs that has the uni-

versal approximation capability for a wide range of hidden

node types (see Huang et al. 2006a for a proof and dis-

cussion of the topic). The training process for ELM can be
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several orders of magnitude faster than traditional learning

algorithms for feed-forward neural networks, while

attaining comparable or even better approximation and

generalization capabilities.

Let us consider a dataset consisting of M observations

ðxj; yjÞ 2 R
d1 � R

d2 ; with d1 the dimension of the input

space and d2 the dimension of the output space. An SLFN

with N neurons in the hidden layer is defined by the fol-

lowing expression:

XN

i¼1

bif ðxj; ci; aiÞ; 1� j�M;

where f(�) is the activation function and bi 2 R are the

output weights. Let us illustrate two widely studied archi-

tectures of SLFNs: SFLNs with hidden additive nodes and

radial basis function (RBF) networks which use RBF nodes

in the hidden layer. Additive nodes have the form f ðci �
xj þ aiÞ; where ci 2 R

d1 are the input weights and ai the

biases. RBFs have the form f ðjjxj�ci

ai
jjÞ; where ci 2 R

d1 are

the centers and ai the spreads or radii of the RBF nodes.

If the SFLN perfectly fits the data, then the difference

between the estimated outputs ŷj and the actual output

values is zero and thus the following holds:

XN

i¼1

bif ðxj; ci; aiÞ ¼ yj; 1� j�M;

which can be written as:

Hb ¼ Y; ð1Þ

with

H ¼
f ðx1; c1; a1Þ f ðx1; cN ; aNÞ

..

. . .
. ..

.

f ðxM; c1; a1Þ f ðxM ; cN ; aNÞ

2

64

3

75;

b ¼ ðbT
1 ; . . .; bT

NÞ and Y ¼ ðyT
1 ; . . .; yT

MÞ
T : In the ELM

method, the hidden layer output matrix, H, is generated

in a random way, independently of the training dataset.

Then, the output weights of the SLFN, b can be determined

analytically. The estimated output weights are computed

as:

b̂ ¼ HyY; ð2Þ

where H� is the Moore–Penrose pseudoinverse (or natural

inverse) of H. For the applicable implementation methods,

usually based on singular value decomposition, refer to

(Liang et al. 2006; Huang et al. 2006b). As pointed out by

Huang (2008) the ELM theory claims that parameter tuning

is not required. This approach challenges conventional

learning methods and theories.

It has been theoretically shown that for function

approximation all the parameters of the hidden nodes can

be randomly generated without any prior knowledge. In

(Huang et al. 2006b) it is proved that the hidden layer

output matrix can be computed and achieves an approxi-

mation error as small as desired for N �M; under the

assumption that the activation function is infinitely differ-

entiable. The universal approximation capability of ELM

has been proved in (Huang et al. 2006a).

This way, ELM is a extremely fast method (Huang et al.

2006b), several orders of magnitude faster than traditional

feedforward neural networks methods while competitive in

terms of accuracy. As a final remark, for a given type of

activation function, ELM only requires the number of

neurons in the hidden layer to be specified, as opposed to

other learning methods which commonly have several

hyperparameters to be tuned.

2.1 Optimally Pruned ELM

The optimally pruned extreme learning machine

(OP-ELM) (Miche et al. 2008, 2010b; Sorjamaa et al.

2008) is a methodology based on the ELM. OP-ELM

models are built in three stages and use Gaussian, sigmoid

and linear kernels in general. First, an ELM is constructed,

then, an exact ranking of the neurons in the hidden layer is

performed, and finally the decision on how many neurons

are pruned is made based on an exact leave-one-out error

estimation method (Miche et al. 2010b; Myers 2000), as

described in the next subsections. These stages are per-

formed by means of fast methods and lead to extremely fast

yet accurate models.

ELM OP-ELM has been shown to provide a compro-

mise between the speed of ELM and the accuracy and

robustness of other much more computationally intensive

methods. OP-ELM models achieve roughly the same level

of accuracy as that of other well known computational

intelligence methods (Miche et al. 2008, 2010b), such as

Support Vector Machines (Schölkopf and Smola 2002) and

Least Squares Support Vector Machines (Suykens et al.

2002), Gaussian Processes and Multilayer Perceptrons

(Haykin 1998), while being significantly faster.

As explained above, for a given type of activation

function, only one parameter has to be tuned in order to

build accurate ELM models: the number of hidden neurons.

In principle the only feasible approaches to a sensible

tuning of the number of hidden neurons are based on the

definition of validation subsets. This is the approach used

generally in the literature (Huang et al. 2006b; Liang et al.

2006).

However, validation approaches such as cross-validation

and bootstrapping methods raise several issues. In partic-

ular, computational cost increases significantly, which is

specially troublesome for online, adaptive and possibly

real-time systems. In addition, validation methods assume

the different subsets used for training, validation and test
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are drawn from the same population. For systems that

evolve or exhibit nonstationarity, whether statistical or

dynamical, this assumption may lead to wrong models.

The OP-ELM method introduced a sound approach to

the selection of the subset of best nodes in such a way that

less relevant neurons are pruned. This brings in a funda-

mental advantage for evolving methods besides enhancing

the robustness of ELM models against irrelevant and

redundant variables (Miche et al. 2010b). In what follows

we outline the three stages of the OP-ELM methodology.

2.1.1 Construction of an initial SLFN

This step is performed using the standard ELM algorithm

for a large enough number of neurons N.1 While the ori-

ginal ELM proposal uses sigmoid kernels, and ELM

models are usually defined on the basis of a single type of

activation function or kernel, in the OP-ELM methodology

three types of kernels are used in combination for better

robustness and generality. The following types are used:

Sigmoid, Gaussian and linear. Refer to (Miche et al. 2008,

2010b) for the details about the procedure followed to

randomly initialize the parameters of these types of

functions.

2.1.2 Ranking of hidden neurons

As second step in the OP-ELM methodology, the mul-

tiresponse sparse regression (MRSR) algorithm (Similä and

Tikka 2005) is applied in order to rank the hidden neurons

according to their accuracy. MRSR is in essence a gener-

alization of the well-known least angle regression (LARS)

algorithm (Efron et al. 2004), and is thus able to find an

exact ranking for linear problems. Since in a ELM model

the output is linear with respect to the randomly initialized

hidden nodes, the MRSR ranking within the OP-ELM

methodology is exact.

