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Chapter 1Introdu
tionData are nowadays ubiquitous and plentiful, due to the fa
t that they havebe
ome rather easy to measure, a
quire and store. The data originate fromvarious sour
es (sensors, 
ameras, studies) and 
an be represented in varietyof forms (image, sound, text, table, graph). Stored data are then used forpattern extra
tion, rule extra
tion, 
lassi�
ation, visualization, predi
tion,and other ma
hine learning tasks. In other words, the data are used togain information and knowledge in order to make de
isions. Sin
e it hasbe
ome so easy to obtain data, the resulting data sets are in most of the 
aseshigh dimensional, where dimensionality refers to the number of measuredattributes, also 
alled features or variables. Large number of dimensions
hara
terizes following data: images, where attributes are pixels' RGB values;text do
uments in whi
h features are the words themselves; sound data;spe
tral data, where ea
h attribute 
orresponds to di�erent wavelengths oflight. However, high-dimensional data exhibit 
ounter-intuitive propertiesthat are understandable in low-dimensional spa
es. In fa
t, these propertiesare 
ommonly known as 
urse of dimensionality [7, 8℄. One of the e�e
ts ofthe 
urse is the need for exponential number of samples when the dimensionof data in
reases. This sparsity of samples in su
h 
ases often leads to poorgeneralization performan
e of all learning models.Nevertheless, the severity of this problem 
an be de
reased via variable se-le
tion, also 
alled feature sele
tion. Variable sele
tion 
onsist of 
hoosingthe relevant attributes in order to improve the predi
tion a

ura
y of themodel. As a result, model trained with relevant set of variables will be ableto outperform model trained with all input variables. Variable sele
tion hastwo independent 
omponents: relevan
e 
riterion and sear
h pro
edure. Therelevan
e 
riterion measures the quality of 
ertain subset of variables with1



CHAPTER 1. INTRODUCTION 2respe
t to the predi
tion a

ura
y, while the sear
h pro
edure 
ontrols whi
hsubsets are to be examined in the up
oming iterations of the sear
h.The 
hoi
e of good relevan
e 
riterion will depend on the data set and on thetype of problem at hand: regression or 
lassi�
ation. Criteria mainly usedin ma
hine learning 
ommunity are 
orrelation, mutual information, noisevarian
e estimation, statisti
al tests. The fo
us of the thesis is on regressionproblems, with spe
ial treatment on time series predi
tion. For regressionpurposes, noise varian
e estimators give a reliable measure of how a

uratemodels 
an be trained with available data. Re
ently, it has been shown thatone su
h estimator, Delta Test, is a useful tool in de
iding between relevantand irrelevant variables [9℄. Delta Test is a nonparametri
 noise varian
eestimator that is based on nearest neighbor prin
iple and is the foundationfor variable pro
essing throughout the thesis.Considering sear
h pro
edures, the 
ommonly employed are Forward Sele
-tion, Ba
kward Pruning and Forward-Ba
kward Sele
tion [10, 11, 12℄. Al-though simple, fast, and easy to implement, these pro
edures do not ne
es-sarily return an optimal solution, known as lo
al minima problem. More-over, it is infeasible to evaluate all possible subsets of input variables inhigh-dimensional spa
es, and greedy pro
edures examine only small portionof whole solution spa
e. Sear
h pro
edure should be designed to examinethe solution spa
e on a global s
ale as well, not just lo
ally as is the 
asewith greedy ones. Popular alternatives involve algorithms from di�erent do-mains of optimization, su
h as Evolutionary Computation (Geneti
 Algo-rithm [13℄, Di�erential Evolution [14℄), Swarm Intelligen
e (Parti
le SwarmOptimization [15℄, Ant Colony Optimization [16℄), and other meta-heuristi
approa
hes (Tabu Sear
h [17℄, GRASP [18, 19℄). In this thesis, we examinethe optimization 
apabilities of two su
h algorithms in variable sele
tion do-main: Tabu Sear
h and Geneti
 Algorithm, and show the improvement overstandard Forward-(Ba
kward) Sear
h pro
edure.Variable sele
tion problem is only a spe
ial 
ase of a s
aling problem. Inthe s
aling approa
h, the goal is to �nd the weights for all variables, whereweights represent level of importan
e with respe
t to the output response.The weights usually take values from [0,1℄ range, with 0 meaning that vari-able has no predi
tive power, and 1 that variable is the most important forpredi
tion a

ura
y. Weights of 0 and 1 
orrespond to ex
luded and in
ludedstatus in variable sele
tion problem, respe
tively. However, the solution spa
ein s
aling approa
h grows mu
h faster than that for sele
tion, rendering theproblem that more di�
ult. In the thesis, we also investigate a spe
ial 
aseof s
aling itself. Instead of �nding the s
aling weights for all variables, whi
h



CHAPTER 1. INTRODUCTION 3is very 
omputationally demanding when data sets are high dimensional,we are restri
ting the sear
h to only in
lude weights for �xed number ofvariables. This problem has been designed as multi-obje
tive optimizationproblem, and as su
h, requires modi�
ations to sear
h algorithms. This spe-
ial 
ase enables us to have qui
k insight into the most relevant variables forpredi
tion.Going further beyond the s
aling is the proje
tion, where a proje
tion matrixis optimized a

ording to the relevan
e 
riterion (Delta Test in this thesis).Proje
tion in
ludes s
aling as a spe
ial 
ase, and is more suitable if we wantto expli
itly alter the dimensionality of data, in
luding all available sam-ples. Thus, proje
tion is more general than sele
tion and should be ableto rea
h better results. After the optimization is done, the 
omplete dataset is multiplied from right with the proje
tion matrix to produ
e the pro-je
ted data set, whi
h lies in lower-dimensional spa
e, whi
h depends on theproje
tion dimension, i.e. the number of 
olumns in the proje
tion matrix.We also present a spe
ial 
ase of proje
tion, whi
h involves proje
ting thedata to higher dimensional spa
e. This might seem 
ounter-produ
tive fromvariable sele
tion/proje
tion perspe
tive, but the main idea is to 
ombines
aling and proje
tion as separate matri
es into a single proje
tion matrix.With this form of proje
tion, optimization unavoidably takes longer time,but the 
omputational 
ost is slightly in
reased 
ompared to s
aling only.This method is 
alled s
aling plus proje
tion.For the rest of the thesis, we refer to di�erent variable sele
tion approa
hes(sele
tion, s
aling, proje
tion, s
aling with �xed number of variables ands
aling plus proje
tion) as problem types or as aspe
ts, and these two termsare used inter
hangeably.As the �nal step, we integrate our variable proje
tion using Delta Test withpredi
tive models into one global methodology for regression tasks. The spe-
ial fo
us is on time series predi
tion. This type of predi
tion is a 
hallengein many �elds: �nan
e (sto
k ex
hange rates and indi
es); ele
tri
ity produ
-tion (load for the following days); data pro
essing (�ow of information overnetworks). The 
ore of the problem is how to analyze and use the past topredi
t the future. Many te
hniques exist for the approximation of the un-derlying pro
ess of a time series: linear methods [20, 21℄ and nonlinear ones[22, 23℄. Both types of models try to build a model of the pro
ess, whi
his used to predi
t future values based on present and 
urrent information.Predi
tions are made for immediate samples (short-term predi
tion) or giveestimations for far-future samples (long-term predi
tion). Long-term pre-di
tion is more 
hallenging be
ause the a

umulation of errors and inherent



CHAPTER 1. INTRODUCTION 4un
ertainties of time yields deteriorated estimates for future samples.The remainder of the thesis is organized as follows. Chapter 2 provides ba
k-ground on Delta Test and dis
usses nearest neighbor 
omputation needed for
omputing the Delta Test. Chapter 3 explains variable sele
tion in more de-tail, and introdu
es two new problems 
onne
ted to input sele
tion: s
alingwith �xed number of variables and s
aling plus proje
tion. In Chapter 4three sear
h algorithms are explained in detail: Forward-Ba
kward Sear
h,Tabu Sear
h and Geneti
 Algorithm. It also 
ontains the setup of importantparameters for the two latter algorithms, and an explanation about parallelimplementation for Geneti
 Algorithm. Chapter 5 des
ribes the data setsused for the experiments and the performan
e of the sear
h algorithms. InChapter 6 we propose a methodology for the time series predi
tion with vari-able sele
tion as the �rst step. This methodology 
an also be applied toany regression problem. Finally, Chapter 7 gives 
on
lusions on the workpresented in the thesis and dis
usses some future ventures.1.1 Publi
ationsThis se
tion brie�y reviews the publi
ations related to the work presented inthis thesis. Publi
ations are sorted in 
hronologi
al order:Publi
ation [1℄ is the �rst attempt at variable sele
tion using meta-heuristi
optimization method Tabu Sear
h with Delta Test. It is used as a prepro-
essing step before the a
tual time series predi
tion using OP-KNN for theESTSP 2008 
ompetition data.The next related work [2℄ takes a more in depth look at optimization ofDelta Test, 
omparing three sear
h algorithms: standard Forward-Ba
kwardSear
h, Tabu Sear
h and Geneti
 Algorithm. Advantages and disadvantagesof all three sear
h algorithms are identi�ed and a su

essful hybridizationof Tabu Sear
h and Geneti
 Algorithm is presented. The work is furtheradapted for parallel ar
hite
tures, enabling better exploration and results inthe same amount of time as the serial method. The work has been extendedfor a journal publi
ation in [3℄.Publi
ation [4℄ presents the 
ombination of s
aling and proje
tion as a singleproblem. This 
ombination allows the sear
h algorithm to rea
h better DeltaTest values for all tested data sets. The 
hoi
e of sear
h algorithm falls onGeneti
 Algorithm for its better exploratory 
apabilities in s
aling problem.An extensive overview of appli
ation of Delta Test in di�erent problem types



CHAPTER 1. INTRODUCTION 5is given in [5℄. A new type of problem, 
alled s
aling with �xed numberof variables, is presented and solved with multi-obje
tive optimization ap-proa
h.Finally, the variable sele
tion with Delta Test and Geneti
 Algorithm is 
om-bined into a global methodology with OP-ELM/OP-KNN models for the taskof time series predi
tion [6℄. The proposed methodology is tested on one �-nan
ial data set and two time series 
ompetition data sets.



Chapter 2Delta TestIn this thesis, the Delta Test is used as a relevan
e 
riterion to optimize eitherthe s
aling weights or the proje
tion matrix. The 
riterion 
omes from thestudy of noise varian
e estimation, where the problem 
onsists of estimatingthe best possible generalization error given �nite number of samples. Moregenerally, in fun
tion approximation, the main goal is to design a fun
tionthat represents given input points and their asso
iated s
alar outputs. Thatis, given N samples of input-output pairs (xi, yi) ∈ R
d × R, we wish to �nda fun
tional dependen
e between x and y with the following equation.

yi = f(xi) + ri, 1 ≤ i ≤ N (2.1)where f is the unknown fun
tion and ri is additive noise term. The fun
tion
f is assumed to be smooth, and the noise terms ri are independent and iden-ti
ally distributed with zero mean. Noise varian
e estimation is the study ofhow to give a priori estimate for Var[r℄ given some data, without 
onsideringany spe
i�
 shape of f .The Delta Test (DT), �rst introdu
ed by Pi and Peterson for time series [24℄,is a te
hnique to estimate the varian
e of the noise, or the mean squared error(MSE), that 
an be a
hieved without over�tting. It is a nonparametri
 noiseestimator based on the nearest neighbor prin
iple. The nearest neighbor ofa point is de�ned as the unique point, whi
h minimizes a distan
e metri
to that point. Distan
e metri
 is usually the Eu
lidean distan
e, but othermetri
s 
an also be used. The DT is useful for evaluating the nonlinear
orrelation between input and output variables. It is based on hypothesis
oming from the 
ontinuity of the regression fun
tion. If two points x and x

′are 
lose in the input variable spa
e, their 
orresponding outputs f(x) and6



CHAPTER 2. DELTA TEST 7
f(x′) should be 
lose in the output spa
e. If this is not the 
ase, this e�e
tis due to the in�uen
e of the noise.Let us denote the nearest neighbor of a point xi ∈ R

d as xNN(i). The nearestneighbor formulation of the DT estimates Var[r℄ byVar[r] ≈ δ =
1

