HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Information and Natural Sciences
Department of Information and Computer Science

Fast Variable Selection using Delta Test

Master’s Thesis

Dusan Sovilj

Department of Information and Computer Science
Espoo 2009

HELSINKI UNIVERSITY OF ABSTRACT OF
TECHNOLOGY MASTER’S THESIS
Faculty of Information and Natural Sciences

Department of Information and Computer Science

Author: Dusan Sovilj
Title of thesis:
Fast Variable Selection using Delta Test

Date: August 30" 2009 Pages: 12 +
Professorship: Computer and Information Science Code: T-115
Supervisor: Professor Olli Simula

Instructor: Docent Amaury Lendasse

Data nowadays are easy to acquire and measure, becoming increasingly
high dimensional. These data are later used for prediction, clustering
and other decision-making tasks. However, high-dimensional data often
impose a burden by themselves to learning models, restricting them to
poor generalization performance.

Variable selection is one way of fighting this problem. It consists of two
parts: relevance criterion and search algorithm. In this thesis, Delta Test
constitutes a foundation for variable selection as a relevance criterion,
while three search algorithms are tested for optimization purposes in this
problem: Forward-Backward Search, Tabu Search and Genetic Algorithm.

Different aspects of selection are also considered: scaling, projection, the
combination of scaling plus projection, and the scaling with fixed num-
ber of variables. Each aspect of selection has different influence on the
optimization performance and computation time.

Delta Test is the most important part of the whole methodology. All
mentioned search algorithms and aspects of selection are tested on real-
world data sets and their performance compared. Finally, we test the
usefulness of variable selection with Delta Test in long-term time series
prediction task using two competition data sets organized by European
Symposium on Time Series Prediction.

Keywords: variable selection, delta test, time series prediction,
forward-backward search, tabu search, genetic algorithm
Language: English

il

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA
Informaatio- ja luonnontieteiden tiedekunta
Tietojenkasittelytieteen laitos

Tekija: Dusan Sovilj
Tyon nimi:
Fast Variable Selection using Delta Test

Paiviys: 30. elokuuta 2004 Sivumaéaira: 12 +
Professuuri: Informaatiotekniikka Koodi: T-115

Ty6n valvoja: professori Olli Simula
Ty6n ohjaaja: dosentiksi Amaury Lendasse

Datan méara kasvaa koko ajan. Helpommat mittausmenetelmét ja jatku-
vasti kasvava tallennuskapasiteetti mahdollistaa entistd suuremmat ja mo-
niulotteisemmat datajoukot. Monet paidtoksentekoprosessit, datasta en-
nustaminen ja muu datasta oppiminen vaikeutuvat huomattavasti moniu-
lotteisuuden takia, johtaen epétarkkoihin malleihin ja tuloksiin. Muuttu-
janvalinnalla pyritddan helpottamaan néitd ongelmia.

Muuttujanvalinnassa on kaksi tidrkedd osa-aluetta: hakualgoritmi muut-
tujien valintaan ja muuttujien relevanssin mittaaminen. T#ssé tyGssa rel-
evanssin mittaamiseen kiytetddn Deltatesti -menetelméd yhdessd kolmen
eri hakualgoritmin kanssa: Forward-backward search, Tabu search seké
geneettiset algoritmit.

Suoraviivaisen valitsemisen ohella muuttujia voidaan myds painottaa eri
kertoimilla tai projisoida uuteen muuttuja-avaruuteen. Myo6s erilaiset
yvhdistelmédt muuttujien muokkaamiseen ovat mahdollisia ja vaikuttavat
eri tavoin hakualgoritmin ja relevanssimittauksen toimintaan ja suoritu-
saikaan.