The MRSR algorithm is defined as follows. For a

M 9 N regressor matrix X, each column is added one by

one to the model in successive steps of the algorithm. This

way, for step k, the model is defined as Ŷk ¼ XWk; where

Ŷk is the model output. The weight matrix, Wk has k

nonzero rows at the kth step of the MRSR algorithm. For

the full details refer to (Similä and Tikka 2005). It should

be noted that, similarly to LARS, MRSR is a variable

ranking rather than selection algorithm.

This way, the variables for the MRSR algorithm within

the OP-ELM methodology, hi (the outputs of the hidden

nodes or columns of the hidden layer output matrix, H), are

ranked exactly by their performance.

2.1.3 Model selection

Once a ranking of the kernel has been obtained the best

number of neurons for the model has to be chosen. Meth-

ods based on offline validation, such as leave-one-out are

often used for this kind of task. They can be however

extremely expensive in computational terms and quickly

become unaffordable for large datasets or online, evolving

or time constrained systems.

However, the LOO can be directly calculated for linear

models by using the PRESS (PREdiction Sum of Squares)

statistics (Myers 2000; Birattari et al. 1999), which pro-

vides a closed-form expression for the LOO error of linear

models. For OP-ELM models it is as follows:

ePRESS
i ¼ yi � hibi

1� hiPhT
i

;

where i denotes the ith hidden node, hi are the columns of

the ranked hidden layer output matrix (H), bi are the output

weights of the SLFN, and P is defined as P ¼ ðHT HÞ�1:

The optimal number of neurons can be found by esti-

mating the LOO error for different numbers of nodes

(already ranked by accuracy) and selecting the number of

neurons L such that minimizes the error:

L ¼ argmin
j2f1;...;Ng

Xj

i¼1

ePRESS
i ð3Þ

It has been shown that the ranking (previous) stage of the

OP-ELM method has two positive effects: convergence is

faster and the number of neurons required to achieve the

lowest LOO error is lower (Miche et al. 2010b).

2.2 Online sequential ELM

The original ELM method is designed for offline modeling.

However thanks to the simplicity of the computations in

the ELM method, it is possible to define efficient online

extensions for ELM. Liang et al. (2006) have proposed the

OS-ELM algorithm which we outline in this section and

will be used as a reference method for experiments in the

next sections.

The algorithm first computes a standard ELM model for

an initialization training set, with output matrix Y0, hidden

nodes matrix H0, and solution bð0Þ ¼ ðHT
0 H0Þ�1HT

0 Y0;

using the Moore–Penrose generalized inversion according

to (2). Let us define K0 ¼ HT
0 H0: Then, for each new

observation or chunk of observations the model is updated

online efficiently by means of the following recursive

expressions:

bðkþ1Þ ¼ bðkÞ þ Pkþ1HT
kþ1ðYkþ1 �Hkþ1b

ðkÞÞ; ð4Þ

Pkþ1 ¼ Pk � PkHT
kþ1ðIþHkþ1PkHT

kþ1Þ
�1Hkþ1Pk; ð5Þ

1 By default the initial number of neurons used in the OP-ELM

Toolbox (Lendasse et al. 2010; Miche et al. 2008) is 100.
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where Pkþ1 ¼ K�1
kþ1: These recursive update rules are

obtained by using the Sherman–Morrison–Woodbury for-

mula for computing the inverse of a rank-k correction of

matrices (Higham 2002). Refer to (Liang et al. 2006) for

the full details.

As a special case, when the online update of the model is

done by single data samples, (xk?1, yk?1), as opposed to

data chunks, Eqs. 4 and 5 take the following simplified

forms, respectively:

bðkþ1Þ ¼ bðkÞ þ Pkþ1hkþ1 yT
kþ1 � hT

kþ1b
ðkÞ

� �
;

Pkþ1 ¼ Pk �
PkhT

kþ1Pk

1þ hT
kþ1Pkhkþ1

;

where hkþ1 ¼ ½f ðxkþ1; c1; a1Þ. . .f ðxkþ1; cN ; aNÞ�:

3 Evolving fuzzy OP-ELM

The rules, Ri, of a Takagi–Sugeno (TS) fuzzy inference

model, applied to a certain input xj, can be generally

expressed as (Angelov and Filev 2004b):

Ri : IFðxj1 is Ai1Þ AND. . .AND ðxjd1
is Aid1

Þ;
THEN ðyj1 is bi1Þ. . .ðyjd2

is bid2
Þ;

where d1 is the dimension of the input space, d2 is the

dimension of the output space, i = 1, ..., L for a rulebase

consisting of L rules, and Aik, (k = 1, ..., d1; i = 1, ..., L)

are the fuzzy sets for the kth input variable, xjk, in the ith

rule. bik (k = 1, ..., d2; i = 1, ..., L) are crisp values, linear

combinations of the input variables in the form bik ¼
qik;0 þ qik;1xj1 þ � � � þ qik;d1

xjd1
for a first-order TS model.

For each fuzzy set, Aik, the degree of membership of a

given input xjk is specified by its corresponding member-

ship function lAik
ðxjkÞ: A nonconstant piecewise continuous

membership function f(c, a) can be considered as in (Rong

et al. 2009). This kind of function includes most common

membership functions such as Gaussian and triangular as

well as virtually all practical possibilities. The membership

function can thus be defined by any bounded nonconstant

piecewise continuous membership function as follows:

lAik
ðxjk; cik; aiÞ ¼ f ðxjk; cik; aiÞ;

where ai and cik are the parameters of the membership

function f(�) for the ith rule and the kth component of the

input vectors xj, xjk with k = 1, ..., d1.

In a fuzzy inference system of this type, the output of the

model is computed as the weighted sum of the output of each

rule, where the weights are the activation degrees of the rules.

Thus, the system output ŷj for an input xj is given as follows:

ŷj ¼
PL

i¼1 biRiðxj; ci; aiÞPL
i¼1 Riðxj; ci; aiÞ

¼
XL

i¼1

biFðxj; ; ci; aiÞ; ð6Þ

where Ri(�) denotes the activation degree of the ith rule for

input xj; bi ¼ ðbi1; . . .; bimÞ; and F(�) can be seen as a

normalized rule:

Fðxj; ci; aiÞ ¼
Riðxj; ci; aiÞPL
i¼1 Riðxj; ci; aiÞ

; ð7Þ

with Riðxj; ci; aiÞ ¼ lAi1
ðxj1; ci1; aiÞ AND . . . AND lAid1

ðxjd1
; cid1

; aiÞ:
According to the equivalence between generalized

SFLN and FIS, (Rong et al. 2009) have established the

interpretation of OS-ELM as an online fuzzy model

applicable to both regression and classification problems.