2N

N∑

i=1

(yi − yNN(i))
2 , (2.2)where yNN(i) is the output of xNN(i). This is a well-known and widely usedestimator, and it has been shown [25℄ that this estimate 
onverges to the truevalue of the noise varian
e when N → ∞.For variable sele
tion problems, the goal is to minimize the value of DT, asthis value represents the MSE that 
an be rea
hed without over�tting. Thus,lower value of DT implies better sele
tion of variables [9℄.2.1 Complexity of Delta TestOptimization of Delta Test 
an be 
omputationally demanding if the dataset has a lot of available instan
es or samples. When 
omputing the DT forthousands of solutions, most of the optimization is spent on DT 
al
ulations,and little resour
es on altering the parameters of the sear
h algorithm. Thisis due to the nearest neighbor sear
h among the samples. Nearest neighborsear
h is an optimization te
hnique for �nding 
losest points in metri
 spa
es.Spe
i�
ally, given a set of N referen
e points R and query point q, both inthe same metri
 spa
e V , we are interested in �nding the 
losest or nearestpoint c ∈ R to q. Usually, V is a d-dimensional spa
e R
d, where the distan
esare measured using Minkowski metri
s (e.g. Eu
lidean distan
e, Manhattandistan
e, max distan
e).The simplest solution to this neighbor sear
h problem is to 
ompute thedistan
e from the query point to every other point in the data set, whileregistering and updating the position of the nearest or k-nearest neighborsof every point. This algorithm, sometimes referred to as the naive approa
hor brute-for
e approa
h, works for small data sets, but qui
kly be
omes in-tra
table as either the size or the dimensionality of the problem be
omeslarge. This is due to the O(dN) running time for a single query point.To over
ome naive approa
h and its 
omputational drawba
k, other methodshave been proposed [26, 27℄ whi
h use data stru
tures based on de
ompositionof multi-dimensional spa
es. One su
h stru
ture used in nearest neighbor
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h is kd-tree [28℄. In 1997, Friedman et al. [29℄ showed that for a dataset with N samples and d attributes, a kd-tree 
an be build in O(dN log N)time and O(N) spa
e, su
h that expe
ted 
omputation for a query takes
O(log N) time. However, even this method su�ers as dimension in
reases.The 
onstant fa
tors hidden in the asymptoti
 running time grow at least asfast as 2d (depending on the metri
).In some appli
ations it may be a

eptable to retrieve a �good guess� of thenearest neighbor. In those 
ases one may use an algorithm whi
h does notguarantee to return the a
tual nearest neighbor in every 
ase, in return forimproved speed or memory saving. Su
h an algorithm will �nd the nearestneighbor in the majority of 
ases, but this depends strongly on the data setbeing queried. It has been shown [30℄ that by 
omputing nearest neighborsapproximately, it is possible to a
hieve signi�
antly faster running times (onthe order of tens to hundreds), often with relatively small a
tual errors.Arya et al. in [30℄ state that given any positive real ǫ, a data point q′ is a
(1 + ǫ)-approximate nearest neighbor of q if its distan
e from q is within afa
tor of (1+ ǫ) of the distan
e to the true nearest neighbor. It is possible toprepro
ess a set of N points in R

d in O(dN log N) time and O(dN) spa
e,so that given a query point q ∈ R
d, and ǫ > 0, a (1 + ǫ)-approximate nearestneighbor (ANN) of q 
an be 
omputed in O(cd,ǫ log N) time, where cd,ǫ ≤

d⌈1 + 6d/ǫ⌉d is a fa
tor depending only on dimension and ǫ. In general, it isshown that given an integer k ≥ 1, (1 + ǫ) approximations to the k-nearestneighbors of q 
an be 
omputed in additional O(kd logN) time.This faster neighbor sear
h has been applied to the 
omputation of the DT asexpressed in Equation 2.2 with high 
omputational savings. A C++ libraryis used for this purpose, whi
h is available at [66℄.



Chapter 3Variable Sele
tion, S
aling andProje
tionSuppose we are given a data set that 
onsist of input X = (X1, X2, . . . , Xd)with d variables and one output variable Y. We are interested in buildinga fun
tion (model) f that approximates the mapping between X and Y, asgiven by Equation 2.1.Variable sele
tion is a methodology that 
onsist of �nding the most usefulsubset of input variables Xi that has maximal predi
tive power. The aim isto redu
e the number of input variables be
ause not all models are 
apable ofdistinguishing between relevant and irrelevant variables. A Support Ve
torMa
hine and Radial-Basis Fun
tion Network with Gaussian kernels assignequal importan
e to all variables in the data. Se
ond reason for variablesele
tion lies in limited amount of data samples, whi
h a�e
ts the training ofthe models in a negative way. If the models have to many hyper-parameters,the downside is what is known as over�tting of the model. In other words, themodel perfe
tly �ts the available data, but has poor generalization abilitieson unseen samples.Variable sele
tion 
onsists of two independent 
omponents: relevan
e 
rite-rion and sear
h algorithm. The relevan
e 
riterion measures the quality of
ertain subset of variables with respe
t to the output variable. One su
h
riterion is Delta Test, whi
h 
onstitutes the basis for all sele
tion problemsand sear
h algorithms presented in the thesis. Sear
h pro
edure or sear
halgorithm is responsible for generating new subsets to be examined based onthe information from the 
urrently available subsets. The algorithms use forDT optimization in this work are explained in more detail in Chapter 4.This 
hapter �rst mentions the di�
ulty of variable sele
tion for data sets9
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tion 3.2 introdu
es the problem of vari-able s
aling and one interesting subproblem of s
aling. Finally, Se
tion 3.3dis
usses variable proje
tion and gives the algorithm for automati
 sele
tionof the proje
tion dimensions when optimizing the DT.3.1 Variable Sele
tionConsidering the 
ase when a data set has d variables, to �nd the optimalsubset one has to examine all non-empty 2d − 1 subsets of variables (the ex-
luded 
ase is when all variables are removed from the data set, making thea
tual model impossible to build). When d is even moderately large, d > 30,exhaustive sear
h on all possible subsets be
omes too time 
onsuming andin most 
ases infeasible. Thus, knowing the optimal subset 
annot be guar-anteed before building the a
tual model. In su
h 
ases all sear
h pro
eduresexplore only some small portion of the whole solution spa
e, and this fa
tis what makes the di�eren
e between various sear
h algorithms � the waythey explore this spa
e.The status of a variable in a subset {in
luded, ex
luded} 
an be interpretedin a di�erent way: ea
h variable is assigned a weight fa
tor wi ∈ {0, 1} , 1 ≤
i ≤ d, with respe
t to the output variable. The value of 0 means that avariable has no predi
tive power, while 1 indi
ates that the variable is usefulfor predi
ting the output. In other words, ea
h variable is multiplied withits 
orresponding weight and a new data set is formed in lower-dimensionalspa
e before building a model. The set {0, 1} 
an be extended to a full [0, 1]interval, leading to variable s
aling.3.2 Variable S
alingIn variable s
aling, weights are interpreted as importan
e fa
tors, where
wi1 > wi2 implies that variable i1 has more predi
tive power than variable i2.The point of view is di�erent: instead of 
ompletely removing variables as invariable sele
tion, it 
ould be bene�
ial to retain them with small weight fa
-tors. Extending the problem to the full [0, 1] interval in
reases the 
omplexityof the problem, but allows for a more robust model. In this setting, sear
halgorithms that are based on neighborhood te
hniques, also 
alled stepwisealgorithms (see Se
tion 4.1 and 4.2), have to be adapted to in
lude valuesfrom the extended interval. Sin
e an expli
it 
onne
tion between solutionsis needed in this 
ase, one approa
h to solve this situation is to break the



CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION 11interval into equally sized subintervals, resulting in a set with the equidistantvalues. For example, the division 
an be done to form a set H = {0, 0.5, 1}.Usually, there is a parameter h that 
ontrols the number of subintervals. Forthe given example of H = {0, 0.5, 1} we have h = 2 and H = {0/h, 1/h, 2/h}.Given parameter h with positive integer value, the set of s
ales is formed bytaking H = {i/h | i = 0, 1, . . . , h}. As h grows, the interval is divided into�ner parts, and it be
omes in
reasingly di�
ult to 
onstru
t neighborhoodrelations between the solutions. One approa
h to this relationship that isused in the experiments is given in Se
tion 4.1.1. In this thesis, variable s
al-ing with restri
ted set of values H is referred to as dis
retized s
aling. Whatalso makes dis
retized s
aling more di�
ult than sele
tion is even larger so-lution spa
e, whi
h now 
ontains hd − 1 solutions and making h larger leadsto exponential in
rease in 
omplexity of the problem. The set H will bereferred to as set of s
ales or a set of s
aling weights.When using the interval [0, 1], it is assumed that all variables have the sameunit of measure, whi
h is not the 
ase for all real-world data sets. Thus,before performing variable s
aling, appropriate normalization of the datashould be 
arried out, for example, to zero mean and unit varian
e.In 
ase of s
aling the data set, ea
h dimension is modi�ed a

ording to itsweight fa
tor as given by Equation 3.1.
xS

ij = wjxij , i = 1, . . . , N, j = 1, . . . , d . (3.1)This way, a new data set X
S
N×d is formed, whi
h has at most d variables. Thedimensionality depends on the s
aling weights, and when all wi 6= 0 the newdata set XS has the same dimensionality as the original data set X. On theother hand, it is possible to transform the data set using a linear proje
tion,with expli
it spe
i�
ation of the dimensionality of newly 
reated data set.This approa
h is 
alled variable proje
tion and is dis
ussed in Se
tion 3.3.An interesting property of variable s
aling is the interpretability of the vari-ables. This is done by examining the weights fa
tors, with the larger weightsindi
ating more importan
e for the predi
tion of the output variable. Thisinformation is important in some �elds, su
h as fore
asting or predi
tion ofsto
k market pri
es. Before explaining the variable proje
tion 
ase, we tou
hupon spe
ial 
ase of s
aling problem, whi
h involves �xing or restri
ting mostthe of s
aling weights wi to have zero values.



CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION 123.2.1 Variable S
aling with Fixed Number of VariablesIn many real world data sets, the number of samples is sometimes so large(N > 10000) that optimizing s
aling weights takes a 
onsiderable amountof time. This is due to the high 
omputational 
ost of the inherent nearestneighbor sear
h in the DT formula. One approa
h to solve this would simplybe to randomly dis
ard some portion of the samples in order to speed up
al
ulation time, but there is risk of losing valuable data and there is no
lear method to sele
t important samples. Instead of removing samples, adi�erent strategy involves drasti
ally redu
ing the number of variables byfor
ing most of the s
aling weights to have zero value (wi = 0). To a
hievethis goal, an additional 
onstraint is added to the problem whi
h requiresthat at most df s
aling weights have non-zero values. Therefore, df variablesare �xed to be in
luded in �nal s
aling ve
tor and the remaining d − dfweights are for
ed to zero, e�e
tively 
hanging the dimensionality of thedata set. The 
omputation of nearest neighbor sear
h is redu
ed in a lower
df -dimensional spa
e. Thus, the �xed method enables a qui
k insight intothe df (or less) most relevant variables of the regression problem. For easiernotation and understanding, we refer to standard s
aling as s
aling or pures
aling, while s
aling with a �xed number of variables is referred to as �xeds
aling.The same setup of of any sear
h algorithm 
an be used for both s
aling prob-lems, with the di�eren
e that in �xed s
aling we take the df most relevantvariables. Another approa
h would be to 
ompletely modify 
ontrol opera-tors of sear
h algorithms su
h that they only 
onsider solutions with at most
df non-zero s
aling weights. However, both approa
hes in 
onjun
tion withgeneti
 algorithm showed extremely qui
k 
onvergen
e times in just a 
oupleof tens of generations. A di�erent approa
h would be to 
onsider this as amulti-obje
tive (MO) optimization problem [31, 32, 33℄, where one obje
tiveis minimization of the DT, the main goal, and the other obje
tive is the min-imization of the absolute di�eren
e between the number of non-zero s
alingweights and the desired value df , i.e.

F1(w) = Var[r] on s
aled data set X
S (3.2)

F2 (w) =
∣
∣df − |{wi 6= 0 | i = 1, . . . , d}|

∣
∣. (3.3)MO optimization tries to �nd the Pareto-optimal front [34℄ (a set of non-dominated solutions) instead of a single solution. This set 
ontains solutionswhere the values of the obje
tive fun
tions are in 
on�i
t, i.e. improvingone obje
tive leads to deterioration in the other obje
tive(s). Therefore,



CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION 13the result to a MO problem is a set of solutions on di�erent pareto fronts,after whi
h the user sele
ts one (or more) based on his/her preferen
e. Thegoal in an MO optimization is to �nd the global pareto-optimal front, whi
hdominates all other fronts in the problem spa
e. In this thesis, when thesolutions are returned, we look for the one with the exa
t required number
df of non-zero s
aling weights and the smallest DT. If su
h a solution doesnot exist, the one with the lowest F2 value is used, that is, we try to stay
lose to df variables. With the �xed s
aling we introdu
e new parameter
df to the problem. However, this parameter df should not be 
onsidered asthe additional hyper-parameter for the optimization. By taking df = d weexpe
t to rea
h the lowest DT value for a given data set (this is pure s
aling),while the df < d 
ases purposely ex
lude some the variables for the gain in
omputational speed. With this restri
tion, sear
h pro
edure is 
onstrainedto overlook the best possible weights for some number of variables, thusgiving worse results than pure s
aling.The algorithm used for MO optimization will be explained alongside othersear
h algorithms in Chapter 4.3.3 Variable Proje
tionIn a proje
tion, a matrix P = [aij ], i = 1, . . . , d, j = 1, . . . , k with size d×k isoptimized a

ording to a relevan
e 
riterion, and later used to obtain a newdata set given by Equation 3.4.

X
P
N×k = XN×dPd×k . (3.4)In this setting, s
aling is a spe
ial 
ase sin
e it 
an be represented as a d× dmatrix with weights wi on the main diagonal of that matrix, i.e.

PS =








w1 0 . . . 0
0 w2 . . . 0... ... . . . ...
0 0 . . . wd








d×d.

(3.5)A good property of proje
tion is the ability to linearly transform the dataset to lower dimensional spa
e when the matrix Pd×k has less 
olumns thanrows, i.e. k < d.However, the number of parameters in Pd×k is dk, and all have real values
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omes even harder 
ompared to the s
alingproblem with d parameters in a limited range. Furthermore, the 
orre
t valueof k, i.e. the number of dimensions to proje
t to, is an additional parameterthat has to be optimized. The advantage is the manual 
hoi
e of k, enablingfull 
ontrol of the dimensionality of the formed data set X
P. In the followingSe
tion 3.3.1 we propose a way to automati
ally sele
t good value of k inproje
tion problem when using the Delta Test as relevan
e 
riterion, whileSe
tion 3.3.2 investigates one interesting 
ase of proje
tion for k > d.Although proje
tion is more general than s
aling, the interpretability is lostas proje
tion matrix elements have real values (in
luding negative ones), andnothing 
an be said by examining the values in the matrix.3.3.1 Automati
 Sele
tion of Proje
tion DimensionConsider the 
ase when proje
tion matrix Pd×k has one 
olumn, i.e. k = 1,and suppose that by optimizing the DT using matrix Pd×1 we 
an obtainvalue dt1. Same dt1 value 
an be obtained with k = 2 by setting the se
ond
olumn of matrix Pd×2 to zero values. This setting does not have any in�u-en
e on the sear
h pro
ess, resulting in optimization problem with only one
olumn.Sin
e Pd×2 
ontains real values, optimizing Pd×2 should be able to rea
hvalue dt2 that is at least as low as dt1. However, adding new d parameters to

Pd×1 in
reases the 
omplexity of the problem, adds new lo
al minima and op-timization of Pd×2 be
omes more 
hallenging. This 
omplexity is manifestedthrough the value dt2, whi
h 
an be larger than dt1, if both optimizationproblems are given the same amount of resour
es.Same reasoning applies with higher values of k. Thus, as k is in
reasing, thevalue of the Delta Test should always de
rease. In pra
ti
e, huge numberof parameters prevents P matri
es with large k to rea
h same results ofthose 
ases with lower k. When optimizing the DT as a proje
tion problem,there will be a value of k = kp after whi
h the sear
h pro
edure is unableto return lower DT values. Thus, we 
an 
on
lude that matrix Pd×kp
is ourbest estimate and 
onsidering k > kp values is a waste of resour
es.Previous dis
ussion stems the strategy for automati
 sele
tion of k and pro-je
tion matrix P. Start with k = 1 and optimize Pd×1 to obtain DT estimate

dt1. Then, in
rease k by 1, optimizePd×k a
quiring dtk and 
ompare dtk with
dtk−1. If it holds that dtk < dtk−1 then 
ontinue in
reasing k, otherwise stopthe pro
ess and return matrix Pd×(k−1) as the �nal solution. This strategyis presented in Algorithm 3.1.



CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION 15Algorithm 3.1 Automati
 Sele
tion of k1: best = ∞2: k = 13: while true do4: (dt, Pd×k) = optimize(X, Y, k)5: if dt ≥ best then6: break7: end if8: best = dt9: bestP = Pd×k10: k = k + 111: end while12: return bestPIn the Algorithm 3.1, fun
tion optimize returns both the value dt and the
orresponding proje
tion matrix used to obtain that value. This fun
tionuses at least one sear
h algorithm to minimize the Delta Test. The inputparameters are the data set (X,Y) and the target proje
tion dimension k. Allalgorithms explained in Chapter 4 depend on the initial solution(s) (Geneti
Algorithm as sto
hasti
 algorithm, and Forward-Ba
kward Sear
h and TabuSear
h in�uen
ed by starting position). To have reliable estimate of theDT, several 
alls of optimize fun
tion are ne
essary. In the experiments wehave 
hosen to run the optimization fun
tion 10 times for ea
h value of k.However, this approa
h 
an be too time 
onsuming if the best value for k isvery large. In su
h situation, all optimization steps in early iterations withsmaller k are unne
essary. In order to speed up the 
omputation, we slightlymodify the Algorithm 3.1.If the optimization for 
urrent proje
tion dimension k (with value dtk) im-proves the dtk−1 value then immediately move onto the next k +1 proje
tiondimension. Otherwise, when the dtk is larger than the previously found bestvalue, try to improve it by running optimization several times until it doesimprove. If we 
annot get lower DT value after T tries, stop in
reasing k.When the pro
ess stops at some ks, the optimization of the previous values
k < ks is not ne
essarily run T times. Then, we ba
k up to two previous
ases, ks − 1 and ks − 2, and �nish optimizing both proje
tion dimensionsup to T times. On
e the optimizations on ks − 1 and ks − 2 are done, theproje
tion matrix produ
ing a data set X

P with the lowest DT is returnedas the �nal result. In the experiments, number of tries T is set to 10. Thewhole pro
edure is given as Algorithm 3.2.
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 Sele
tion of k1: T = 10 {set the maximum number of tries}2: best = ∞3: k = 14: while true do5: i = 16: while i ≤ T do7: dt[k, i] = optimize(X, Y, k)8: if dt[k, i] < best then9: best = dt[k, i]10: break11: end if12: i = i + 113: end while14: if i > T then15: break16: end if17: k = k + 118: end while19: Finish optimization for dimensions k − 1 and k − 2 
ases up to T tries20: return P for minimum dt among dt[{k − 1, k − 2}, {1, . . . , T}]At the end of these steps, a proper proje
tion dimensionality k has beenfound and the data 
an be proje
ted to a lower-dimensional spa
e. One 
anthen use this data for the a
tual regression task using any desired model.3.3.2 Combining S
aling and Proje
tionAlthough the idea of proje
tion is to redu
e the dimensionality, in the follow-ing dis
ussion we explore one interesting 
ase when proje
tion matrix Pd×khas more 
olumn than rows, i.e. when k > d. As explained in Se
tion 3.3.1,in
reasing k leads to harder and harder problems whi
h 
annot obtain smallerDT values. The good value of k in our experiments was always less than d,so the question is why even 
onsider 
ases when k > d.The 
ase that is of interest is the 
ombination of the s
aling and the proje
-tion. This 
ombination aims to shape the data to have the following form:
X

SP
N×(d+k) = [XS

N×d,X
P
N×k] , (3.6)
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S is the s
aled version of X (Equation 3.1), X

P is the proje
tedversion of X (Equation 3.4) and X
SP is the new s
aled+proje
ted inputmatrix. The new matrix that needs to be optimized has the form:

PSP =








w1 0 · · · 0
0 w2 · · · 0... ... . . . ...
0 0 · · · wd

a11 a12 · · · a1k

a21 a22 · · · a2k... ... . . . ...
ad1 ad2 · · · adk








d×(d+k) ,

(3.7)
︸ ︷︷ ︸

PS ︸ ︷︷ ︸

PPwhere PS is the same as in Equation 3.5 and is responsible for s
aling thedata, while PP is �
lassi
� proje
tion given by Equation (3.4). For the restof the thesis we 
all this approa
h s
aling plus proje
tion, and denote it ass
aling + proje
tion.With a 
ombination of both s
aling and proje
tion, the optimization problemshould be able to rea
h a DT value that is not larger than the value obtainedfor s
aling or proje
tion alone. Consider the following two spe
ial 
ases. Inthe �rst spe
ial 
ase, proje
tion 
olumns are set to zero values, i.e. PP = 0,and we have X
SP = [XS, 0N×k]. This spe
ial 
ase is just a s
aling problemwith additional zero 
olumns that do not in�uen
e the sear
h pro
ess, butonly in
rease 
omputational time. The se
ond spe
ial 
ase is similar, withall s
aling weights set to zero PS = 0, and we have new data set X

SP =
[0N×d,X

P], whi
h is a pure proje
tion problem with extra 
omputational
ost. These two extreme 
ases suggest that by allowing both s
aling weightsin PS and elements in PP to have real values, it be
omes possible to �ndsolutions that are at least as good as solutions for either s
aling or proje
tionproblem. In the experiments we will 
learly see the bene�t of this merger.Comparing proje
tion and s
aling + proje
tion in terms of number of pa-rameters to optimize, in proje
tion of Pd×k there are dk numbers, while ins
aling + proje
tion we have d + dk = d(k + 1). The 
ombined approa
hhas only d extra parameters, whi
h are from limited [0, 1] range, making itnot that more 
hallenging than proje
tion alone. The same di�eren
e of dparameters also exists between two proje
tion 
ases Pd×k and Pd×k+1, andinstead of proje
ting to more and more dimensions it might be fruitful to in-
lude s
aling to repla
e that one extra dimension of proje
tion. On the otherhand, in terms of 
omputational speed, 
ombined method takes mu
h longersin
e we are in
reasing the dimensionality (from k dimensions in proje
tionto k + d dimensions in s
aling + proje
tion) whi
h in
reases the nearestneighbor 
omputations.
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e we are using proje
tion in the 
ombined method, whi
h requires pa-rameter k to be spe
i�ed before optimization of PSP, same algorithm thatis used in proje
tion alone (Se
tion 3.3.1) 
an be applied here as well. Thedi�eren
e is only in the extra dimensions responsible for s
aling PS that areadded to form bigger d × (d + k) matrix PSP.The s
aling + proje
tion problem in
ludes s
aling, and thus we 
an alsoemploy the �xed variant (Se
tion 3.2.1) into the 
ombined method. The
ombination of s
aling with a �xed number of variables and proje
tion willbe referred to as �xed s
aling + proje
tion. The proje
tion in this problemis not modi�ed, only the s
aling is repla
ed with the �xed version.



Chapter 4Sear
h AlgorithmsSear
h algorithms in the 
ontext of variable sele
tion are responsible forexploring through solution spa
e in order to �nd an optimal solution withrespe
t to the relevan
e 
riterion (the relevan
e 
riterion a
ts as an obje
tivefun
tion for the pro
ess of optimization). There are many 
hoi
es of to
onsider, and ea
h of the available algorithms has its own advantages anddrawba
ks. Among the popular sear
h algorithms used in ma
hine learningare Forward Sear
h [10℄, Ba
kward Sear
h [10℄ and Forward-Ba
kward Sear
h[11, 35℄. All three methods are greedy in nature, and thus do not guaranteeto return an optimal solution to the problem. The following se
tions brie�yexplain the workings of these three algorithms with spe
ial attention on theForward-Ba
kward Sear
h.As mentioned in Chapter 3, for a data set with d variables there are total of
2d − 1 possible subsets to 
onsider. To guarantee optimality, an exhaustivesear
h must be performed on all subsets. Sin
e for large d this is infeasible,simple methods su
h as Forward and Ba
kward Sear
h explore only smallportion of solution spa
e, that is, they sa
ri�
e optimality for faster exe
utiontime. Both methods take at most d(d − 1)/2 steps explained in Se
tion 4.1.Se
tion 4.2 explains Tabu Sear
h and the setup of its parameters, and Se
tion4.3 presents Geneti
 Algorithm, its operators, and the setup established forexperiments.

19



CHAPTER 4. SEARCH ALGORITHMS 204.1 Forward Sear
h, Ba
kward Sear
h andForward-Ba
kward Sear
hForward Sear
h starts with an empty set S of variables and progressively addsnew variables to S as long as the relavan
e 
riterion is improving over previousset with one less variable. In the �rst iteration d subsets are examined andthe one with the best value of relevan
e 
riterion is sele
ted, that is, onevariable Xi is added permanently to the set S. In the next iteration, allsubsets with two variables out of whi
h one is Xi are explored. There are
d − 1 su
h subsets. Following the s
heme in iteration j, a total of d − j + 1subsets are examined and the best variable is added to S. Finally, ForwardSear
h explores at most d(d−1)/2 subsets sin
e the algorithm may 
onvergeto a solution where |S| < d, i.e. the best subset has less than d variables.Ba
kward Sear
h is similar to Forward Sear
h, ex
ept that it starts with allvariables in
luded in the set S, and then removes variables one by one if therelevan
e 
riterion improves. With same 
al
ulations, Ba
kward Sear
h alsoexplores at most d(d − 1)/2 subsets.Forward-Ba
kward Sear
h (FBS) is the 
ombination of both previous meth-ods. It 
an start from any subset of variables, and then 
onsiders new so-lutions whi
h either add or drop one variable. This adding and dropping ofvariables is 
ontinued until the 
riterion no longer improves. Forward Sear
hand Ba
kward Sear
h always return the same solution sin
e the starting pointis always the same. On the other hand, Forward-Ba
kward Sear
h 
an startfrom any subset of variables, whi
h 
an result in di�erent returned solutions.In order to get good sele
tion of variables, FBS is run 
ouple of tens or hun-dreds of times (depending on the problem) with di�erent starting positions,and the best solution is returned as the �nal estimation of the 
riterion thatis being optimized. The 
omplete algorithm is summarized in the following3 steps:In the previously given steps, it is possible to generate an empty subset, whi
hhalts the exe
ution of the optimization. If an empty subset is generated, wejust remove it from the 
onsideration set and enable the sear
h to 
ontinuewithout interruption. This expli
it 
he
k for the presen
e of an empty subsetis left out from the algorithms presented in the thesis.



CHAPTER 4. SEARCH ALGORITHMS 211. Initialization:Let S be the sele
ted input variable set, whi
h 
an 
ontain any inputvariables, and F the unsele
ted input variable set, whi
h 
ontains thevariables not present in S. Compute Var[r℄ using Delta Test on the set
S.2. Forward-Ba
kward sele
tion step:Find the variable XS to in
lude or remove from the set S to minimizeVar[r℄

XS = arg minXi,Xj
{Var[r] | {S ∪ Xj} ∪ {S \ Xi}, X

i ∈ S, Xj ∈ F}3. If the old value of Var[r℄ on the set S is lower than the new result, stop;otherwise, update set S and save the new Var[r℄. Go to step 2.4. Return set S as a solution.4.1.1 Forward-Ba
kward Sear
h in Variable S
alingThe �rst modi�
ation that requires the adaptation to the s
aling problem isthe de�nition of the adding and dropping of variables. Be
ause the weightsare no longer binary {0, 1} indi
ators, but rather values from dis
retized
[0, 1] range, adding 
an be 
onstru
ted as in
reasing the s
aling weight, anddropping as de
reasing the s
aling weight for a single variable. In the exper-iments, the distin
tion between in
rease and de
rease is not expli
it, that is,we only 
onsider the 
hange of a value for a single variable. Suppose that theset of s
ales has values H = {0, 0.5, 1}, 
orresponding to h = 2. Then, for asolution v = (0, 1, 0.5) with d = 3 variables, the following set of solutions( 0.5, 0.5, 1),( 1, 0.5, 1), ( 0, 0, 1),( 0, 1, 1), ( 0, 0.5, 0),( 0, 0.5, 0.5),are examined as the 
losest solutions to v. This 
loseness is en
ountered againin terms of neighbors for the Tabu Sear
h in next se
tion. In this setting,the number of solutions for examination is exa
tly hd. The solution from theexamined set with the best relevan
e 
riterion is the sele
ted solution for thenext iteration. That is, we perform a 
hange, also 
alled move or step, from
v to the best solution. This is the reason FBS is sometimes 
alled a stepwisealgorithm.