Téassa tyossa vertaillaan edelld mainittuja hakualgoritmeja ja muuttujien
muokkauskeinoja seké niiden yhdistelmien tarkkuutta tosielaméan mittaus-
tuloksista koottujen datajoukkojen avulla. Samalla testataan Deltatestin
toimivuutta vaativissa pitkén aikavélin aikasarjaennustamisessa. Kaytetyt
aikasarjat on poimittu kahdesta eri ennustuskilpailusta, jotka jarjestettiin
ESTSP-konferenssien yhteydessd vuosina 2007 ja 2008.

Avainsanat: muuttujien valinta, deltatesti, aikasarjaennustaminen,
forward-backward ja tabu search, geneettiset algoritmit
Kieli: Englanti

iii

Acknowledgements

This thesis would not be possible if it was not for a group of hard-working,
easy-going, good-to-have-around individuals, always ready to assist and solve
the problems of a master student. Sometimes these thank-yous are beyond
reason and span pages and pages of unwanted text, but I will be reasonable
and mention the most important individuals which I encountered during the
my studies and work for the past 2 years.

First comes my supervisor Professor Olli Simula, with his assistance and
understanding in dire times for a master student. The next person I want
to mention is my instructor Docent Amaury Lendasse, but it is really hard
to convey in words the amount of help, readiness, willingness, and patience
he had for me. He will always have my endless gratitude for the time spent
in his TSPCi Group. The Group itself with its members Francesco Corona,
Qi Yu, Mark van Heeswijk, and Emil Eirola also have my thanks. Special
mention goes to Antti for outstanding job acting as a translator, driver,
guide, and other small things related to IXTEX, Linux and faculty. Without
Alberto Guillén and Fernando Mateo, the writing of the thesis would be a
much more troublesome task. Last minute thanks goes to Mark for reading
several versions of the thesis... several times.

Last but not least, many thanks to all my friends, especially those from back
home. Finally, love and thanks to my parents, for always supporting me and
believing in me.

Espoo August 30th 2009

Dusan Sovilj

iv

Abbreviations and Acronyms

DT

NN

ANN

VS

FBS

TS

GA
BCGA
RCGA
NSGA-II
EA

MSE
MO
ESTSP
ELM
OP-ELM
LOO

HQ

Delta Test,

Nearest Neighbor

Approximate Nearest Neighbor
Variable Selection
Forward-Backward Search

Tabu Search

Genetic Algorithm

Binary Coded Genetic Algorithm
Real Coded Genetic Algorithm
Non-dominated Sorting Genetic Algorithm
Evolutionary Algorithms

Mean Square Error
Multi-objective

European Symposium on Time Series Prediction

Extreme Learning Machine
Optimally-Pruned Extreme Learning Machine
Leave-One-Out error

Hannan-Quinn information criterion

Contents

|A.bhnadaﬁ.o.ns_and_A.Qm.u;Lm§] v
[1_Introduction 1
[L1 Publicationd 4
2 Delta Test] 6
|2.| Complexity of Delta Iesﬂ 7
B Variable Scloction. Scall Proection 0
3.1 Variable Selection 10
.2 Variable Scaling 10
B2l Varabk Sealie with Ficed Noohor of Variablad 5

3.3 Variable Projection 13
3.3.1 Automatic Selection of Projection Dimension 14

3.3.2 Combining Scaling and Projection 16

4 Search Algorithms 19
4.1 Forward Search, Backward Search andForward-Backward Searchl 20
4.1.1 Forward-Backward Search in Variable Scaling 21