As noted in (Rong et al. 2009) F as expressed in (7) is what

can be called a fuzzy basis function (FBF) (Zeng and

Singh, 1995).

In (6) it is evident that a FIS is equivalent to a gen-

eralized SLFN, where the F(�) represent the output func-

tions of the hidden layer and the bi represent the output

weight vector. This way, the output functions of the hidden

nodes of the SLFN are equivalent to the FBFs of the FIS,

which in turn are based on the membership functions.

This equivalence is used in (Rong et al. 2009) to develop

an online method for the identification of fuzzy inference

systems of the Takagi–Sugeno type (OS-Fuzzy-ELM).

Note though that this method is online [as OS-ELM (Liang

et al. 2006)] yet not fully evolving, i.e., the system self-

tunes in an online manner but the system structure (rule-

base) is set in an initialization phase.

As a particular case of fuzzy or neuro-fuzzy system, an

evolving TS fuzzy system can be represented as a neural

network (Angelov and Filev 2004a). We show in what

follows how to extend for an online learning approach the

following two elements in the OP-ELM methodology: the

LARS-based ranking process, and the PRESS statistics-

based estimation of the LOO error.

Following the equivalence between the structure of

SFLN and FIS, the latter can be expressed in terms of the

former:

FðxjÞ ¼
XL

i¼1

biFðxj; ci; aiÞ ¼ yj; ð8Þ

for a certain number of fuzzy rules L. In the TS type

models the consequent of each fuzzy rule is a linear

equation of the input variables. If the coefficients, qik;j; k ¼
1; . . .; d2; j ¼ 1; . . .; d1; of the linear equations are arranged

in a matrix of parameters of the model for the ith rule as

follows:
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qi ¼
qi1;0 . . . qid2;0

..

. . .
. ..

.

qi1;d1
. . . qid2;d1

2
64

3
75;

for i = 1, ..., L, then bi ¼ xT
jeqi; where xje ¼ ½1; xT

j �
T

is

obtained by appending a 1 to the input vector in order

to generate a linear equation. This way, expanding bi

in (8), the output of the model can be expressed as

follows:

FðxjÞ ¼
XL

i¼1

xT
jeqiFðxj; ci; aiÞ ¼ yj; j ¼ 1; . . .;M:

The above expression in compact form is:

HQ ¼ Y;

which is a generalization of (1), with

H ¼ Hðx1; . . .; xN ; c1; . . .; cL; a1. . .; aLÞ
¼ ½xT

jeFðxj; c1; a1Þ; . . .; xT
jeFðxj; cL; aLÞ�

redefined as the hidden layer output matrix (or fuzzy basis

function output matrix) weighted by the extended input

vectors, and with Q being the output parameter matrix of

the TS model:

Q ¼
q1

..

.

qL

2

64

3

75; with qi ¼
qi1;0 . . . qid2;0

..

. . .
. ..

.

qi1;d1
. . . qid2;d1

2

64

3

75:

Since a TS FIS is equivalent to an SLFN, the ELM learning

method can be applied to a fuzzy system. Furthermore,

given that H is initialized randomly and Y is known, Q

can be computed online using the same approach as in

ELM.

In the evolving fuzzy OP-ELM (eF-OP-ELM) proposed

here, the structure of the rulebase can change as new

observations become available. Hence, the output of the TS

model can be expressed as follows:

Fðj; xjÞ ¼
XLðjÞ

i¼1

xT
ieqiðjÞf ðxj; ciðjÞ; aiðjÞÞ ¼ yj; ð9Þ

where both the parameters of the fuzzy basis functions (or

rule antecedents) and the consequent parameters evolve. In

compact form an eF-OP-ELM model can be expressed as:

HðjÞQðjÞ ¼ YðjÞ; j� 1

for xj being the last available observation of inputs. Here,

H(j) is an evolving matrix, i.e., L(j) (the number of rules or

nodes in the hidden layer of the equivalent ELM) can

evolve as well as the input membership functions [through

parameters ci(j) and ai(j)] and the consequent parameters,

qi(j). In this method the rulebase is fully evolving and thus

the hidden layer output matrix takes the following form:

HðjÞ ¼
Fðxk; c1ðjÞ; a1ðjÞÞ . . . Fðxk; cLðjÞðjÞ; aLðjÞÞ

..

. . .
. ..

.

Fðxj; c1ðjÞ; a1ðjÞÞ . . . Fðxj; cLðjÞðjÞ; aLðjÞÞ

2
64

3
75;

where 1 B k B j defines a sliding window on the incoming

data stream, L(j) is the evolving number of rules, ci(j) [ C

and ai(j) [ A are the parameters of the input membership

functions, and C and A are sets of parameters values gen-

erated randomly. Here, we consider 0-order TS models for

simplicity, and thus the xie in (9) verify xie = 1.

Note that the hidden layer output matrix can be seen as a

matrix of outputs of fuzzy basis functions. Putting all

pieces together, we can describe how the components of an

evolving TS fuzzy inference system are defined in the

eF-OP-ELM method:

• The antecedents (‘‘IF’’ part) belong to a set of

antecedents that is created randomly by generating

the sets of parameters C and A at the initialization stage.

• The number of fuzzy rules and concrete subset of rules

are selected as in the 2nd and 3rd stages of the OP-ELM

methodology.

• The corresponding consequents (‘‘THEN’’ part) are

generated analytically using the ELM method, accord-

ing to (2).

The eF-OP-ELM algorithm consists of the following

steps:
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Note that an initialization stage is considered here for

simplicity, as the initialization sequence is small enough so

as to be negligible in many applications. An incremental

learning algorithm for the initial observations can be found

in Appendix. This incremental algorithm can be seamlessly

integrated into the basic algorithm above, where it would

replace the first three steps.

This way, the fuzzy rule antecedents are ranked by

the MRSR algorithm (described in Sect. 2.1.2), whereas

the optimum number of rules is selected according to

(3), following the same scheme as the OP-ELM

methodology.