CHAPTER 4. SEARCH ALGORITHMS 224.2 Tabu Sear
hTabu Sear
h (TS) is a meta-heuristi
 method designed to guide lo
al sear
hmethods to explore the solution spa
e beyond lo
al optimality. The �rst mostsu

essful usage was by Glover [36, 37, 38℄ for 
ombinatorial optimization.Later TS was su

essfully used in s
heduling [39, 40, 41℄, design [42, 43℄,routing [44, 45℄ and general optimization problems [46, 47, 48℄. The TS hasbe
ome a powerful method with di�erent 
omponents tied together, that isable to obtain ex
ellent results in di�erent problem domains.Suppose we have a optimization problem in the form of an obje
tive or 
ostfun
tion f(v), and that solutions are members of a dis
rete set, i.e. v ∈ V .The term meta-heuristi
 refers to the underlying idea of TS � it uses otherte
hnique, lets denote it L, for the sear
h through the solution spa
e. Duringthe sear
h, TS uses internal memory stru
tures to modify the way L visitssolutions. The memory is used to prevent the reversal of re
ent moves, andalso to reinfor
e the exploration of promising ares of spa
e. The memorydesigned for the �rst task is 
alled short-term memory, while the se
ond typeis 
alled long-term memory. The idea behind TS is to use te
hnique L until itrea
hes an optimum, in whi
h 
ase the sear
h is allowed to visit solutions withworse obje
tive values. The memory stru
tures keep tra
k of lo
al optimaand the te
hnique L is forbidden to revisit these in up
oming iterations. The
on
ept of a

epting worse solutions is also present in Simulated Annealing[49℄, where the a

eptan
e is sto
hasti
 and based on a 
ooling s
heme.The basi
 elements behind TS are the de�nition of the sear
h spa
e and theneighborhood stru
ture. De�nition of sear
h spa
e is mentioned again inthe 
ontext of geneti
 algorithms. For variable sele
tion problem, the sear
hspa
e V is easily de�ned as a set of ve
tors of length d with binary {0, 1}values. As mentioned in the previous se
tion, the 
ase when all variables areex
luded is impossible and thus removed from the sear
h spa
e. This is 
lassi
en
oding of solutions in variable sele
tion problem, where 1 represents thatthe variable is sele
ted and 0 that the variable is not sele
ted. The s
aling
ase has been adapted in the same manner as s
aling for FBS, with [0, 1]interval transformed into a set of equidistant values.Next important issue is the de�nition of the neighborhood of a solution v.The neighborhood, denoted Ne(v), is de�ned as the set of solutions that arerea
hable from the solution v. Rea
hability is de�ned through moves or lo
altransformations applied to v in order to produ
e solutions in Ne(v). In laterse
tion we de�ne the moves for both problems: sele
tion and s
aling. Thereare the same as in FBS, but with more formal TS notation.
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y
ling e�e
ts, also 
alledtabu list, keeps tra
k of re
ently used moves. On
e an (sub)optimal solu-tion has been found, tabu list forbids the sear
h to revisit this solution byrestri
ting the use of a move with reversing e�e
t. Moves stored in tabu listare 
alled tabu, and thus forbidden to use for a �xed number of iterations.Storing only moves does not guarantee prevention of 
y
li
 e�e
ts, as not allinformation is kept when the optimum has been found. To stop revisiting,one 
an store 
omplete solutions in the memory. However, this approa
hbe
omes impra
ti
al as the 
omplexity of the problem in
reases, and sub-stantial amount of exe
ution time is spent on 
omparing new solutions tothose in memory. This is the reason for storing smaller pie
es of information,su
h as moves, segments or other attributes of solutions.One important parameter of TS is the tenure, whi
h is de�ned as the numberof iterations a single move is 
onsidered tabu. In some implementations this
orresponds to the length of the tabu list, usually 
oded as 
y
li
 list. Thetenure value is �xed throughout the whole sear
h for most of the problems,but other approa
hes are possible: varying tenure value or randomly 
hoosingthe value for ea
h move. In some problems this might help the sear
h pro
ess,but in this thesis we only 
onsider �xed tenures.During the sear
h, tabu list 
an prevent the moves to solutions whi
h havenot been en
ountered before (assuming no storage of 
omplete solutions).This leads to a situation when TS dis
ards a move to a solution with betterobje
tive value than the 
urrently best one. To enable su
h moves, anotherlevel is added to TS, whi
h allows the sear
h to override tabu list and aspireto the new solution. This is known as aspiration 
riterion. The simplestaspiration 
riterion is to allow the move in the 
ase as des
ribed, when thebest solution has been found. Other 
riteria 
an be de�ned to revoke thetabu status, but they are seldom used. In the implementation of TS forthe experiments, no aspiration 
riteria are used as they involve 
omputingthe a
tual obje
tive value of a solution. By dropping the aspiration 
riteria,these saved DT evaluations are then used for new solutions, allowing moreexploration of the sear
h spa
e in the same amount of time.Due to the fa
t that this thesis 
onsiders the variable sele
tion and the s
alingproblem, two di�erent algorithms are designed. Both algorithms use onlyshort-term re
en
y based memory to store reverse moves instead of solutionsto speedup the exploration of the sear
h spa
e. This setup is known as SimpleTabu Sear
h [17℄, and the pseudo
ode is given as Algorithm 4.1.In the Algorithm 4.1, a new term is introdu
ed � stopping 
ondition. Thestopping 
ondition, or termination 
riterion, prevents the TS to run indef-
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h storing reverse moves in list1: TabuList = [℄2: 
hoose starting solution v ∈ V3: while not stopping 
ondition do4: T = {u | u ∈ Ne(v),move(v, u) ∈ TabuList}5: N = Ne(v) \ T6: 
hoose u ∈ N with minimum f(u)7: add move(u, v) to TabuList8: v = u9: remove from TabuList moves added tenure iterations ago10: if f(v) < bestF then11: bestF = f(v)12: bestV = v13: end if14: end while15: return bestVinitely. This 
ondition 
an be set to one of the following possibilities: theamount of time spent on optimization, the number of 
alls of the obje
tivefun
tion f , the amount of memory used, and other 
hoi
es. The �rst two
onditions are the usually employed in the domain of optimization.There are other parts of the TS whi
h make it a powerful method, su
h asprobabilisti
 TS, 
andidate list generation, intensi�
ation and diversi�
ationstrategies, auxiliary obje
tives. These are not 
onsidered here, but for adetailed explanations on the topi
s see [17℄.The following se
tions give the de�nition of moves and neighborhood stru
-tures for variable sele
tion and s
aling. The stru
tures are exa
tly the sameas the ones given for FBS. As TS is a meta-heuristi
 method, the �nal algo-rithm 
an be seen as FBS with tabu 
onditions.4.2.1 Tabu Sear
h for Variable Sele
tionIn the 
ase of variable sele
tion, a move is de�ned as a �ip of the status ofexa
tly one variable in the data set. The status is ex
luded (0) or in
luded(1) from the sele
tion. For a data set of dimensionality d, a solution is thena ve
tor of zeros and ones v = (v1, v2, . . . , vd), where vi ∈ {0, 1} , i = 1, ..., d,are indi
ator variables representing the sele
tion status of k-th dimension.The neighborhood of a sele
tion (solution) v is a set of sele
tions u whi
h
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tly one variable that has di�erent status. This 
an be written as
Ne(v) = {u | ∃1q ∈ {1, . . . , d} vq 6= uq ∧ vi = ui, i 6= q} (4.1)With this setup, ea
h solution has exa
tly the same amount of neighbors,whi
h is equal to d.4.2.2 Tabu Sear
h for Variable S
alingTS for the optimization of s
aling weights is de�ned in the same manneras FBS for the same problem in Se
tion 4.1.1. The di�eren
e is the no-tion of neighbors of a solution in TS. In TS, a solution v is now a ve
torwith s
aling values from a dis
retized set vh ∈ H = {0, 1/h, 2/h, . . . , 1},where h is dis
retization parameter. Two solutions are neighbors if they dis-agree on exa
tly one variable. For example, for h = 10, d = 3 and solution

v1 = (0.4, 0.2, 0.8), a solution v2 = (0.7, 0.2, 0.8) would be a neighbor, butnot the solution v3 = (0.1, 0.5, 0.8). The move between solutions is de�nedas a 
hange of value for one dimension, whi
h 
an be written as a ve
tor(dimension, old value, new value).4.2.3 Setting the Tabu ConditionsAs mentioned, the tenure for a move is de�ned as the number of iterationsthat it is 
onsidered tabu. This value is determined empiri
ally when the TSis applied to solve a 
on
rete problem. For the variable sele
tion problem,the thesis proposes a value whi
h is dependent on the number of dimensionsso it 
an be applied to several problems. In the experiments, two tabu lists,and thus two tenures, are used. The �rst list is responsible for preventing the
hange along 
ertain dimension for d/4 iterations. The se
ond one preventsthe 
hange along the same dimension and for spe
i�ed s
aling value for d/4+2iterations. The 
ombination of these two lists gives better results than whenea
h of the 
onditions is used alone.For example, for h = 10, if a move is performed along dimension 3 fromvalue 0.1 to 0.5, whi
h 
an be written as a ve
tor m = (3; 0.1, 0.5), then thevalue 3 is stored in the �rst list and the reverse move m−1 = (3; 0.5, 0.1) isstored in the se
ond list. The sear
h will be forbidden to use any move alongdimension 3 for d/4 iterations (�rst 
ondition), and after that time, it willbe further 2 iterations restri
ted to use the move m−1 (se
ond 
ondition), orin other words to go ba
k from 0.5 to 0.1.
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ase of variable sele
tion, two 
onditions are thenimpli
itly merged into one 
ondition: restri
t a �ip of the variable for d/4+2iterations. This is be
ause there are only two values {0, 1} as possible 
hoi
es.4.3 Geneti
 AlgorithmGeneti
 Algorithm (GA) is one of the algorithms of the larger family ofoptimization te
hniques known as Evolutionary Algorithms (EAs) [50℄. Allof these algorithms share 
on
epts found in biologi
al pro
esses, su
h asnatural sele
tion and survival of the �ttest prin
iple. The algorithms arepopulation based, meaning that there is a set of solutions present at allstages of the optimization. The solutions are 
hosen randomly from thesear
h spa
e of the problem, and all EAs are 
onsidered sto
hasti
 sear
halgorithms. The pro
ess of sear
hing through the solution spa
e is in�uen
edby several me
hanisms 
ommon to all EAs: how are the solutions en
odedas the 
hromosomes, initialization of the population, sele
tion operators, andreprodu
tion operators. We brie�y give the representation and workings ofthe GA on a general level, while numerous publi
ations give more formalde�nitions and theory behind geneti
 algorithms [51, 52, 53℄.To understand better GA (and other EAs), this algorithm should be 
om-pared to the 
lassi
al optimization methods. Regarding the sear
h pro
ess,
lassi
 methods uses deterministi
 rules to move from one solution to the nextin the sear
h spa
e, while EAs use probabilisti
 rules. In EA, the starting po-sition is a set of solution, as in 
lassi
 approa
h it is only a single point whi
his improved upon in sequential steps. Classi
al methods also use derivativeinformation (�rst-order, se
ond-order) to guide the sear
h, while EA usesonly information about the �tness of the individuals. That is, GA uses onlyinformation about the surfa
e of the spa
e to de
ide on new dire
tions of thesear
h.Geneti
 algorithms have been widely used in ma
hine learning 
ommunityfor variable sele
tion [2, 54, 55, 56, 57, 58℄, with most of the work devoted to
lassi�
ation tasks.4.3.1 Geneti
 Algorithm Basi
sThe Algorithm 4.2 shows the outline of GA, whi
h with small modi�
ations
an be made into any other EA paradigm. The fun
tionality of ea
h of theoperators is explained in the following se
tions.
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 Algorithm1: sele
t sele
tion operators σ1 and σ22: sele
t reprodu
tion operators ρ3: P = 
reate initial population4: while not stopping 
ondition do5: e = �tness(P ) {evaluate population}6: P1 = σ1(e) {sele
t parents}7: P2 = ρ(P1) {reprodu
tion � generate o�spring}8: P = σ2(P, P2) {sele
t new generation}9: end while10: return p the �ttest individual in PRepresenting SolutionsIn the 
ontext of the GA, ea
h individual in the population represents asolution to an optimization problem. The 
hara
teristi
s of an individual arerepresented by a 
hromosome. These 
hara
teristi
s refer to the variables ofthe problem, and in the 
ontext of the EA, a variable is 
alled a gene. Forvariable sele
tion problems, ea
h gene 
orresponds to: a sele
tion status forvariable sele
tion; s
aling weight for variable s
aling; real number in thematrix for proje
tion problem. For the rest of the thesis, we inter
hangethe terms solution, individual and 
hromosome, sin
e values (genes) in a
hromosome fully explain the individual, whi
h is in fa
t a solution for theproblem. This is also done with the terms variable and gene. The nature ofa problem also has the impa
t on the 
oding s
heme of individuals.Initial PopulationGA is population-based algorithm, thus requires a pool of solutions in orderto apply the operators. The �rst step in GA (and all other EAs) is the 
re-ation of this population. Most of the time this is done by randomly samplingthe solution spa
e. The goal of random sele
tion is to ensure that most ofthe sear
h spa
e is 
overed, that is, the solutions should be uniformly spreada
ross the spa
e. If some of the regions are left out, there is a possibility thatthe sear
h will negle
t this regions. The size of the population is one of theparameters to be de
ided before optimization. There is a trade-o� betweenthe size of the population and the 
onvergen
e speed of the GA. The largerthe population, the better it is spread a
ross the spa
e (more diversity), andless iterations are needed to �nd a good solution. On the other hand, smaller
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h an a

eptable solution. One hasalso to 
onsider the 
omputation time per iteration: the more individuals inthe population, the more time it takes to 
ompute one generation.EvaluationEvaluation is a simple step, whi
h involves 
omputing the obje
tive fun
-tion value for ea
h individual in the population. As dis
ussed later, somesele
tion operators use this information in order to sele
t the individuals forthe reprodu
tion step. It is usually the pra
ti
e to s
ale the values of theobje
tive values to a more representative range. This is a