|4.2 ['abu Searchl 22
4.2.1 Tabu Search for Variable Selectionl 924

14.2.2 Tabu Search for Variable Scaling 25

l4.2.3 Setting the Tabu Conditiond 25

[£.3 Genetic Algorithml 2%

vii

Chapter 1

Introduction

Data are nowadays ubiquitous and plentiful, due to the fact that they have
become rather easy to measure, acquire and store. The data originate from
various sources (sensors, cameras, studies) and can be represented in variety
of forms (image, sound, text, table, graph). Stored data are then used for
pattern extraction, rule extraction, classification, visualization, prediction,
and other machine learning tasks. In other words, the data are used to
gain information and knowledge in order to make decisions. Since it has
become so easy to obtain data, the resulting data sets are in most of the cases
high dimensional, where dimensionality refers to the number of measured
attributes, also called features or variables. Large number of dimensions
characterizes following data: images, where attributes are pixels’ RGB values;
text documents in which features are the words themselves; sound data;
spectral data, where each attribute corresponds to different wavelengths of
light. However, high-dimensional data exhibit counter-intuitive properties
that are understandable in low-dimensional spaces. In fact, these properties
are commonly known as curse of dimensionality [7,[8]. One of the effects of
the curse is the need for exponential number of samples when the dimension
of data increases. This sparsity of samples in such cases often leads to poor
generalization performance of all learning models.

Nevertheless, the severity of this problem can be decreased via variable se-
lection, also called feature selection. Variable selection consist of choosing
the relevant attributes in order to improve the prediction accuracy of the
model. As a result, model trained with relevant set of variables will be able
to outperform model trained with all input variables. Variable selection has
two independent components: relevance criterion and search procedure. The
relevance criterion measures the quality of certain subset of variables with

CHAPTER 1. INTRODUCTION

respect to the prediction accuracy, while the search procedure controls which
subsets are to be examined in the upcoming iterations of the search.

The choice of good relevance criterion will depend on the data set and on the
type of problem at hand: regression or classification. Criteria mainly used
in machine learning community are correlation, mutual information, noise
variance estimation, statistical tests. The focus of the thesis is on regression
problems, with special treatment on time series prediction. For regression
purposes, noise variance estimators give a reliable measure of how accurate
models can be trained with available data. Recently, it has been shown that
one such estimator, Delta Test, is a useful tool in deciding between relevant
and irrelevant variables [9]. Delta Test is a nonparametric noise variance
estimator that is based on nearest neighbor principle and is the foundation
for variable processing throughout the thesis.

Considering search procedures, the commonly employed are Forward Selec-
tion, Backward Pruning and Forward-Backward Selection [10] 1], 12]. Al-
though simple, fast, and easy to implement, these procedures do not neces-
sarily return an optimal solution, known as local minima problem. More-
over, it is infeasible to evaluate all possible subsets of input variables in
high-dimensional spaces, and greedy procedures examine only small portion
of whole solution space. Search procedure should be designed to examine
the solution space on a global scale as well, not just locally as is the case
with greedy ones. Popular alternatives involve algorithms from different do-
mains of optimization, such as Evolutionary Computation (Genetic Algo-
rithm [I3], Differential Evolution [14]), Swarm Intelligence (Particle Swarm
Optimization [I5], Ant Colony Optimization [16]), and other meta-heuristic
approaches (Tabu Search [17], GRASP [18, 19]). In this thesis, we examine
the optimization capabilities of two such algorithms in variable selection do-
main: Tabu Search and Genetic Algorithm, and show the improvement over
standard Forward-(Backward) Search procedure.

Variable selection problem is only a special case of a scaling problem. In
the scaling approach, the goal is to find the weights for all variables, where
weights represent level of importance with respect to the output response.
The weights usually take values from [0,1] range, with 0 meaning that vari-
able has no predictive power, and 1 that variable is the most important for
prediction accuracy. Weights of 0 and 1 correspond to excluded and included
status in variable selection problem, respectively. However, the solution space
in scaling approach grows much faster than that for selection, rendering the
problem that more difficult. In the thesis, we also investigate a special case
of scaling itself. Instead of finding the scaling weights for all variables, which

CHAPTER 1. INTRODUCTION

is very computationally demanding when data sets are high dimensional,
we are restricting the search to only include weights for fixed number of
variables. This problem has been designed as multi-objective optimization
problem, and as such, requires modifications to search algorithms. This spe-
cial case enables us to have quick insight into the most relevant variables for
prediction.