In the implementation that will be used in the next

section, C and A are sets of random centers and radii,

respectively, for Gaussian functions, and are generated

following an scheme similar to that of the offline OP-ELM

method (Miche et al. 2008, 2010b). More specifically, the

sets C and A are initially generated randomly with a uni-

form distribution. The values for the centers ci 2 C are

randomly selected from the observed data points, similarly

as in (Poggio and Girosi, 1989). The radii, ai 2 A are

randomly drawn in the range between percentiles 20% and

80% of the distance distribution of the input space, as

proposed in (Schölkopf and Smola, 2002) and assessed for

OP-ELM models in (Miche et al. 2010b).

To accommodate for new data, the following update

procedure is applied on the sets of antecedent parameters.

For each new observation, xj, a new center and radius are

generated. The center is defined by the new observation,

whereas the radius is generated randomly within the

updated input distance distribution, according to the

scheme described above. The corresponding new fuzzy

basis function replaces the worst ranked basis function in

H0(j).

The rulebases of eF-OP-ELM models are evolved in

step 4.1 by adding new rows and possibly removing old

rows, generating H0(j), and then ranking and selecting the

best number of rules in order to compute H(j). In the initial

matrix, H0(j), which can be seen as a pool of potentially

useful fuzzy basis functions, a maximum set of rules is

defined, then the best subset of rules is dynamically

selected. The number of columns of H0(j) is given by the

cardinality of the sets of parameters C and A, N. In practice,

N does not need to be high. In the next section N = 50 is

used for the reported experiments.

Thus, the size of the initialization sequence can be set to

a small value, M C N. In this paper, M = N = 50. Note

that the cardinality of the parameters set, N, imposes a

ceiling on the maximum number of fuzzy rules that can be

identified in practice. In addition, ranking and selection of

rules can be effectively performed with a reduced subset of

recent values. In this paper, the maximum length of the

sequence of inputs used for the ranking stage, i.e., the

maximum number of rows of the H0(j) and H(j) matrices is

500, and thus j - k ? 1 B 500. The product T-norm is

used for conjunction operations as well as product infer-

ence of rules. The fuzzy mean method is used for

defuzzification.

4 Experimental results

For our experiments, two well known methods in the field

of evolving fuzzy systems are taken as reference: DENFIS

and eTS. DENFIS (Dynamic evolving neural-fuzzy

inference system) (Kasabov and Song 2002)). is one

implementation of the more general ECOS (Evolving

Connectionist Systems) framework (Kasabov 2007). eTS

(Angelov and Filev 2004b) was applied using global

parameter estimation with a recursive least squares filter

(RLS), and the default parameters of the implementation

used, detailed later on in this section. For both DENFIS and

eTS, first-order TS systems were built. In addition,

OS-Fuzzy-ELM is considered as a reference. Note though

that while it is an online method it is not fully evolving, as

detailed in previous sections.

We compare these methods against eF-OP-ELM, the

method proposed in this paper which is implemented as

described in previous sections, with a maximum number of

rules of 50. Even though the standard OP-ELM uses three

different kinds of kernels, here we only use kernels of

Gaussian type for simplicity’s sake.

For OS-Fuzzy-ELM the same validation approach

originally proposed in Rong et al. (2009) is used. The

initial training data is randomly split into two nonover-

lapping subsets for training (75%) and validation (25%).

The optimal number of rules is selected such that the val-

idation error is minimized. Different numbers of rules are

evaluated, with the number increasing by 1 in the range

[1, 100]. Within this range and for each case, the average

cross-validation error for 25 trials is computed. The block

size is set to 1. Finally, the OS-Fuzzy-ELM with the lowest

average cross-validation error is selected. We should note

however that this approach may require a high computa-

tional effort in the context of evolving systems. In general,

the length of the initialization training subsequence is set to

(50 ? number of rules).

The main characteristics of the datasets used are shown

in Table 1. The datasets were chosen in order to find a

compromise between the following objectives: (a) easing

comparison with the related literature, and (b) selecting

datasets for a broad range of characteristics (variables, size,

dynamical behavior, etc.). In particular, some datasets

represent clearly nonstationary processes, while some

others lie in the domain of regression problems where

nonstationarity is not relevant in all cases.
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The first ten datasets are well known regression prob-

lems in the field of machine learning. These datasets are

benchmarks from the UCI Machine Learning Repository

(Asuncion and Newman 2010) or the StatLib repository

(StatLib 2010), and can be also found online from http://

www.liaad.up.pt/*ltorgo/Regression/DataSets.htm. These

are included in order to analyze general regression prob-

lems and ease comparison with the literature on related

ELM based methods (Miche et al. 2010b; Rong et al. 2009;

Liang et al. 2006).

The last nine datasets correspond to diverse time series

applications. The Darwin SLP time series consists of

monthly values of the Darwin Sea sea level pressure (SLP)

for the years 1882–1998. The dataset can be found at the

Time Series Data Library (Hyndman 2010). The SLP for

the next month, y(t ? 1) has to be predicted using five

known values from the past, y(t - 11), y(t - 6), y(t - 3),

y(t - 2), and y(t - 1). The ENSO series is the data set from

the ESTSP 2007 time series prediction competition

(ESTSP07 2010). This dataset consists of 875 samples of

temperatures of the El Niño-Southern Oscillation phenome-

non. y(t ? 1) has to be predicted using y(t), y(t - 2), and

y(t - 7) as inputs.

The global surface temperature anomaly (GSTA) time

series consists of monthly global (land and ocean com-

bined) temperature anomaly indexes, as provided by the

National Climatic Data Center of the National Oceanic and

Atmospheric Administration, available online at http://

www.ncdc.noaa.gov/oa/climate/research/anomalies. This

data set is generated from anomalies on a 5� 9 5� grid

across Earth’s land and ocean surfaces. Temperature

anomalies are defined as deviations from the average on the

1901–2000 period. The time series consists of 1560 values,

spanning from January 1880 through December 2009. In

this case the problem is defined as that of predicting

y(t ? 1) (anomaly for next month) as a function of

y(t), y(t - 1), y(t - 2) and y(t - 6). As an example, the

GSTA series is depicted in Fig. 1.

The Internet2 time series represents the total amount of

aggregated incoming traffic in the routers of the Abilene

network, the Internet2 backbone. The series consists of

1,458 daily averages from the 4 January 2003 through the

31 December 2006. The data are available from the Abi-

lene Observatory (Internet2Observatory 2008). y(t ? 7)

(next week) has to be predicted using y(t), y(t - 2), y(t - 4),

and y(t - 11).