omplished with a�tness fun
tion, whi
h 
an be linear or non-linear. This fun
tion transformsthe obje
tive values into the �tness values.Sele
tionOne of the main operators in GA is the sele
tion operator. Its main purposeis to emphasize better solutions. Sele
tion takes part in two phases of thealgorithm:
• Sele
ting individuals for reprodu
tion σ1: New individuals, 
alledo�spring, are 
reated by applying 
rossover and/or mutation. The se-le
tion for the 
rossover phase should favor �t individuals, ensuringthat their genes are passed onto the next generation. In the 
ase ofmutation, sele
tion me
hanisms should fo
us on �weak� individuals.Introdu
ing new geneti
 material into weaker 
hromosomes might im-prove their �tness, enabling them to 
ompete with �tter individuals.
• Sele
ting individuals for the new population σ2: When the o�-spring are generated, the de
ision is on how to sele
t the individualsfor the next generation based on the 
urrent generation and o�spring.This 
an be done using only o�spring or the 
ombination of both sets.The sele
tion operator should ensure that good individuals are presentin the next population.Sele
tion operators are often 
hara
terized by their sele
tive pressure, whi
his de�ned as the speed at whi
h the best solution will o

upy entire popula-tion by repeated appli
ation of the sele
tion operator alone. High sele
tivepressure makes the population lose diversity and degrades the exploration
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tive pressure might take more time to 
on-verge.The sele
tion is mostly based on the value of the obje
tive fun
tion, leadingto proportional sele
tion. In this setting, individuals with better obje
tivevalue are sele
ted more often. To prevent the values of the obje
tive fun
tionfrom dominating the sele
tion pro
ess, all values are transformed by �tnessfun
tion, whi
h s
ales the obje
tive values into �tness values. Fitness valuesform more suitable range of values to prevent the dominating e�e
t of betterindividuals.One operator that does not need �tness s
aling is the tournament sele
tion,whi
h is used in the experiments. Tournament sele
tion sele
ts a group of
nt > 1 individuals randomly from the population. The obje
tive values ofthese individuals are then 
ompared, and the best one is returned by theoperator. For the 
rossover with two parents, the sele
tion is performedtwi
e, on
e for ea
h parent. If the tournament size nt is not too large, thistype of sele
tion prevents the best individual from dominating. In the 
ase ofsmall tournament size, the 
han
es that bad individuals are sele
ted in
rease.Sele
tion operator 
alled elitism is one of the most used sele
tion operators.With elitism, a number en of the best individuals of the 
urrent populationis just 
opied into the new population. This approa
h guarantees that the�tness of the population never deteriorates. The remaining part of the newpopulation is �lled with individuals de
ided by the sele
tion operator σ2.Reprodu
tionReprodu
tion is the pro
ess of generating o�spring from the sele
ted parentsby applying 
rossover and/or mutation. Crossover is responsible for 
reatingnew individuals by re
ombining the genes of the two or more parents. Muta-tion works by randomly 
hanging the values of the genes in a 
hromosome.The purpose of mutation is to introdu
e new geneti
 material and bring di-versity in the population. Care must be taken in order to not destroy thegenes of the best individuals.Crossover operators are 
ategorized based on the representation s
heme: bi-nary or real valued problem. For ea
h of the problems there exist spe
i�

rossovers. An important part of GA is that the 
rossover is probabilisti
, thatis, on
e the parents have been sele
ted, they ex
hange their genes with 
er-tain probability. Usually, a high 
rossover probability (also 
alled 
rossoverrate) is used to favor 
reation of new individuals.
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h generation until a stopping
riterion is satis�ed. The simplest stopping 
ondition is to limit the sear
hbased on the number of generations that GA is allowed to exe
ute. Othersimple solution is to limit on elapsed time sin
e the start of the algorithm.More elaborate 
riteria exist as well, that are based on 
onvergen
e of thealgorithm: terminate when there is no 
hange in the population, terminatewhen no improvement is made over a number of 
onse
utive generations,terminate if an a

eptable solution is found. These are all loose de�nitionsof the 
onvergen
e of GA.4.3.2 Setup for the ExperimentsIn this se
tion, we give a list of operators and en
oding s
hemes that areused in the experiments.En
oding of the IndividualsAs is the 
ase in TS, the individuals of the GA are ve
tors with binaryvalues. Sin
e this thesis also 
onsiders variable s
aling, other en
oding mustbe 
hosen to a

ommodate new approa
h. If instead of using 0 and 1, thealgorithm uses real numbers to determine the weigh of a variable, the GA
ould fall into the 
ategory of Real Coded Geneti
 Algorithms (RCGA).However, the number of s
aling weights has been dis
retized in order to easily
ompare the performan
e of GA to those of FBS and TS. This dis
retizationmakes the algorithm a 
lassi
al GA where the 
ardinality of the alphabetin
reases to h + 1 values (with h being the number of subintervals). Bothapproa
hes, 
lassi
al BCGA with extended alphabet and RCGA, are testedin the experiments. For RCGA, the s
aling set is not dis
retized, i.e. weightstake values from the whole s
aling interval [0, 1].Initial PopulationRegarding the initial population for BCGA, some individuals are in
ludedin the population deterministi
ally to ensure that ea
h s
aling value for ea
hvariable exists in the population. These individuals are required if the 
las-si
al GA 
rossover operators (one/two-points, uniform) are applied in orderto rea
h all possible 
ombinations (assuming no mutation). For example, for
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h = 3 (produ
ing H = {0, 1/3, 2/3, 1}) and 3-dimensional problem (d = 3),the following individuals are always in
luded in the population: (0, 0, 0),(1/3, 1/3, 1/3), (2/3, 2/3, 2/3) and (1, 1, 1).Sele
tion, Crossover and Mutation OperatorsThe GA algorithm is designed to be as fast as possible so when several de-signs options appeared, the fastest one (in terms of 
omputation time) wassele
ted. The sele
tion operator 
hosen is the binary tournament sele
tion byGoldberg [51℄, instead of the roulette wheel operator [59℄ or other 
omplexoperators [60℄. Tournament sele
tion does not require 
omputation of anyprobabilities, saving a 
onsiderable amount of operations in ea
h iteration.This is espe
ially important for large populations. Binary tournament hasvery low sele
tive pressure, allowing less �t individuals to be sele
ted. Never-theless, this sele
tion me
hanism allows better exploration 
apabilities whi
hare important in the 
ase of variable s
aling (dis
retized or unrestri
ted).However, the algorithm also in
orporates the elitism me
hanism, keeping the10% of the best individuals of the population, so the 
onvergen
e is stillfeasible.For the initial test, the 
lassi
al operators (one-point, two-point, uniform) forbinary problems were tested. The performan
e of these operators was similarand a

eptable. Nonetheless, sin
e the algorithm 
ould be in
luded into theReal Coded GA 
lass, an adaptation of the BLX-α [61℄ was implemented aswell. This operator is designed for 
ontinuous problems, and works as follows:given two individuals I1 = (i11, i

1
2, ...i

1
d) and I2 = (i21, i

2
2, ...i

2
d) with (i ∈ R), anew o�spring O = (o1, ..., oj, ..., od) 
an be generated where oj , j = 1...dis a random value 
hosen from a uniform distribution within the interval

[imin − α · B, imax + α · B] where imin = min(i1j , i
2
j ), imax = max(i1j , i

2
j ),

B = imax − imin and α ∈ R. The adaptation to dis
rete alphabet requiresrounding of gene values to mat
h the s
aling weights. The working of theBLX-α is depi
ted in Figure 4.1 for the 
ase d = 2.The mutation operates at a gene level, so a gene has the 
han
e to get anyvalue of the alphabet.The setup of the GA is summarized in the following list:
• Sele
tion operator: Binary tournament (nt = 2)
• Crossover operator: BLX-α (α = 0.5)
• Crossover rate: 0.85
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• Mutation operator: Random uniform on gene level
• Mutation rate: 0.1
• Elitism: 10% of population size
• Repla
ement: Complete, i.e. generational approa
hWith the 
omplete repla
ement, the sele
tion operator σ2 
hooses only theo�spring, i.e., in line 8 of the Algorithm 4.2 we have σ2(P, P2) = P2.

Figure 4.1: BLX-α 
rossover in 2-dimensional spa
e. O�spring O is 
hosenrandomly from extended re
tangle (solid line) de�ned by two parents I1, I2(dashed line).4.3.3 Parallel ImplementationGeneti
 algorithms work with a population of independent solutions, whi
hmakes it easy to distribute the workload from one pro
essor to several, speed-ing the exe
ution time. It is very easy to adapt them to parallel ar
hite
tures.Going into more detail, the �rst step is to de
ide upon the distribution ofthe population. The GA 
an still remain with a single population, or thepopulation 
an be divided into several populations. The latter approa
h isalso 
alled GA with multiple populations. When 
onsidering the se
ond 
ase,subpopulations 
an remain separated or 
ommuni
ate between themselves.Communi
ation involves extra 
ost, as well as de
isions about the pattern of
ommuni
ations (poli
y), the number of individuals for ex
hange (also 
alledmigration), and the rate of ex
hange. Careful de
isions must be taken inorder not to burden the exe
ution with ex
essive 
ommuni
ation patterns.
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essors to solve these problems simultaneously. Thereare many possibilities for this division, and the the 
ommon 
lassi�
ation ofparallel GA is in following 
aterogies: single-population master-slave GAs[62℄, multiple-population GAs, �ne-grained GAs, and hierar
hi
al GAs. Webrie�y explain the �rst two 
ategories.Master-slave topology is de�ned by having a master pro
essor, or node, toperform sequential part of the GA � sele
tion and reprodu
tion, while allthe other pro
essors, slaves, evaluate the individuals of the population. The
ommuni
ation 
onsists of sending the individuals from the master node tothe slaves (�rst dire
tion), and after evaluation, the slaves send the �tnessvalues for the individuals they re
eived to the master node. Master-slaveapproa
h uses only single population, thus there is no di�eren
e in resultsbetween parallel master-slave GA and serial GA, assuming same operators.Multi-population GAs divide the population into several smaller groups,
alled subpopulations. Subpopulations ex
hange information by migratingsome of the individuals. The migration is 
ontrol by several parameters,su
h as the sizes of the subpopulations, rate of migration, the number of mi-grating individuals, migration pattern, and the sele
tion of whi
h individualsshould migrate. Multiple-population parallel GAs are also known as the is-land model, sin
e subpopulation are split into groups (islands) with migrationpatterns between any two subpopulations.Smaller populations lower the diversity of solutions, and this de
reases theexpe
ted 
onvergen
e time. When a population is spread a
ross multiplepro
essors, we may expe
t faster results due to this 
onvergen
e. However,the �nal solution returned should be of the same quality as that of serialGA, suggesting that the division should be done 
arefully to balan
e thistrade-o�.Unlike master-slave version, multiple-population approa
h does not returnthe same results as the serial GA, sin
e operators do not take into a

ountthe whole population, only one subpopulation at a time.Another important aspe
t in parallel implementations is the syn
hronizations
heme. There are two types: syn
hronous and asyn
hronous, and both 
anbe adapted to ea
h of the parallel 
ategories of the GAs. In the syn
hronousimplementation, all pro
essors always have the same population at disposaland the 
ommuni
ation exist to syn
hronize the pro
esses. This e�e
tivelymeans that faster pro
essors have to wait for the slower ones. When all pro-
essors exe
ute their jobs, the algorithm 
ontinues onto the next generation.On the other hand, in asyn
hronous 
ase, all pro
essors exe
ute the 
ode
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h less idle time. However, the interpreta-tion and 
omparison of the results with syn
hronous GAs is di�
ult, sin
ethe 
ommuni
ations o

ur at random times.Implementation for Delta Test OptimizationAs dis
ussed in Se
tion 4.3.2, the algorithm is designed to be as fast as possi-ble. Nonetheless, the �tness fun
tion (DT) still remains expensive in 
ompar-ison with the other stages of the algorithm (sele
tion, 
rossover, mutation).At �rst, all the stages of the GA were parallelized, but the results showed thatthe 
ommuni
ation and syn
hronization operations 
ould be more expensivethan performing the stages syn
hronously and separately on ea
h pro
essor(we 
onsider that a pro
essor exe
utes one pro
ess of the algorithm). Hen
e,only the 
omputation of the DT for ea
h individual is distributed betweenthe di�erent pro
essors. This 
orresponds to the master-slave topology thatis easily implemented. Some questions might arise at this point like: Are thepro
essors homogeneous?; How many individuals are sent at a time?; Is the�tness 
omputation time 
onstant?The algorithm assumes that all pro
essors are equal with the same amountof memory and speed. If they are not, it should be 
onsidered to sendthe individuals iteratively to ea
h pro
essors as soon as they have �nishedwith the 
omputation of the �tness of an individual. This is equivalent tothe 
ase when the �tness fun
tion 
omputational time might 
hange fromone individual to another. However, the 
omputation of the DT does notsigni�
antly vary from one individual to the another in a larger population.Thus, using homogeneous pro
essors and 
onstant time 
onsuming �tnessfun
tion, the amount of individuals that ea
h pro
essor should evaluate is
size of population/number of processors.The algorithm has been implemented so that the amount of 
ommuni
ation(and the number of pa
kets) is minimized. To a
hieve this, all the pro
essorsexe
ute exa
tly the same 
ode so, when ea
h one of them has to evaluateits part of the population, it does not require to get the data from the mas-ter be
ause it already has the 
urrent population. The only 
ommuni
ationduring exe
ution of GA are re
eiving and sending of values of the DT, butnot the individuals themselves. The ex
hange of DT values is done after theevaluation of the individuals. To ensure that all pro
essors have the samepopulation all the time (
onsidering the presen
e of random values), at thebeginning of the algorithm the master pro
essor sends the seed for the ran-dom number generator to all the slaves. Having same random seed implies
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e the same values when 
alling the fun
tion to obtain arandom number. This enables qui
ker 
ommuni
ation between pro
essors asthe only information sent is 
omputed DT value of the individual. This isespe
ially important sin
e some problems require large individuals, in
reas-ing the amount of tra�
 in the network and slowing the exe
ution of thealgorithm.4.3.4 Geneti
 Algorithm for Multi-Obje
tive Optimiza-tionThe main idea in MO problems is to �nd the global pareto-optimal front.Of 
ourse, this 
annot be guaranteed, but the algorithms designed for thisproblem must have two properties: generating solutions along other pareto-optimal fronts and �nding new fronts. In the reprodu
tion phase, it is 
om-mon to generate solutions that are dominated by other individuals in thepopulation. These have to be dis
arded sin
e they are of no interest. The al-gorithm used for multi-obje
tive optimization in the �xed s
aling problem isthe Elitist Non-Dominated Sorting Geneti
 Algorithm (NSGA-II) proposedin [34℄.NSGA-II algorithm works in two basi
 steps: sorting of solutions based ondominan
e and elitism sele
tion to keep the best fronts en
ountered. Sin
ethe population size does not 
hange, the last front for in
lusion has to bedivided in two parts. The division is done to keep the most diverse solutionsfor the next generations. This diversity in NSGA-II is 
al
ulated using the
rowding distan
e, whi
h measures the distan
e between solutions in theobje
tive fun
tion spa
e. With this approa
h, the algorithm ex
ludes thesharing parameter, whi
h is responsible for 
al
ulating the proximity betweenpopulation members and has to be de�ned by user. Sorting of solutions isdone by 
areful book-keeping in order to speed up the exe
ution time. Fordetails refer to [34℄. The overall 
omplexity of the algorithm is O(mp2),where m is the number of obje
tives (in our 
ase m = 2) and p is the sizeof the population. One thing worth mentioning is the 
onstant fa
tor in thementioned asymptoti
 running time. The algorithm works by sorting on theset of both the 
urrent population and the o�spring, doubling the size of theset. With this taken into a

ount, the more pre
ise 
omplexity is O(m(2p)2).