Going further beyond the scaling is the projection, where a projection matrix
is optimized according to the relevance criterion (Delta Test in this thesis).
Projection includes scaling as a special case, and is more suitable if we want
to explicitly alter the dimensionality of data, including all available sam-
ples. Thus, projection is more general than selection and should be able
to reach better results. After the optimization is done, the complete data
set is multiplied from right with the projection matrix to produce the pro-
jected data set, which lies in lower-dimensional space, which depends on the
projection dimension, i.e. the number of columns in the projection matrix.
We also present a special case of projection, which involves projecting the
data to higher dimensional space. This might seem counter-productive from
variable selection/projection perspective, but the main idea is to combine
scaling and projection as separate matrices into a single projection matrix.
With this form of projection, optimization unavoidably takes longer time,
but the computational cost is slightly increased compared to scaling only.
This method is called scaling plus projection.

For the rest of the thesis, we refer to different variable selection approaches
(selection, scaling, projection, scaling with fixed number of variables and
scaling plus projection) as problem types or as aspects, and these two terms
are used interchangeably.

As the final step, we integrate our variable projection using Delta Test with
predictive models into one global methodology for regression tasks. The spe-
cial focus is on time series prediction. This type of prediction is a challenge
in many fields: finance (stock exchange rates and indices); electricity produc-
tion (load for the following days); data processing (flow of information over
networks). The core of the problem is how to analyze and use the past to
predict the future. Many techniques exist for the approximation of the un-
derlying process of a time series: linear methods |20} 2I] and nonlinear ones
[22, 23]. Both types of models try to build a model of the process, which
is used to predict future values based on present and current information.
Predictions are made for immediate samples (short-term prediction) or give
estimations for far-future samples (long-term prediction). Long-term pre-
diction is more challenging because the accumulation of errors and inherent

CHAPTER 1. INTRODUCTION

uncertainties of time yields deteriorated estimates for future samples.

The remainder of the thesis is organized as follows. Chapter [2 provides back-
ground on Delta Test and discusses nearest neighbor computation needed for
computing the Delta Test. Chapter [3 explains variable selection in more de-
tail, and introduces two new problems connected to input selection: scaling
with fixed number of variables and scaling plus projection. In Chapter
three search algorithms are explained in detail: Forward-Backward Search,
Tabu Search and Genetic Algorithm. It also contains the setup of important
parameters for the two latter algorithms, and an explanation about parallel
implementation for Genetic Algorithm. Chapter Bl describes the data sets
used for the experiments and the performance of the search algorithms. In
Chapter [6l we propose a methodology for the time series prediction with vari-
able selection as the first step. This methodology can also be applied to
any regression problem. Finally, Chapter [gives conclusions on the work
presented in the thesis and discusses some future ventures.

1.1 Publications

This section briefly reviews the publications related to the work presented in
this thesis. Publications are sorted in chronological order:

Publication [I] is the first attempt at variable selection using meta-heuristic
optimization method Tabu Search with Delta Test. It is used as a prepro-
cessing step before the actual time series prediction using OP-KNN for the
ESTSP 2008 competition data.

The next related work [2] takes a more in depth look at optimization of
Delta Test, comparing three search algorithms: standard Forward-Backward
Search, Tabu Search and Genetic Algorithm. Advantages and disadvantages
of all three search algorithms are identified and a successful hybridization
of Tabu Search and Genetic Algorithm is presented. The work is further
adapted for parallel architectures, enabling better exploration and results in
the same amount of time as the serial method. The work has been extended
for a journal publication in [3].

Publication [4] presents the combination of scaling and projection as a single
problem. This combination allows the search algorithm to reach better Delta
Test values for all tested data sets. The choice of search algorithm falls on
Genetic Algorithm for its better exploratory capabilities in scaling problem.

An extensive overview of application of Delta Test in different problem types

CHAPTER 1. INTRODUCTION

is given in [5]. A new type of problem, called scaling with fixed number
of variables, is presented and solved with multi-objective optimization ap-
proach.