Mackey–Glass is a well-known example of chaotic

system (Mackey and Glass 1977) that can describe a

complex physiological process. Here we included a syn-

thetic instance for comparison purposes (Angelov and Filev

2004b; Kasabov and Song 2002). The dataset is generated

using the 4th order Runge-Kutta method with time step 0.1

s for the following differential equation:

_xðtÞ ¼ 0:2xðt � sÞ
1þ x10ðt � sÞ � 0:1xðtÞ:

The initial conditions and delay parameter are xð0Þ ¼
1:2; xðtÞ ¼ 0 for t\0; s ¼ 17; and the value of the series

85 steps ahead (x(t ? 85)) has to be modeled based on 4

inputs: x(t), x(t - 6), x(t - 12) and x(t - 18). Refer to

(Kasabov and Song 2002) for the full details required to

generate the dataset. In order to replicate the subseries of

500 values used in (Angelov and Filev 2004b), the values

selected for prediction (shown in Fig. 2) lie in the range

x(443.2), ..., x(493.1).
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Fig. 1 GSTA time series: 1,560 monthly temperature anomaly values

Table 1 Datasets: number of inputs, training observations and test

observations

Dataset # Inputs Training length Test length

Abalone 8 2,784 1,393

Auto-MPG 7 258 134

Bank 8 3,000 1,500

Boston Housing 13 337 317

Breast Cancer 32 129 65

California Housing 8 13,760 6,880

Delta Ailerons 5 4,752 2,377

Delta Elevators 6 6,344 3,173

Servo 4 111 56

Stocks 9 633 317

Darwin SLP 5 904 467

ENSO 3 465 400

GSTA 4 1,028 520

Internet2 4 708 730

Mackey-Glass 4 500 –

NAO 7 1,146 572

Santa Fe Laser 3 988 9,093

Sunspots 7 2,085 1,000

Tree Rings 8 1,013 511

The first ten datasets are machine learning benchmarks for regression

problems while the last nine datasets correspond to time series
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The NAO time series corresponds to the North Atlantic

Oscillation index (Hurrell and Deser 2009) as provided by

the Climate Analysis Section, NCAR, Boulder, available

on line at http://www.cgd.ucar.edu/cas/jhurrell/indices.

html. The series describes the temporal evolution of the

NAO phenomenon, which plays a key role in the dynamics

of the Northern Hemisphere climate. Monthly indices are

defined from January 1865 through August 2009. The next

month’s index, y(t ? 1) has to be predicted based on seven

inputs representative of previous seasons within a year and

a half: y(t), y(t - 1), y(t - 3), y(t - 5), y(t - 7), y(t - 12),

and y(t - 14).

The Santa Fe Laser dataset of the Santa Fe time series

competition (SantaFeLaser 2010; Weigend and Gershen-

feld 1994). represents the intensity of a far-infrared-laser in

a chaotic state, measured in a physics laboratory experi-

ment. The series is a cross-cut through periodic to chaotic

pulsations of the laser, and can be closely modeled ana-

lytically (Weigend and Gershenfeld 1994). This series is a

remarkable example of noise-free complicated behavior in

a clean, stationary, low-dimensional physical system for

which the underlying dynamics is well understood. In this

case, the next value, y(t ? 1) has to be modeled based on

three inputs: y(t), y(t - 1), y(t - 2) and y(t - 12). This

subset of inputs is optimal for a maximum regressor size of

12 (Montesino Pouzols et al. 2010).

We also analyzed the series of monthly averaged sun-

spot numbers covering from January 1749 through

December 2007, as provided by the National Geographical

Data Center from the US National Oceanic and Atmo-

spheric Administration.2 Given the yearly periodicity of the

series, a maximum regressor size of 12 was defined.

y(t ? 12) (next year) has to be predicted using y(t), y(t - 1),

y(t - 2), y(t - 3), y(t - 4), y(t - 8) and y(t - 10).

Finally, the series of tree rings contains yearly measures

of tree rings widths in dimensionless units. This series was

measured in Argentina for the 441–1974 period and cor-

responds to the arge030 dataset of the Time Series Data

Library (Hyndman 2010). In this case, y(t ? 1) (width for

the next year) has to be predicted using the 10 previous

values y(t - 9), ..., y(t), except y(t - 4) and y(t - 6).

Further descriptions of these datasets and other details to

reproduce results for the time series datasets can be found

in the literature (Montesino Pouzols et al. 2008a, b, 2010).

In Table 1 training and tests subsets are distinguished.

Note that the training set is in fact a sequence and is defined

as the sequence of values beginning at the first observation,

while the test set is defined as the sequence of last obser-

vations. This way, training and out-of-sample or test errors

for offline methods can be analyzed while accounting for the

evolution in time of the datasets and its effects on models.

Training and test errors for offline modeling for OP-ELM

and DENFIS (in offline mode) are listed in Tables 2 and 3,

for the regression and time series benchmarks, respectively.

The tables also show the number of hidden nodes or fuzzy

rules identified as well as the time required.

2 The series is available online from http://www.ngdc.noaa.gov/

stp/SOLAR/. The International Sunspot Number is produced by the

Solar Influence Data Analysis Center (SIDC) at the Royal Observa-

tory of Belgium (Van der Linden and the SIDC Team 2008).

Table 2 Offline modeling errors for training and test subsets

Dataset Method Training

NDEI

Test

NDEI

Rules Time

(s)