Chapter 5Experiments: Sear
h AlgorithmsThe experiments were 
arried out on a variety of 
omputer ar
hite
tures anddi�erent setups, but MATLAB was used as the main environment to runthe experiments. In this 
hapter we 
ompare the performan
e of the sear
halgorithms explained in Chapter 4 on several regression data sets.A number of data sets with varying number of samples and dimensionalitywas used to test the quality of the 
omposition of Delta Test with the threementioned sear
h algorithms. The following data sets were used for 
ompar-ing the performan
e of FBS, TS and GA, with Table 5.1 summarizing thesizes of all data sets.1. Housing data set [67℄: The housing data set is related to the estimationof housing values in suburbs of Boston. The value to predi
t is the me-dian value of owner-o

upied homes in $1000's. The data set 
ontains506 instan
es, with 13 input variables and one output.2. Te
ator data set [68℄: The Te
ator data set aims at performing thetask of predi
ting the fat 
ontent of a meat sample on the basis of itsnear infrared absorban
e spe
trum. The data set 
ontains 215 usefulinstan
es for interpolation problems, with 100 input 
hannels, 22 prin-
ipal 
omponents (whi
h remain unused) and 3 outputs, although onlyone is going to be used (fat 
ontent).3. Anthrokids data set [69℄: This data set represents the results of a three-year study on 3900 infants and 
hildren representative of the U.S. pop-ulation of year 1977, ranging in age from newborn to 12 years of age.The data set 
omprises 121 variables with the weight of a 
hild beingthe target variable. As this data set presented many missing values, a36



CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS 37prior sample and variable dis
rimination had to be performed to builda robust and reliable data set. The �nal set without missing values
ontains 1019 instan
es, 53 input variables and one output (weight).More information on this data set redu
tion methodology 
an be foundin [63℄.4. The Santa Fe time series 
ompetition data set [70℄: The Santa Fe dataset is a time series re
orded from laboratory measurements of a Far-Infrared-Laser in a 
haoti
 state, and proposed for a time series 
ompe-tition in 1994. The set 
ontains 1000 samples, and it was reshaped forits appli
ation to time series predi
tion using regressors of 12 samples.Thus, the set used in this work 
ontains 987 instan
es, 12 inputs andone output.5. ESTSP 2007 
ompetition data set [71℄: This time series was proposedfor the European Symposium on Time Series Predi
tion 2007. It is anunivariate set 
ontaining 875 samples, while the regressor size for thisseries varied for di�erent set of experiments as explained in this 
hapterand the next one.Dataset Samples Input variablesBoston Housing 506 13Anthrokids 1019 53Te
ator 215 100Santa Fe 987 12ESTSP 2007 819 55Table 5.1: Data sets used for testing the performan
e of sear
h algorithms.5.1 Approximate Nearest Neighbor In�uen
eFirst we show the importan
e of using faster nearest neighbor sear
h whenoptimizing the DT. Table 5.2 shows the average running times for the Geneti
Algorithm for Santa Fe, ESTSP 2007 and Anthrokids data sets. As 
an beseen, the 
omputational savings from using underlying data stru
ture in ANNis substantial, with improvement of 80% for Santa Fe and roughly 90% forboth ESTSP 2007 and Anthrokids. The results are averaged over 10 runs,while the GA uses 200 
omplete generations as the stopping 
riterion.
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h Approximate k-NNSanta Fe 620 124ESTSP 2007 2573 283Anthrokids 2938 314Table 5.2: Average running time in se
onds for DT optimization using naiveNN approa
h and approximate k-NN sear
h.5.2 Performan
e of Sear
h AlgorithmsNext experiment 
ompares di�erent sear
h algorithms used for sear
hingthrough solutions spa
e, for sele
tion and dis
retized s
aling. The s
alingweights are set up to take values from H = {0, 0.1, 0.2, . . . , 0.9, 1} set. Thisexperiments involves standard Forward-Ba
kward Sear
h, Tabu Sear
h andGeneti
 Algorithm. Table 5.3 summarizes the statisti
s of DT values ob-tained with all three methods on 5 data sets. The stopping 
ondition for allmethods was set to 10000 DT evaluations. Sin
e FBS is a greedy method,and 
onverges in less than 10000 evaluations, it is reinitialized from anotherrandom starting solution. This pro
edure is repeated until the algorithmexamines spe
i�ed 10000 solutions. TS is only initialized on
e from a singlesolution and evaluates the subsequent solutions until it rea
hes the mentionedstopping 
riterion. Ea
h of the methods is run 10 times sin
e all of them arein�uen
ed by random initial solution(s). The size of the population of theGA was set to 150 [3, 4℄.All data sets were normalized to zero mean and unit varian
e, in
luding theoutput variable. Therefore, all DT values shown in this se
tion are normal-ized by the varian
e of the output. The normalization was done variable-wisefor all data sets ex
ept for Te
ator, in whi
h variable sele
tion works betterwith sample-wise normalization.As 
an be seen from Table 5.3, FBS performs quite well over TS. This isdue to 
ouple of initializations of FBS as soon as it has 
onverged. On theother hand, TS is only initialized from one point and explores the solutionspa
e until it rea
hes 10000 evaluations. This shows that there are manylo
al minima for all data sets, and that reinitialization is bene�
ial for lo
almethods. For two data sets with the least number of variables, Housing andSanta Fe with 13 and 12 variables respe
tively, there are less than 10000possible solutions in total for the sele
tion problem, and sear
h algorithmsshould return the global minimum for these data sets. However, only FBSis able to do so on both of them in all 10 runs, and GA only on Santa Fe.TS has trouble �nding these in some runs, mostly due to high tenure value



CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS 39Dataset DT value Sele
tion S
alingFBS TS GA FBS TS GAAnthrokids Mean 0.00872 0.00878 0.01316 0.01419 0.01432 0.00856Std 0.00073 0.00030 0.00148 0.00102 0.00186 0.00049Min 0.00840 0.00844 0.01183 0.01273 0.01233 0.00799Max 0.01078 0.00918 0.01512 0.01556 0.01681 0.00907ESTSP 2007 Mean 0.01368 0.01312 0.01480 0.01452 0.01427 0.01254Std 0.00024 0.00026 0.00033 0.00072 0.00088 0.00019Min 0.01339 0.01257 0.01425 0.01326 0.01309 0.01217Max 0.01410 0.01345 0.01515 0.01571 0.01596 0.01290Housing Mean 0.07104 0.07123 0.07113 0.05816 0.05871 0.05690Std 0.00000 0.00040 0.00030 0.00142 0.00610 0.00119Min 0.07104 0.07104 0.07104 0.05518 0.05558 0.05578Max 0.07104 0.07199 0.07199 0.06073 0.07591 0.05948Santa Fe Mean 0.01647 0.01783 0.01647 0.01112 0.01163 0.01053Std 0.00000 0.00145 0.00000 0.00070 0.00086 0.00073Min 0.01647 0.01647 0.01647 0.00954 0.01095 0.00942Max 0.01647 0.02097 0.01647 0.01221 0.01334 0.01115Te
ator Mean 0.01485 0.01310 0.01702 0.02372 0.02588 0.01388Std 0.00175 0.00098 0.00064 0.00222 0.00382 0.00025Min 0.01327 0.01114 0.01624 0.02104 0.02175 0.01365Max 0.01944 0.01387 0.01844 0.02758 0.03495 0.01442Table 5.3: Performan
e 
omparison of Forward-Ba
kward Sear
h, TabuSear
h and Geneti
 Algorithm for sele
tion and dis
retized s
alingof 5 for both. Nevertheless, TS has mu
h better results in data sets withlarge number of variables, parti
ularly for Te
ator, for whi
h it found thebest minimum value, even outperforming GA for s
aling.The results of GA for sele
tion are disappointing, whi
h suggest that GAhas problems 
onverging to some lo
al minima. However, its performan
ein s
aling problem is noti
eably superior to those of FBS and TS, and evensurpasses the sele
tion results of FBS/TS (ex
ept for Te
ator). In s
aling,the exploration 
apabilities of GA are more evident, while FBS and TS bothhighly depend on initial solution.Table 5.4 shows the 
omputation time of the three algorithms for Anthrokids,ESTSP 2007 and Te
ator data sets. Also shown is the per
entage of this timeused for generating new solutions. It is 
lear that most of the optimization isspent on DT evaluations. As expe
ted, the GA has the highest time spent ongenerating new populations, due to the 
omplexity of its operator whi
h alsoinvolves generating random numbers. Random number generation is absentin both FBS and TS. The surprising result was the time spent by FBS and TSon Anthrokids data, with TS having roughly 40% faster running time on thesame number of DT evaluations. Figure 5.1 explains this observation. TSstarting from one initial position favors moves toward those regions of spa
e



CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS 40Data FBS TS GAtime % time % time %Anthrokids 361.5 0.16 217.5 0.04 442.4 1.64ESTSP 2007 98.9 0.22 100.5 0.04 99.5 1.62Te
ator 17.5 0.18 16.3 0.10 24.8 2.42Santa Fe 30.1 1.68 29.7 0.24 29.6 1.81Housing 22.8 1.68 24.6 0.31 20.5 1.79Table 5.4: Average running time in se
onds and per
entage of that time spentof generating new solutions. Given values are for the sele
tion problem.that have less variables sele
ted in the solution. Combining this results withDT values from Table 5.3, TS is able to �nd solutions with DT values onthe same level as FBS, but with smaller number of variables. This e�e
tivelyredu
es the 
omputation time whi
h goes up to 40% for Anthrokids, whilefor the other data sets there is no 
lear distin
tion.

2000 4000 6000 8000
0

20

40

60

80

100

Evaluations

%
 o

f s
el

ec
te

d 
va

ria
bl

es

 

 

FBS TS GA

Figure 5.1: Per
entage of sele
ted variables throughout the exe
ution ofForward-Ba
kward Sear
h, Tabu Sear
h and Geneti
 Algorithm for An-throkids data.Figure 5.2 shows the evolution of the DT value as a fun
tion of DT evalu-ations. As dis
ussed, GA does poorly in sele
tion, while in s
aling its no-ti
eably better. TS has better performan
e on average over FBS in lateriterations sin
e it sear
hes from a single initial solution, while FBS is betterin �rst 1000-2000 DT evaluations bene�ting from several starting points. Insele
tion 
ase, we see that GA is able to �nd promising regions of solutionspa
e in the �rst 
ouple of evaluations, but is unable to 
onverge. Having inmind exploratory 
apabilities of GA and lo
al 
onvergen
e of TS, a hybrid
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h was developed in [2℄ with superior result than all three algorithmspresented here.
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(f) S
aling on Te
ator dataFigure 5.2: Performan
e of Forward-Ba
kward Sear
h, Tabu Sear
h and Ge-neti
 Algorithm as a fun
tion of the number of DT evaluations.For all previous experiments, GA is set up as binary 
oded GA, both forsele
tion and for s
aling. In the 
ase of s
aling, the alphabet 
onsists of s
al-ing weights from a dis
retized [0, 1] range. The next experiment investigateswhether this restri
tion a�e
ts the results of the GA. Table 5.5 shows thedi�eren
e between DT values obtained with dis
retized s
aling (BCGA) andpure s
aling (RCGA).The performan
e of BCGA and RCGA in the s
aling problem are quite



CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS 42Data BCGA RCGAAnthrokids 0.00856 0.00894ESTSP 2007 0.01254 0.01253Housing 0.05690 0.05524Santa Fe 0.01053 0.00966Te
ator 0.01388 0.01385Table 5.5: Average DT values for Binary Coded and Real Coded Geneti
Algorithm in variable s
aling.similar and neither is 
learly the best 
hoi
e in terms of average DT value.The advantage of RCGA over BCGA is the absen
e of rounding of genes tomat
h the s
aling weights in set H , whi
h saves time in ea
h generations.Therefore, we use Real-Coded GA in the rest of the experiments, whi
h alsorelieves the burden of 
hoosing the right set of s
aling weights H . Followingse
tion explains how 
an we further lower the value of the DT by smartlyinitializing the population.5.3 Custom Initialization of Population for Ge-neti
 AlgorithmAs shown in Figure 5.1, majority of solutions had less than 50% of sele
tedvariables. With this in mind, the initialization of population of GA wasmodi�ed to take this into a

ount, that is, the population is 
reated to havea lot of zeros among the individuals.This new approa
h involves having a per
entage of the initial population withlots of zero values, while the rest is 
reated in standard way by sampling fromuniform distribution. Table 5.6 shows the e�e
t of having many zeros in theinitial population for the s
aling problem. In this experiment, the stopping
ondition for GA is 50 generations, while retaining the same population sizeof 150. The table only shows the splitting of the population into two partsand their respe
tive per
entages, while the a
tual 
reation of the individual
onsists of distributing 90% of zero genes randomly along d dimensions, andthe 10% rest of the genes take values from uniform distribution over [0, 1]range. The 
ustom 
reation 
an also be applied to proje
tion, where elementsin proje
tion matrix are set to zero in a similar manner. The only di�eren
eis the sampling of values for the non-zero genes, whi
h in the proje
tion 
aseis done by taking random samples from [−1, 1] range.
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ator Anthrokids Santa Fe ESTSP0%/100% 0.0554 0.0134 0.0083 0.0101 0.012310%/90% 0.0551 0.0133 0.0079 0.0099 0.012220%/80% 0.0553 0.0127 0.0077 0.0096 0.012330%/70% 0.0554 0.0124 0.0076 0.0099 0.012340%/60% 0.0550 0.0118 0.0075 0.0091 0.012350%/50% 0.0552 0.0109 0.0073 0.0091 0.012360%/40% 0.05491 0.0110 0.0073 0.0091 0.012270%/30% 0.0548 0.0105 0.0073 0.0087 0.012480%/20% 0.0553 0.0098 0.0072 0.0085 0.012490%/10% 0.0549 0.0092 0.0071 0.0080 0.0124100%/0% 0.0605 0.0087 0.0073 0.0080 0.0126Table 5.6: Average DT values 
al
ulated for several initialization ratios forthe Geneti
 Algorithm.From Table 5.6 we see the advantage of introdu
ing many zero genes forthe s
aling problem. The best mean values are marked in bold, and the onlydata set not bene�ting from this zero insertion is ESTSP. However, the resultsfor this data set are quite similar for any 
ustom/uniform initialization andhaving many zero genes does not degrade performan
e too mu
h. The bestoverall improvement is found for Te
ator (more than 68% in some 
ases),whi
h 
an be attributed to very high dimensional data, out of whi
h onlyfew tens of variables are needed for lower DT values. Comparing the bestresults from Table 5.6 to those in Table 5.3, with 
ustom initialization GA isable to rea
h lower DT than in 10000 evalutions without it (50 generationswith population size of 150 a

ounts for 7500 DT 
alls).For the rest of the thesis we use this 
ustom initialization for GA, but weslightly modify per
entages of zero genes in individuals. The setup is asfollows: 80% of the individuals have many zeros, while the remaining 20% are
reated in a standard way by 
hoosing randomly from a uniform distribution.The 
ustom individuals are further divided into three equally sized parts inwhi
h individuals have di�erent number of zero genes. First part 
onsistsof individuals with 90% of zero genes pla
ed randomly over d dimensions,while the rest of the genes are randomly initialized. Se
ond part 
onsistsof individuals with 80% of zero genes, while the third part has 70% of zero



CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS 44genes in its individuals. Table 5.7 presents this 
ustom initialization.Standard Custom Initialization, 80 % of the population20 % Part 1 Part 2 Part 3100 % 90 % zeros 80 % zeros 70 % zerosRandom 10 % Random 20 % Random 30 % RandomTable 5.7: Summary of the 
ustom initialization of the GA population. Genesto be set to zero are sele
ted randomly.The splitting of the 
ustom part into three segments should be able to makethis pro
ess suitable for data sets with di�erent number of variables. Forsmall d ≤ 20, 10% is only 2 variables, whi
h is sometimes not enough tofor predi
tion of the output variable. The 
ustom part is set to a value lessthan 100% of the population to initialize the rest of the population as diverseas possible for all genes. This is parti
ularly noti
eable for Housing data inTable 5.6, where the DT values degrade with this absen
e of diversity.5.4 Improvements on Parallel Ar
hite
turesThis se
tion shows the bene�ts that are obtained by adding parallel pro-gramming to the serial GA. The serial version was designed as des
ribed inSe
tion 4.3.2 and that setup was used for the experiments in the previousse
tion. However, the evaluation of the individuals was performed on a singlepro
essor.For the tests with parallel programming, the GA parameters are the same asdes
ribed, ex
ept for the two things: 
ustom initialization is repla
ed with thestandard random, and the 
rossover type was one-point 
rossover instead ofthe better performing BLX-α. The stopping 
ondition was set to 600 se
ondsto easily 
ompare serial and parallel implementations. The setup was testedon three data sets (Anthrokids, ESTSP 2007, Te
ator) and two problems(sele
tion and dis
retized s
aling). The Te
ator data set was normalizedvariable-wise for this experiment instead of the sample-wise normalization asbefore. In this se
tion, we are more interested in the the e�e
t of in
reasingthe number of pro
essor to the optimization of the DT, and less on the a
tualminimization. The performan
e is presented in Table 5.8 for di�erent numberof pro
essors (np) used, in
luding a statisti
al analysis of the value of DTand the number of generations evaluated.
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t of in
reasing the number of pro
essor in the num-ber of generations done by the algorithm for a 
onstant number of individ-uals. As it was expe
ted, if the number of individuals in
rease, the numberof generations is smaller. This e�e
t is 
ompensated with the introdu
tionof more pro
essors that in
rease almost linearly the number of generations
ompleted. The linearity is not that 
lear for small population with 50 indi-viduals sin
e the 
ommuni
ation overhead starts to be signi�
ant. However,large population sizes guarantee good s
alability for the algorithm.
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ator dataFigure 5.3: Number of 
ompleted generations for di�erent population sizes(50,100,150).



CHAPTER5.EXPERIMENTS:SEARCHALGORITHMS
46

Data set Population Measurement Sele
tion S
alingnp=1 np=2 np=4 np=8 np=1 np=2 np=4 np=8Anthrokids 50 Mean (DT) 0.01278 0.01269 0.01204 0.01347 0.01527 0.01425 0.01408 0.0142Mean (Generations) 35.5 74.8 137.8 169.3 16.7 35.3 70 86100 Mean (DT) 0.01351 0.01266 0.01202 0.0111 0.01705 0.01449 0.0127 0.01285Mean (Generations) 17.2 35.4 68.8 104 8.5 17.3 35 44.5150 Mean (DT) 0.01475 0.01318 0.01148 0.01105 0.01743 0.0151 0.01328 0.01375Mean (Generations) 11 22.7 45.6 61 5.7 11.2 23.2 31Te
ator 50 Mean (DT) 0.13158 0.14297 0.13976 0.1365 0.14151 0.147 0.14558 0.1525Mean (Generations) 627 1129.4 2099.2 3369.5 298.1 569.5 1126.6 1778.5100 Mean (DT) 0.13321 0.13587 0.13914 0.13525 0.14507 0.14926 0.14542 0.1466Mean (Generations) 310.8 579.6 1110.4 1731 154.4 299.9 583 926.5150 Mean (DT) 0.13146 0.1345 0.13522 0.1323 0.14089 0.15065 0.14456 0.1404Mean (Generations) 195 388.1 741.2 1288 98.3 197.8 377 634.5ESTSP 2007 50 Mean (DT) 0.01422 0.01452 0.01444 0.01403 0.01401 0.01413 0.014 0.0142Mean (Generations) 51 99.2 190.8 229 29.1 57.6 113.8 126.7100 Mean (DT) 0.01457 0.01419 0.01406 0.01393 0.01445 0.01414 0.01382 0.01393Mean (Generations) 24.8 50.5 93 128.7 14 27.9 57.8 67.7150 Mean (DT) 0.01464 0.01429 0.01402 0.0141 0.01467 0.01409 0.01382 0.01325Mean (Generations) 16.6 33.6 63.2 82.5 9.1 18.7 37.6 49.5Table 5.8: Performan
e of serial and parallel implementations on three data sets.



Chapter 6Appli
ation to Time SeriesPredi
tionIn this 
hapter, we 
losely investigate DT minimization on di�erent problemtypes (s
aling, proje
tion, s
aling + proje
tion, �xed variants) in the domainof time series analysis and predi
tion. For these experiments, only GA isused sin
e it is the best performing algorithm in the s
aling problem. Theversion without dis
retization is 
hosen. In the following se
tions, we arealso 
onsidering proje
tion problems, where a proje
tion matrix 
ontains realvalues. Thus, with the use of RCGA, we are avoiding the setup of dis
retizedvalues for both the s
aling and proje
tion.6.1 Delta Test Minimization on Di�erent Prob-lemsFirst, we investigate how DT behaves on di�erent problem types mentionedin Chapter 3. These types are: sele
tion, s
aling, proje
tion, s
aling + pro-je
tion, �xed s
aling and �xed s
aling + proje
tion. Four time series are usedas a ben
hmark for the performan
e of DT optimization: Santa Fe, Ma
keyGlass 30 [72℄, ESTSP 2008a [73℄ and Darwin SPL [74, 75℄, with Table 6.1giving the number of values in ea
h series and the 
hosen regressor sizes.Out of these four series, only ESTSP 2008a has been prepro
essed in orderto remove the trend. The �nal series was obtained by taking the �rst orderdi�eren
e.As was the 
ase with previous experiments, all data sets are normalizedto zero mean and unit varian
e, in
luding the output variable. For this47



CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION 48Name Values Regressor sizeSanta Fe 1000 12Ma
key Glass 30 1500 20ESTSP 2008a 354 20Darwin SPL 1400 15Table 6.1: Time series used for di�erent variable sele
tion problems.experiment, no splitting of data sets was performed (i.e. training and testsets), be
ause we are interested in the minimization of the DT without modelbuilding. Optimizations are done only for the �rst horizon of predi
tion (one-step ahead), while the stopping 
ondition for the GA is set to 200 generationsallowing the algorithm to �nd solutions with high �tness. The a
tual modelbuilding for long-term predi
tion is done in Se
tion 6.2.For easier notation in this se
tion, we use SL as an abbreviation for mini-mization of DT in variable sele
tion, S for variable s
aling, SP for s
aling +proje
tion (SP-k when proje
tion dimension is k), FS for �xed s
aling (FS-dfwhen df variables are �xed), and FSP for �xed s
aling + proje
tion (FSP-
df -k for the problem with df �xed variables and k proje
tion dimensions).For all the setups of parameters, the optimization pro
ess is done 10 timesfor ea
h sele
tion problem.6.1.1 DT Performan
eThe average DT values 
omputed for ea
h problem and for ea
h data set areplotted in Figure 6.1. For these experiments, we set k = 1 and df = ⌈d/2⌉,resulting in SP-1, FS-⌈d/2⌉ and FSP-⌈d/2⌉-1.Looking at the results in Figure 6.1, we are able to rea
h lower DT values forall problems 
ompared to pure variable sele
tion. The best result is obtainedfor SP-1 in all 
ases. In
lusion of proje
tion leverages the possibility of usinga newly 
reated variable to gain an advantage over s
aling alone. We seethat with one additional variable in
luded to the data, we are able to lowerDT by a large margin in some data sets (almost 100% for Ma
key Glass 30).In general, the �xed variations provide slightly worse DT values than theirstandard 
ounterparts (e.g. Santa Fe, Ma
key Glass 30), meaning that learn-ing models will be able to give similar performan
e on the halved data set.Sin
e only half of the variables are used, the training times of models willgreatly bene�t from this redu
tion. The �xed version also gives an insightinto the most relevant variables, and in these experiments the ⌈d/2⌉ most
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(d) Darwin SPLFigure 6.1: DT performan
e (average and minimum values) for four timeseries.important dimensions for predi
tion. For the ESTSP 2008a data set, valuesof �xed s
aling are not on the same level as those of pure s
aling, suggestingthat more than d/2 variables are required for better predi
tion.6.1.2 Computational TimeA 
omputational time 
omparison of sele
tion problems is shown in Figure6.2.It is noti
eable that SP-1 sometimes requires less 
omputational time toperform the 200 generations than s
aling, and even getting 
lose to or slightlyimproving (Darwin SLP) times 
omputed for pure sele
tion. This might seem
ontradi
tory, as the size of the individuals is twi
e the size of those usedfor s
aling in GA setup. Although the 
omputational time for GA doubleswhen moving from s
aling to SP-1, the running time of DT optimization isdominated by nearest neighbor sear
h (Se
tion 2.1). The faster 
al
ulationtime for DTSP-1 
ould be attributed to the 
onstru
tion of the underlyingdata stru
ture of approximate nearest neighbors, whi
h uses a hierar
hi
alspa
e de
omposition tree 
alled balan
ed-box de
omposition (BBD) tree [30℄.



CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION 50
SL S SP FS FSP

0

50

100

150

200

Problem

S
ec

on
ds

(a) Santa Fe SL S SP FS FSP
0

50

100

150

200

Problem

S
ec

on
ds

(b) ESTSP 2008a
SL S SP FS FSP

0

100

200

300

400

Problem

S
ec

on
ds

(
) Ma
key Glass 30 SL S SP FS FSP
0

200

400

600

800

Problem

S
ec

on
ds

(d) Darwin SPLFigure 6.2: Average running times obtained for four time series.Additional dimensions might lead to favorable splitting of the points/samplesinto leafs of the tree, eventually improving response time for query sear
hes.The �xed versions gave good results in terms of DT values for some datasets, but their 
omputational times are generally higher than their non-�xedversions. When using multi-obje
tive optimization there is an additional 
ostinherent in NSGA-II method, whi
h sorts solutions based on the dominan
enotion. The additional O(mp2) 
omplexity of NSGA-II for p = 150 slightlyin
reases the running time for most data sets. The ex
eptions are ESTSP2008a and Darwin SPL series, where the 
omputational time for �xed meth-ods is lower than for their non-�xed 
ounterparts.Casting the s
aling problem with a �xed number of variables into multi-obje
tive setting in
reases the run time on the tested data sets. In orderto a
hieve lower running times, the number of individuals in the populationhas to be redu
ed, whi
h in�uen
es the exploration 
apabilities of the GAin a negative way. The additional 
omputational time of NSGA-II preventsit from being used in this type of problem. Therefore, faster and simplerte
hniques should be employed to lower the running times of the �xed s
aling(plus proje
tion) problem. One su
h possibility is island GA with migrationpoli
ies whi
h do not have su
h high 
omplexity.



CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION 51In the next se
tion, the 
omputational time for s
aling + proje
tion is furtheranalyzed for several values of k.6.1.3 Proje
tion to many DimensionsFrom the previous results one 
an extra
t the 
on
lusion that SP-1 has 
learlyoutperformed the rest of the methods while still keeping reasonably low 
om-putational times in many s
enarios. Following experiment 
ompares DT val-ues and 
omputational time when proje
tion is done to k = {1, 2, 3, 4, 5}dimensions. Figure 6.3 illustrates the DT results obtained and Figure 6.4represents the 
omputational time evolution.
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(d) Darwin SPLFigure 6.3: SP-k results using proje
tion to k = {1, 2, 3, 4, 5} dimensions forfour time series.By looking at the results it is easy to observe that, for all data sets, the valueof DT has an optimum value after whi
h it starts to rise again when addingmore proje
tions. With Algorithm 3.1 this value is rea
hed if we start from
k = 1. The downside of this approa
h is huge 
omputational 
ost, as for ea
hproje
tion dimension one has to run GA several times in order to get reliableDT estimate. Algorithm 3.1 will miss the 
orre
t value of k for Santa Fe andDarwin SPL series. However, the improvement in these 
ases is negligible
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(d) Darwin SPLFigure 6.4: Average running times obtained for SP-{1, 2, 3, 4, 5} for four timeseries.if we take into a

ount the additional number of parameters needed for theproje
tion matrix (in both 
ases there are extra 2d parameters).The adjustable number of proje
tions aids in obtaining lower DT values. Theprogression of the DT 
urves as a fun
tion of k shows a minimum where theoptimum DT has been registered. As we only tested proje
tions to k ≤ 5dimensions, better values may be found for higher values of k, at the expenseof 
omputational time. The in
rease in 
omputational time as a fun
tionof k is sometimes irregular (Darwin SPL and ESTSP 2008a), while for theother two series it shows in
reasing tenden
y as expe
ted due to the in
reasednumber of parameters.Finally, the lowest DT values a
hieved for ea
h data set and the 
orrespond-ing problem are listed in Table 6.2.



CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION 53Data set Problem Minimum DTSanta Fe SP-1 / SP-3 0.0051 (11.22)ESTSP 2008a SP-4 0.2122 (2.13)Darwin SLP SP-5 0.0686 (0.466)Ma
key Glass 30 SP-2 0.0015 (1.2E-4)Table 6.2: Minimum DT values obtained for tested time series (denormalizedvalues in bra
kets).6.2 Long-Term Predi
tion using OP-ELMFinally, we integrate variable sele
tion aspe
ts with the model building stepinto one global methodology, depi
ted in Figure 6.5. The high-dimensionaldata is �rst proje
ted based on input sele
tion 
arried out with Delta Testand Geneti
 Algorithm. After this proje
tion, the OP-ELM method is usedfor the a
tual predi
tion of future values. The term proje
tion en
ompassesall sele
tion problems as explained in Se
tion 3.3, and in the experiments wetest the following problems: s
aling, proje
tion and s
aling + proje
tion.

Figure 6.5: Global methodology for long-term times series predi
tion.The predi
tions are done by inspiring new methodology � Optimally-PrunedExtreme Learning Ma
hine [64℄ (OP-ELM). OP-ELM has its roots from theELM [65℄ prin
iple of fast training of a Single Layer Feed-forward NeuralNetwork. The OP-ELM improves the novel ELM 
on
ept by pruning out theunne
essary neurons, thus making the estimation more reliable and stable.The OP-ELM does not require any extra parameters 
ompared to the ELM.The proposed methodology is tested on two time series: ESTSP 2007 andESTSP 2008b 
ompetition data. Before applying the �rst step (variableproje
tion) of the methodology, both time series are prepro
essed in order



CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION 54to remove trend and/or seasonality. These prepro
essing steps are explainedfor both series in the following se
tions.6.2.1 ESTSP 2007 Competition DataThis dataset is from a predi
tion 
ompetition organized in the EuropeanSymposium of Time Series Predi
tion 
onferen
e (ESTSP) in 2007. Thedataset has 875 samples and it is shown in Figure 6.6.
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Figure 6.6: ESTSP 2007 
ompetition data.There is a 
lear seasonality present throughout the data, ex
ept around timepoint 400. Sin
e the data seems to be 
orrupted or otherwise 
ompletelydi�erent from the rest of the data, some portion of the data is removed priorto any other prepro
essing. In order to keep the phase 
orre
t, two fullsequen
es of 52 values were removed.After removing some data points, the modi�ed series was separated intolearning and test sets. First two thirds of the data was used for the learning,while the remaining third served as a test set. The regressor size of 601 was
hosen to 
apture the seasonality plus some extra values. The learning andtest sets 
ontain 406 and 148 samples, respe
tively. The goal is to predi
tnext 50 values of the series.The next step after splitting involved �tting a sawtooth wave into the learningdata, then removing this wave from both data sets, in order to get rid of theseasonality. In other words, the prepro
essing for the test set is done onlybased on the information available in the learning set.1This series had a di�erent regressor size (55) in the previous experiments.
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essed learning data shown in Figure6.7.
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Figure 6.7: ESTSP 2007 learning data after prepro
essing.6.2.2 ESTSP 2008b Competition DataLike the previous dataset, this one is also from a predi
tion 
ompetition,ex
ept this one is taken from the ESTSP 
onferen
e organized in 2008. Theseries is a se
ond series out of three given in the 
ompetition, and 
onsistsof 1300 values shown in Figure 6.8. Before any prepro
essing steps, the dataset was divided into learning and test sets 
ontaining the �rst two thirds andthe last third, respe
tively. After initial tests with OP-ELM with di�erentregressor sizes, the 
hosen size was set to 50. Thus, the number of samplesis 717 and 285 for the learning and test set respe
tively. The goal for this
ompetition data is predi
tion of the next 100 values.For this data set, two prepro
essing steps were used. First one takes 
are ofthe 
lear upward jump around time point 600 and the se
ond one deals withthe seasonality of the series. Both steps are done using only the informationavailable in the learning set, even when prepro
essing the test set.Step fun
tion �tting found the exa
t pla
e of the jump at time point 588. Thelarge s
ale seasonality was removed using a double square wave. Finally, thestandard deviation of the data was removed a

ording to the �tted doublesquare wave, in the high parts and in the low parts separately. The result ofprepro
essing gives the data shown in Figure 6.9.
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Figure 6.8: ESTSP 2008b 
ompetition data.
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Figure 6.9: ESTSP 2008b learning data after prepro
essing.6.2.3 Predi
tion Performan
eFor the long-term predi
tion, we use the Dire
t Strategy, whi
h has provento be a

urate and easily implementable 
hoi
e [35℄. This means that 1) aproje
tion matrix is optimized and 2) a model is build on top of proje
teddata for ea
h predi
tion horizon. On
e the data is proje
ted, the OP-ELM istrained, and later used to predi
t the future samples. Table 6.3 summarizesthe performan
e of OP-ELM) for both series on the our test set and the a
tualtest. Our test 
onsists of samples obtained by splitting the series (denoted
T1 in the table) and the a
tual test set are the values from the 
ompetition(denoted T2). The performan
e on the data sets with all variables in
ludedis also given for 
omparison (denoted �original� in the table).In both data sets, the predi
tions on proje
ted data are always the highest,



CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION 57Data set Problem MSE(T1) MSE(T2)ESTSP 2007 original 0.6376 0.8033s
aling 0.6231 0.8525proje
tion 0.7824 1.1829s+p 0.6413 0.8419ESTSP 2008b * original 2.5996 1.8181s
aling 2.5963 1.7381proje
tion 2.8181 2.1515s+p 2.6108 1.8114* error in s
ale of ×1016Table 6.3: Summary of the average test errors over all predi
tion horizonsfor all methods.suggesting that linear proje
tion does not suit OP-ELM model. On theother hand, proje
tion is a di�
ult task with large number of parameters,and the �nal proje
tion dimension may be mu
h lower than desired for timeseries predi
tion. The new approa
h with s
aling + proje
tion produ
esmixed results, with better results in ESTSP 2007 series. Finally, the rankingof approa
hes with test set T1 roughly 
orresponds to the ranking on thetest set T2. For ESTSP 2008b s
aling is the best on both test sets, withoriginal and s
aling + proje
tion swit
hing pla
es. In general, it is surprisingthat no input sele
tion approa
h has su
h good performan
e, 
onsidering theregressor sizes of 60 (ESTSP 2007) and 50 (ESTSP 2008b).Figure 6.10 shows the values of the Delta Test for all predi
tion horizons forthree types of problems, plus the original data is in
luded for 
omparisonpurposes.As we 
an see, the s
aling+proje
tion obtains the lowest DT values, while andthe original data sets using all unpro
essed inputs have the highest values.Comparing this ranking with the results presented in Table 6.3, the OP-ELM a
hieves roughly the same performan
e with all sele
tion aspe
ts, eventhough the s
aling+proje
tion obtains the lowest DT. The improvement isroughly 40% and 50% for ESTSP 2007 and ESTSP 2008b series respe
tively.The 
orresponden
e between the DT values and the a
tual performan
e ofthe predi
tion methodologies warrants further study.The �nal predi
tion for both series are shown in Figures 6.11 and 6.12.
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(b) ESTSP 2008b data.Figure 6.10: Delta Test values for original (O), proje
ted (P), s
aled (S) ands
aled+proje
ted (S+P) data for all predi
tion horizons.
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Figure 6.11: ESTSP 2007 
ompetition data. Predi
tion for 50 steps ahead.Solid line represents the real data and dashed one the predi
tion.
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Figure 6.12: ESTSP 2008b 
ompetition data. Predi
tion for 100 steps ahead.Solid line represents the real data and dashed one the predi
tion.



Chapter 7Con
lusionsIn this thesis, we present several aspe
ts of variable sele
tion using DeltaTest as relevan
e 
riterion. New aspe
t or problem types of, i.e. �xed s
alingand s
aling + proje
tion, are introdu
ed and their in�uen
e on DT optimiza-tion 
ompared to the standard approa
hes (sele
tion, s
aling and proje
tion).Overall, the best values are obtained with the 
ombination of s
aling and pro-je
tion, while the optimization 
ost is slightly in
reased, both in the numberof parameters of the proje
tion matrix and nearest neighbor 
al
ulation time.The s
aling with �xed number of variables provides e�
ient way of �nd-ing the most useful small subset of variables for the a
tual regression task.Unfortunately, 
asting this type of problem into a multi-obje
tive setting in-
reases the run time on the tested data sets. The algorithm, NSGA-II, withnon-dominated sorting algorithm prevents it from being used in this type ofproblem. Therefore, faster and simpler te
hniques should be employed tolower the running times of the �xed s
aling (plus proje
tion) problem. Onesu
h possibility is island GA with migration poli
ies that do not have su
hhigh 
omplexity.Three sear
h algorithms (Forward-Ba
kward Sear
h, Tabu Sear
h, Geneti
Algorithm) are tested in two di�erent problem domains: sele
tion and dis-
retized s
aling. Tabu Sear
h has proven to be a better 
hoi
e for higher-dimensional data in variable sele
tion, while retaining the simpli
ity in theform of Simple Tabu Sear
h, whi
h uses only short-term re
en
y based mem-ory. This algorithm is easily extended from Forward-Ba
kward Sear
h withadditional 
he
ks for tabu status. Geneti
 Algorithm does not provide satis-fa
tory results in sele
tion, but its me
hanism is more suitable for 
omplexproblems (proje
tion), and its exploration 
apabilities have proved to over-
ome both tested neighborhood te
hniques (FBS, TS). The setup of GA is60
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lude the full interval [0, 1] of s
aling weights, whi
h makes theproblem fully 
ontinuous. For future work, other population based algorithmsthat are designed for 
ontinuous solution spa
es, su
h as Di�erential Evolu-tion and Parti
le Swarm Optimization, remain to be tested and 
ompared tothe performan
e of GA. Repla
ing serial GA with a parallel implementationallows the algorithm to explore more solutions in the same amount of time,enabling faster results for all sele
tion problems.Finally, variable sele
tion using DT and GA has been in
luded into globalmethodology for long-term time series predi
tion. For predi
tion purposes,we used OP-ELM, a fast and a

urate methodology suitable for the task oflong-term predi
tions using Dire
t strategy. The methodology is tested ontwo 
ompetition time series using di�erent approa
hes to variable sele
tion:no input sele
tion, s
aling, proje
tion, and the 
ombination of both. The re-sults are not as expe
ted, with the �rst approa
h (no input sele
tion) being onthe same level as s
aling and s
aling + proje
tion, even though the DT valuesare substantially redu
ed in all 
ases. Although proje
tion approa
h did notprovide satisfa
tory results, it still provides the user with proje
ted lower-dimensional data, whi
h 
an be 
ru
ial for methods that 
annot e�e
tivelyhandle data sets with large number of dimensions. However, the additionaldimensions added to the s
aling problem 
an improve the predi
tions withsmall extra 
omputational 
ost.For further work, this relationship between the DT values and the a
tualmodel performan
e will be studied. Also, the obtained proje
tion perfor-man
e will be evaluated in even more high-dimensional 
ases, to ensure thevalidity of the global sear
h ability of the GA and to study the limits of thesear
h.
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