Finally, the variable selection with Delta Test and Genetic Algorithm is com-
bined into a global methodology with OP-ELM/OP-KNN models for the task
of time series prediction [6]. The proposed methodology is tested on one fi-
nancial data set and two time series competition data sets.

Chapter 2

Delta Test

In this thesis, the Delta Test is used as a relevance criterion to optimize either
the scaling weights or the projection matrix. The criterion comes from the
study of noise variance estimation, where the problem consists of estimating
the best possible generalization error given finite number of samples. More
generally, in function approximation, the main goal is to design a function
that represents given input points and their associated scalar outputs. That
is, given N samples of input-output pairs (x;,7;) € R? x R, we wish to find
a functional dependence between x and y with the following equation.

yi=f(xi)+r, 1<i<N (2.1)

where f is the unknown function and r; is additive noise term. The function
f is assumed to be smooth, and the noise terms r; are independent and iden-
tically distributed with zero mean. Noise variance estimation is the study of
how to give a priori estimate for Var[r| given some data, without considering
any specific shape of f.

The Delta Test (DT), first introduced by Pi and Peterson for time series [24],
is a technique to estimate the variance of the noise, or the mean squared error
(MSE), that can be achieved without overfitting. It is a nonparametric noise
estimator based on the nearest neighbor principle. The nearest neighbor of
a point is defined as the unique point, which minimizes a distance metric
to that point. Distance metric is usually the Euclidean distance, but other
metrics can also be used. The DT is useful for evaluating the nonlinear
correlation between input and output variables. It is based on hypothesis
coming from the continuity of the regression function. If two points x and x’
are close in the input variable space, their corresponding outputs f(x) and

CHAPTER 2. DELTA TEST

f(x’) should be close in the output space. If this is not the case, this effect
is due to the influence of the noise.

Let us denote the nearest neighbor of a point x; € R? as Xnyn()- Lhe nearest
neighbor formulation of the DT estimates Var|r| by

1 N

Var[r] = 6 = N Z(yz - yNN(i))2) (2.2)
i=1

where yyn() is the output of xyn(). This is a well-known and widely used
estimator, and it has been shown [25] that this estimate converges to the true
value of the noise variance when N — oo.

For variable selection problems, the goal is to minimize the value of DT, as
this value represents the MSE that can be reached without overfitting. Thus,
lower value of DT implies better selection of variables [9].

2.1 Complexity of Delta Test

Optimization of Delta Test can be computationally demanding if the data
set has a lot of available instances or samples. When computing the DT for
thousands of solutions, most of the optimization is spent on DT calculations,
and little resources on altering the parameters of the search algorithm. This
is due to the nearest neighbor search among the samples. Nearest neighbor
search is an optimization technique for finding closest points in metric spaces.
Specifically, given a set of N reference points R and query point ¢, both in
the same metric space V', we are interested in finding the closest or nearest
point ¢ € R to ¢. Usually, V is a d-dimensional space R?, where the distances
are measured using Minkowski metrics (e.g. Euclidean distance, Manhattan
distance, max distance).

The simplest solution to this neighbor search problem is to compute the
distance from the query point to every other point in the data set, while
registering and updating the position of the nearest or k-nearest neighbors
of every point. This algorithm, sometimes referred to as the naive approach
or brute-force approach, works for small data sets, but quickly becomes in-
tractable as either the size or the dimensionality of the problem becomes
large. This is due to the O(dN) running time for a single query point.

To overcome naive approach and its computational drawback, other methods
have been proposed [26], 27] which use data structures based on decomposition
of multi-dimensional spaces. One such structure used in nearest neighbor

CHAPTER 2. DELTA TEST

search is kd-tree [28]. In 1997, Friedman et al. [29] showed that for a data
set with IV samples and d attributes, a kd-tree can be build in O(dN log N)
time and O(N) space, such that expected computation for a query takes
O(log N) time. However, even this method suffers as dimension increases.
The constant factors hidden in the asymptotic running time grow at least as
fast as 2¢ (depending on the metric).