Abalone DENFIS 3.21e?00 3.89e?00 20 9.20e?00

OP-ELM 6.33e-01 6.91e-01 58 9.83e?00

Auto-MPG DENFIS 1.44e?00 1.97e?00 31 1.24e?00

OP-ELM 2.90e-01 6.30e-01 32 9.00e-01

Bank DENFIS 1.04e?00 1.09e?00 730 1.48e?02

OP-ELM 2.09e-01 2.18e-01 103 1.34e?01

Boston

Housing

DENFIS 1.97e?00 2.47e?00 59 2.26e?00

OP-ELM 2.13e-01 6.62e?00 88 2.45e?00

Breast

Cancer

DENFIS 3.32e-01 3.93e?00 40 2.27e?00

OP-ELM 7.61e-01 2.17e?00 16 1.94e?00

California

Housing

DENFIS 5.29e-01 6.47e-01 61 1.21e?02

OP-ELM 5.04e-01 6.43e-01 103 4.18e?01

Delta

Ailerons

DENFIS 5.32e-01 5.37e-01 87 4.56e?01

OP-ELM 5.36e-01 5.42e-01 90 2.45e?01

Delta

Elevators

DENFIS 5.94e-01 5.94e-01 202 1.36e?02

OP-ELM 5.96e-01 5.92e-01 101 2.84e?01

Servo DENFIS 4.36e-01 5.22e-01 47 1.03e?00

OP-ELM 3.83e-01 4.60e-01 19 5.80e-01

Stocks DENFIS 8.12e-02 2.09e?00 19 1.78e?00

OP-ELM 7.73e-02 2.51e?00 109 2.62e?00

Regression benchmarks
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Fig. 2 Mackey–Glass time series: 500 samples to be predicted
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These results are intended to give an approximate esti-

mation of the errors that can be achieved using some related

offline methods and is not meant to be exhaustive. It should

be noted that we provide training and test errors so that the

results shown in this paper can be compared with the liter-

ature on online methods, such as Liang et al. 2006 and Rong

et al. 2006. We focus our analysis however on the evolving

modeling of the datasets, where the datasets are modeled

sequentially as a whole and no distinction is made between

training, validation and test subsets.

Errors are given as nondimensional error index (NDEI):

The root mean square error (RMSE) divided by the stan-

dard deviation of the target sequence. That is,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

j¼1

ðyj � ŷjÞ2
vuut ; NDEI ¼ RMSE

stdðyjÞ
;

where M is the total number of samples, ŷj is the target

output, ŷj the model output, and stdðyjÞ is the sample

standard deviation of the target output. The NDEI is used

in order to ease comparison with previous results in the

literature of evolving systems, such as (Angelov and Filev

2004b; Kasabov and Song 2002). Note however that other

references dealing with the ELM related methods applied

in this paper use different error measures, such as the

RMSE for the dataset normalized in the range [0, 1], as in

(Rong et al. 2006; Liang et al. 2006; Rong et al. 2009), or

the absolute MSE (Miche et al. 2010b).

Considering now online and evolving methods, Tables 4

and 5 show the NDEI, the standard deviation of the non-

dimensional errors (NDE), the final number of rules and the

time required for online training. The time column shows

the processor time consumed for the learning process on

the same environment. The lowest NDEI values achieved

by the evolving methods for each dataset are highlighted in

bold face. For this study, we employed a standard PC with

8 GB of RAM, and an Intel� CoreTM 2 Quad CPU Q9550

supporting a maximum frequency of 2.83 GHz, running

Matlab R2009b on the GNU/Linux operating system. Tests

were run with no significative competing load.

Finally, we specify some implementation details for the

sake of reproducibility. For DENFIS we used the imple-

mentation available from the Knowledge Engineering and

Discovery Research Institute (KEDRI) (http://www.aut.

ac.nz/research/research-institutes/kedri/books). For OS-ELM

the implementation by Huang et al. available from

http://www3.ntu.edu.sg/home/egbhuang/ was employed.

Tests with eTS were performed using the eFSLab toolbox

(Dourado et al. 2009), available online from http://eden.

dei.uc.pt/*dourado. The OP-ELM Toolbox (Miche et al.

2008) was used with modifications to implement the

eF-OP-ELM. In general, default parameters were used.

5 Discussion

For the regression benchmarks, both OS-Fuzzy-ELM and

eF-OP-ELM are overall comparable or better in terms of

accuracy than DENFIS and eTS, with some exceptions,

specially for the Stocks dataset. This dataset, for which OS-

Fuzzy-ELM performs poorly, is considerably nonstationary.

If the properties of the datasets are considered, the advantages

of evolving methods over OS-Fuzzy-ELM for nonstationary

series become clear. For the Stocks dataset and for most of the

time series datasets (with exceptions for GSTA and Tree

Rings), the evolving options yield in general better results

than OS-Fuzzy-ELM. This comparison has to be interpreted

with care, and would merely confirm the capability of

evolving methods to better handle dynamical changes.

Considering the three evolving methods included in the

tables, eF-OP-ELM achieves a NDEI in some cases better

and in general comparable to that of DENFIS and eTS.

More specifically, eF-OP-ELM is the best or second best

method in terms of NDEI for six out of the nine time series

benchmarks and nine out of the ten regression benchmarks.

In terms of computational time, all the methods provide

satisfactory results, with DENFIS being the fastest in most

cases (as an exception it is significantly slower for the Bank

dataset). Conversely, eF-OP-ELM is the slowest method in

Table 3 Offline modeling errors for training and test subsets

Dataset Method Training

NDEI

Test

NDEI

Rules Time

(s)

Darwin SLP DENFIS 3.88e-01 4.34e-01 34 2.50e?00

OP-ELM 3.90e-01 4.39e-01 40 3.45e?00

ENSO DENFIS 1.41e-01 1.73e-01 13 9.10e-01

OP-ELM 1.41e-01 1.76e-01 18 1.20e?00

GSTA DENFIS 5.20e-01 5.49e-01 24 2.40e?00

OP-ELM 5.18e-01 5.27e-01 14 4.14e?00

Internet2 DENFIS 5.85e-01 9.00e-01 27 1.64e?00

OP-ELM 5.74e-01 8.62e-01 49 2.34e?00

NAO DENFIS 8.98e-01 1.11e?00 161 1.09e?01

OP-ELM 9.66e-01 1.01e-01 27 3.55e?00

Santa Fe Laser DENFIS 2.34e-01 2.34e-01 25 2.17e?00

OP-ELM 1.14e-01 1.30e-01 63 2.70e?00

Sunspots DENFIS 6.21e-01 6.55e-01 32 7.56e?00

OP-ELM 6.10e-01 6.09e-01 47 8.43e?00

Tree Rings DENFIS 7.03e-01 8.31e-01 102 9.74e?00

OP-ELM 7.75e-01 7.72e-01 7 3.29e?00

Time series benchmarks
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most cases, with some exceptions. Nonetheless, it can be

observed that both DENFIS and eTS take a much higher

time for some particular cases, while the eF-OP-ELM

method is not affected by this problem.