In some applications it may be acceptable to retrieve a “good guess” of the
nearest neighbor. In those cases one may use an algorithm which does not
guarantee to return the actual nearest neighbor in every case, in return for
improved speed or memory saving. Such an algorithm will find the nearest
neighbor in the majority of cases, but this depends strongly on the data set
being queried. It has been shown [30] that by computing nearest neighbors
approximately, it is possible to achieve significantly faster running times (on
the order of tens to hundreds), often with relatively small actual errors.

Arya et al. in [30] state that given any positive real €, a data point ¢’ is a
(1 + e)-approximate nearest neighbor of ¢ if its distance from ¢ is within a
factor of (14 €) of the distance to the true nearest neighbor. It is possible to
preprocess a set of N points in R? in O(dN log N) time and O(dN) space,
so that given a query point ¢ € R%, and € > 0, a (1 + ¢)-approximate nearest
neighbor (ANN) of ¢ can be computed in O(c4clog N) time, where ¢4, <
d[1+ 6d/e]? is a factor depending only on dimension and e. In general, it is
shown that given an integer k > 1, (1 + €) approximations to the k-nearest
neighbors of ¢ can be computed in additional O(kdlog N) time.

This faster neighbor search has been applied to the computation of the DT as
expressed in Equation with high computational savings. A C++ library
is used for this purpose, which is available at [66].

Chapter 3

Variable Selection, Scaling and
Projection

Suppose we are given a data set that consist of input X = (X7, Xo,..., Xy)
with d variables and one output variable Y. We are interested in building
a function (model) f that approximates the mapping between X and Y, as
given by Equation 2.1l

Variable selection is a methodology that consist of finding the most useful
subset of input variables X; that has maximal predictive power. The aim is
to reduce the number of input variables because not all models are capable of
distinguishing between relevant and irrelevant variables. A Support Vector
Machine and Radial-Basis Function Network with Gaussian kernels assign
equal importance to all variables in the data. Second reason for variable
selection lies in limited amount of data samples, which affects the training of
the models in a negative way. If the models have to many hyper-parameters,
the downside is what is known as overfitting of the model. In other words, the
model perfectly fits the available data, but has poor generalization abilities
on unseen samples.

Variable selection consists of two independent components: relevance crite-
rion and search algorithm. The relevance criterion measures the quality of
certain subset of variables with respect to the output variable. One such
criterion is Delta Test, which constitutes the basis for all selection problems
and search algorithms presented in the thesis. Search procedure or search
algorithm is responsible for generating new subsets to be examined based on
the information from the currently available subsets. The algorithms use for
DT optimization in this work are explained in more detail in Chapter [l

This chapter first mentions the difficulty of variable selection for data sets

CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION

with large number of dimensions. Section introduces the problem of vari-
able scaling and one interesting subproblem of scaling. Finally, Section 3.3
discusses variable projection and gives the algorithm for automatic selection
of the projection dimensions when optimizing the DT.

3.1 Variable Selection

Considering the case when a data set has d variables, to find the optimal
subset one has to examine all non-empty 2¢ — 1 subsets of variables (the ex-
cluded case is when all variables are removed from the data set, making the
actual model impossible to build). When d is even moderately large, d > 30,
exhaustive search on all possible subsets becomes too time consuming and
in most cases infeasible. Thus, knowing the optimal subset cannot be guar-
anteed before building the actual model. In such cases all search procedures
explore only some small portion of the whole solution space, and this fact
is what makes the difference between various search algorithms — the way
they explore this space.

The status of a variable in a subset {included, excluded} can be interpreted
in a different way: each variable is assigned a weight factor w; € {0,1},1 <
1 < d, with respect to the output variable. The value of 0 means that a
variable has no predictive power, while 1 indicates that the variable is useful
for predicting the output. In other words, each variable is multiplied with
its corresponding weight and a new data set is formed in lower-dimensional
space before building a model. The set {0, 1} can be extended to a full [0, 1]
interval, leading to variable scaling.

3.2 Variable Scaling

In variable scaling, weights are interpreted as importance factors, where
w;, > w;, implies that variable ¢; has more predictive power than variable is.
The point of view is different: instead of completely removing variables as in
variable selection, it could be beneficial to retain them with small weight fac-
tors. Extending the problem to the full [0, 1] interval increases the complexity
of the problem, but allows for a more robust model. In this setting, search
algorithms that are based on neighborhood techniques, also called stepwise
algorithms (see Section 1] and [£.2]), have to be adapted to include values
from the extended interval. Since an explicit connection between solutions
is needed in this case, one approach to solve this situation is to break the

10

CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION

interval into equally sized subintervals, resulting in a set with the equidistant
values. For example, the division can be done to form a set H = {0,0.5,1}.
Usually, there is a parameter h that controls the number of subintervals. For
the given example of H = {0,0.5,1} we have h =2 and H = {0/h,1/h,2/h}.
Given parameter h with positive integer value, the set of scales is formed by
taking H = {i/h | i = 0,1,...,h}. As h grows, the interval is divided into
finer parts, and it becomes increasingly difficult to construct neighborhood
relations between the solutions. One approach to this relationship that is
used in the experiments is given in Section [L.T.1] In this thesis, variable scal-
ing with restricted set of values H is referred to as discretized scaling. What
also makes discretized scaling more difficult than selection is even larger so-
lution space, which now contains A% — 1 solutions and making h larger leads
to exponential increase in complexity of the problem. The set H will be
referred to as set of scales or a set of scaling weights.

When using the interval [0, 1], it is assumed that all variables have the same
unit of measure, which is not the case for all real-world data sets. Thus,
before performing variable scaling, appropriate normalization of the data
should be carried out, for example, to zero mean and unit variance.

In case of scaling the data set, each dimension is modified according to its
weight factor as given by Equation B.11

oy =wjzy, i=1,...,N, j=1,...,d. (3.1)
This way, a new data set X3, ; is formed, which has at most d variables. The
dimensionality depends on the scaling weights, and when all w; # 0 the new
data set X has the same dimensionality as the original data set X. On the
other hand, it is possible to transform the data set using a linear projection,
with explicit specification of the dimensionality of newly created data set.
This approach is called variable projection and is discussed in Section 3.3l

An interesting property of variable scaling is the interpretability of the vari-
ables. This is done by examining the weights factors, with the larger weights
indicating more importance for the prediction of the output variable. This
information is important in some fields, such as forecasting or prediction of
stock market prices. Before explaining the variable projection case, we touch
upon special case of scaling problem, which involves fixing or restricting most
the of scaling weights w; to have zero values.

11

CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION

3.2.1 Variable Scaling with Fixed Number of Variables

In many real world data sets, the number of samples is sometimes so large
(N > 10000) that optimizing scaling weights takes a considerable amount
of time. This is due to the high computational cost of the inherent nearest
neighbor search in the DT formula. One approach to solve this would simply
be to randomly discard some portion of the samples in order to speed up
calculation time, but there is risk of losing valuable data and there is no
clear method to select important samples. Instead of removing samples, a
different strategy involves drastically reducing the number of variables by
forcing most of the scaling weights to have zero value (w; = 0). To achieve
this goal, an additional constraint is added to the problem which requires
that at most dy scaling weights have non-zero values. Therefore, dy variables
are fized to be included in final scaling vector and the remaining d — dy
weights are forced to zero, effectively changing the dimensionality of the
data set. The computation of nearest neighbor search is reduced in a lower
ds-dimensional space. Thus, the fixed method enables a quick insight into
the d; (or less) most relevant variables of the regression problem. For easier
notation and understanding, we refer to standard scaling as scaling or pure
scaling, while scaling with a fixed number of variables is referred to as fized
scaling.