In general, eF-OP-ELM exhibits adequate responsive-

ness and stability, though achieving in general a more

compact rulebase than DENFIS and eTS. As an example,

we show the evolution of the number of rules for the GSTA

Table 4 Comparison in terms

of accuracy, complexity and

computational time

Regression benchmarks. The

stock series is highly

nonstationary. The results for

OS-Fuzzy-ELM were obtained

using an initialization training

sequence of (500 ? number of

nodes) observations. For shorter

sequences, the structure

identified in the initialization

stage is unable to yield sensible

results

Dataset Method NDEI Std NDE Rules Time (s)

Abalone DENFIS 7.14e-01 5.16e-01 9 6.65e?00

eTS 7.47e-01 4.85e-01 20 1.32e?01

OS-Fuzzy-ELM 7.64e-01 5.25e-01 4 9.35e?01

eF-OP-ELM 6.92e201 4.71e-01 23 1.34e?03

Auto-MPG DENFIS 1.40e?00 1.09e?00 41 9.80e-01

eTS 1.22e?00 8.40e-01 23 5.10e-01

OS-Fuzzy-ELM 1.13e?00 6.73e-01 37 7.41e?01

eF-OP-ELM 6.52e201 4.60e-01 40 6.59e?01

Bank DENFIS 2.79e201 1.81e-01 933 1.40e?02

eTS 3.48e-01 2.46e-01 15 1.17e?01

OS-Fuzzy-ELM 2.44e-01 1.69e-01 52 8.15e?01

eF-OP-ELM 3.30e-01 2.71e-01 16 1.54e?03

Boston Housing DENFIS 2.89e?00 1.23e?00 52 2.21e?00

eTS 9.02e-01 8.56e-01 24 6.60e-01

OS-Fuzzy-ELM 9.60e-01 6.70e-01 8 7.72e?01

eF-OP-ELM 8.44e201 5.67e-01 40 9.40e?01

Breast Cancer DENFIS 1.36e?00 8.93e-01 54 2.74e?00

eTS 1.25e?00 8.31e-01 14 2.80e-01

OS-Fuzzy-ELM 9.46e-01 5.62e-01 70 2.08e?01

eF-OP-ELM 9.34e201 5.34e-01 16 1.81e?01

California Housing DENFIS 4.68e201 3.67e-01 57 1.37e?01

eTS 1.45e?00 9.17e-01 46 3.14e?01

OS-Fuzzy-ELM 1.88e?00 9.72e-01 3 6.52e?01

eF-OP-ELM 6.67e-01 4.84e-01 12 1.88e?03

Delta Ailerons DENFIS 6.30e-01 4.45e-01 85 2.75e?01

eTS 6.23e201 4.37e-01 1 3.82e?00

OS-Fuzzy-ELM 5.66e-01 3.93e-01 7 7.07e?01

eF-OP-ELM 8.15e-01 6.29e-01 17 3.32e?03

Delta Elevators DENFIS 6.95e201 4.53e-01 214 7.70e?01

eTS 3.04e?00 2.89e?00 29 9.72e?01

OS-Fuzzy-ELM 9.14e-01 5.36e-01 5 7.30e?01

eF-OP-ELM 9.12e-01 6.33e-01 14 1.05e?03

Servo DENFIS 6.50e-01 4.26e-01 64 5.60e-01

eTS 4.01e-01 3.13e-01 10 1.50e-01

OS-Fuzzy-ELM 3.78e-01 2.68e-01 29 1.10e?01

eF-OP-ELM 3.21e201 2.31e-01 45 1.89e?01

Stocks DENFIS 1.31e201 8.75e-02 19 2.20e?00

eTS 5.71e-01 4.26e-01 97 6.01e?00

OS-Fuzzy-ELM 1.92e?00 1.70e?00 90 4.81e?01

eF-OP-ELM 2.40e-01 1.73e-01 50 2.19e?02
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and Tree Rings time series in Figs. 3 and 4, respectively.

The evolution of the absolute error for the same two cases

is depicted in Figs. 5 and 6, respectively. Finally, we note

that eF-OP-ELM identifies rules ranked by accuracy, which

should ease the interpretation process.

It should be noted that some of the sequences analyzed

come from highly nonstationary systems, specially in the

dynamical sense. The application cases considered include

some remarkable cases of processes where nonstationarity,

drift points, sudden regime shifts, and transitions between

chaotic states are well documented. This is the case for

instance for the GSTA (Tsonis et al. 2007; Wu et al.

2007), Santa Fe Laser (SantaFeLaser 2010; Weigend and

Gershenfeld 1994) and Internet2 series (Internet2Observa-

tory, 2008). For example, the clear increase and sudden peak

in the number of rules that can be observed in Fig. 3 after

observation 600 for the GSTA series corresponds to the

climate shift that happened around 1910, after which global

Table 5 Comparison in terms

of accuracy, complexity and

computational time

Time series benchmarks

Dataset Method NDEI std NDE Rules Time (s)

Darwin SLP DENFIS 4.84e-01 3.03e-01 38 3.34e?00

eTS 4.01e201 2.48e-01 17 1.91e?00

OS-Fuzzy-ELM 7.87e-01 4.46e-01 7 5.69e?01

eF-OP-ELM 5.29e-01 3.23e-01 15 3.30e?02

ENSO DENFIS 1.71e201 1.05e-01 16 1.34e?00

eTS 2.00e-01 1.27e-01 44 1.94e?00

OS-Fuzzy-ELM 2.55e-01 1.74e-01 16 4.96e?01

eF-OP-ELM 2.10e-01 1.32e-01 19 1.76e?02

GSTA DENFIS 4.05e-01 2.69e-01 17 2.32e?00

eTS 3.56e201 2.33e-01 36 2.44e?00

OS-Fuzzy-ELM 3.60e-01 2.35e-01 5 6.39e?01

eF-OP-ELM 4.09e-01 2.67e-01 13 3.49e?02

Internet2 DENFIS 5.70e201 4.64e-01 29 2.41e?00

eTS 6.54e-01 5.48e-01 47 3.92e?00

OS-Fuzzy-ELM 9.51e-01 5.65e-01 25 3.97e?01

eF-OP-ELM 6.18e-01 4.54e-01 21 3.16e?02

Mackey–Glass DENFIS 3.75e-01 2.51e-01 21 9.60e-01

eTS 3.35e-01 2.19e-01 31 8.60e-01

OS-Fuzzy-ELM 4.33e-01 2.34e-01 27 6.30e?01

eF-OP-ELM 2.38e201 1.61e-01 50 9.97e?01

NAO DENFIS 1.17e?00 7.09e-01 187 1.16e?01

eTS 1.04e?00 6.05e-01 13 1.80e?00

OS-Fuzzy-ELM 1.01e-01 5.789-01 9 9.03e?01

eF-OP-ELM 9.98e201 5.67e-01 7 1.05e?02

Santa Fe Laser DENFIS 2.31e201 2.00e-01 39 2.60e?01

eTS 4.61e-01 3.67e-01 52 9.10e?01

OS-Fuzzy-ELM 9.32e-01 5.70e-01 50 6.44e?01

eF-OP-ELM 4.19e-01 3.97e-01 26 6.36e?03

Sunspots DENFIS 6.18e201 4.28e-01 37 7.25e?00

eTS 8.10e-01 5.61e-01 33 1.06e?01

OS-Fuzzy-ELM 8.98e-01 5.67e-01 7 6.99e?01

eF-OP-ELM 6.30e-01 4.20e-01 30 8.88e?02

Tree Rings DENFIS 9.59e-01 6.24e-01 119 7.53e?00

eTS 7.14e201 4.57e-01 37 4.72e?00

OS-Fuzzy-ELM 7.94e-01 5.11e-01 8 7.78e?01

eF-OP-ELM 8.41e-01 5.36e-01 20 3.48e?02
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climate transitioned to a completely new state. A similar but

slightly effect can be observed for the climate shifts occured

around 1940 and 1970. Regarding the machine learning

benchmarks, the experiments shown consider several cases

where temporal and spatial nonstationary behavior has been

identified (Asuncion and Newman 2010).

The constant evolution of the number of rules just reflects

the fact that the dynamical complexity of the streams is

evolving, with abrupt changes at some points. An ef-OP-

ELM model can be seen as a projection of the target dataset

on a space or basis of expansion defined by the fuzzy basis

functions (the ELM machinery). The number of FBFs

required to model the system can be seen as an indicator of its

(evolving) complexity in terms of that basis of expansion.

Let us now discuss interpretability issues in the context

of the method proposed. Automatic, data-driven identifi-

cation methods for fuzzy systems can suffer from inter-

pretability issues in general (Mikut et al. 2005; Zhou and

Gan 2008). Pruning and post-processing steps are often

required (Ramos and Dourado 2006) in order to attempt an

interpretation of results by experts. Recently, research

directions toward interpretable fuzzy rule based systems

have led to results related to the granular computing par-

adigm in data maning and machine learning (Zadeh 1997;

Pedrycz 2005; Yager 2008; Leite et al. 2009). These

research efforts lay out an approach and a number of

principles, where concepts such as proximity, similarity,

indistinguishability, specificity or functionality are central.

While the approach followed in this paper may appear in

contradiction with the cited works, it should be noted that

this paper proposes an alternative identification approach.

The fact that the antecedent parameters are generated

following a process where a random projection is involved

does not necessarily mean that the rules show a random

arrangement in the sense of meaningless. As explained in

Sect. 3, the parameters are generated within certain ranges

that are related to the distribution of the incoming data. In

fact, this approach can help discover underlying structures in

the incoming streams. Furthermore, experimental results

support the fact that the number of rules identified by

eF-OP-ELM can be in actuality comparable or significantly
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lower as compared with more traditional approaches repre-

sented by DENFIS and eTS. In addition, the fuzzy basis

functions (and consequently the fuzzy rules) are exactly

ranked by accuracy, which can be of help in the interpretation

process.

Regarding direct extensions of the eF-OP-ELM dis-

cussed here, we can mention the use of faster model

selection approaches recently proposed, as well as the

possibility of a chunk-by-chunk learning mode. Further

work is needed as well to analyze the impact of different

types of membership functions and fuzzy operators on

performance and interpretability.

6 Conclusions

An approach to the identification of evolving fuzzy infer-

ence systems based on the OP-ELM methodology has been

proposed. The approach extends OP-ELM in order to get a

fast, online evolving learning algorithm. The new method

has been shown to be competitive in terms of accuracy and

compactness. It constitutes a case of application of a ran-

dom projection method to identifying evolving fuzzy

systems.

The proposed method, eF-OP-ELM, randomly gener-

ates a set of simple antecedents of fuzzy rules, with

random structure for the antecedents and random values

for the parameters of input membership functions of

Gaussian type. Then, a generalized LARS method is used

to rank the fuzzy basis functions (or normalized fuzzy

rules) according to their accuracy. The best number of

fuzzy rules is selected by performing a fast computation

of the leave-one-out validation error based on the PRESS

statistics. Finally, the consequents parameters are deter-

mined analytically.

The method is general and can be applied in areas such

as time series prediction, process control, robotics and

autonomous systems. Its accuracy compares favorably

against other well known methods in the field of evolving

fuzzy systems, namely DENFIS and eTS, as well as the

online method OS-Fuzzy-ELM.

From the perspective of evolving systems and fuzzy

logic, the method proposed here provides an alternative

approach to identifying evolving fuzzy systems. In essence,

it has been shown that a random projection scheme such as

ELM is competitive in terms of accuracy and rulebase

compactness as compared with traditional approaches. In

particular, the model selection approach of OP-ELM pro-

vides a way to extract compact fuzzy rulebases based on

the ELM scheme. In view of these results, the random

projection approach is not only an appealing alternative but

it also seems worth being investigated further in the context

of evolving systems.
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Appendix: Incremental initialization of eF-OP-ELM

This appendix discusses an incremental procedure for the

initialization of ef-OP-ELM models. It was not included in

previous sections for clarity’s sake and may not be required

in many practical setups, as the number of samples

required for batch initialization (as explained in Sect. 3) is

small.

The incremental algorithm presented here can start with

the first data sample and continues until the minimum

initialization number of samples has been observed. More

specifically, the initialization continues until the number of

observations reaches M, the maximum number of ante-

cedent parameters generated for H0(j). The procedure

consists of the following steps, which can replace steps 1, 2

and 3 in Algorithm 1:
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This way, during step 2, a total of j fuzzy basis functions

are available when j input-output samples have been

observed. That is, H0(j) has j rows (observations) and j

columns (fuzzy basis functions), which are then subject to

ranking ans selection in the next steps. In step 2.1, the

procedure used to generate the centers and radii from a

uniform random distribution follows the same scheme as

described in Sect. 3.
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