The same setup of of any search algorithm can be used for both scaling prob-
lems, with the difference that in fixed scaling we take the d; most relevant
variables. Another approach would be to completely modify control opera-
tors of search algorithms such that they only consider solutions with at most
d; non-zero scaling weights. However, both approaches in conjunction with
genetic algorithm showed extremely quick convergence times in just a couple
of tens of generations. A different approach would be to consider this as a
multi-objective (MO) optimization problem [31] [32] [33], where one objective
is minimization of the DT, the main goal, and the other objective is the min-
imization of the absolute difference between the number of non-zero scaling
weights and the desired value dy, i.e.

Fi(w) = Var[r] on scaled data set X° (3.2)
Fy(w)=|df — {w; #0]i=1,...,d}||. (3.3)

MO optimization tries to find the Pareto-optimal front [34] (a set of non-
dominated solutions) instead of a single solution. This set contains solutions
where the values of the objective functions are in conflict, i.e. improving
one objective leads to deterioration in the other objective(s). Therefore,

12

CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION

the result to a MO problem is a set of solutions on different pareto fronts,
after which the user selects one (or more) based on his/her preference. The
goal in an MO optimization is to find the global pareto-optimal front, which
dominates all other fronts in the problem space. In this thesis, when the
solutions are returned, we look for the one with the exact required number
ds of non-zero scaling weights and the smallest DT. If such a solution does
not exist, the one with the lowest F3 value is used, that is, we try to stay
close to dy variables. With the fixed scaling we introduce new parameter
dy to the problem. However, this parameter d; should not be considered as
the additional hyper-parameter for the optimization. By taking d; = d we
expect to reach the lowest DT value for a given data set (this is pure scaling),
while the dy < d cases purposely exclude some the variables for the gain in
computational speed. With this restriction, search procedure is constrained
to overlook the best possible weights for some number of variables, thus
giving worse results than pure scaling.

The algorithm used for MO optimization will be explained alongside other
search algorithms in Chapter [l

3.3 Variable Projection

In a projection, a matrix P = [a;;],i =1,...,d,j = 1,..., k with size d x k is
optimized according to a relevance criterion, and later used to obtain a new
data set given by Equation 3.4l

Xiwr = XnwaPask - (3.4)

In this setting, scaling is a special case since it can be represented as a d X d
matrix with weights w; on the main diagonal of that matrix, i.e.

0 wo ... 0
PS - : : . : (35)
0 0 ... Wy

dxd.

A good property of projection is the ability to linearly transform the data
set to lower dimensional space when the matrix Py, has less columns than
rows, i.e. k < d.

However, the number of parameters in Py, is dk, and all have real values

13

CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION

from R, thus the problem becomes even harder compared to the scaling
problem with d parameters in a limited range. Furthermore, the correct value
of k, i.e. the number of dimensions to project to, is an additional parameter
that has to be optimized. The advantage is the manual choice of k, enabling
full control of the dimensionality of the formed data set X. In the following
Section [B.3.1] we propose a way to automatically select good value of k in
projection problem when using the Delta Test as relevance criterion, while
Section investigates one interesting case of projection for k > d.

Although projection is more general than scaling, the interpretability is lost
as projection matrix elements have real values (including negative ones), and
nothing can be said by examining the values in the matrix.

3.3.1 Automatic Selection of Projection Dimension

Consider the case when projection matrix Pyy, has one column, i.e. k=1,
and suppose that by optimizing the DT using matrix P;.; we can obtain
value dt;. Same dt; value can be obtained with k£ = 2 by setting the second
column of matrix Pgxo to zero values. This setting does not have any influ-
ence on the search process, resulting in optimization problem with only one
column.

Since Pg.o contains real values, optimizing P,.o should be able to reach
value dt, that is at least as low as dt;. However, adding new d parameters to
P .1 increases the complexity of the problem, adds new local minima and op-
timization of P42 becomes more challenging. This complexity is manifested
through the value dt,, which can be larger than dt;, if both optimization
problems are given the same amount of resources.

Same reasoning applies with higher values of k. Thus, as k is increasing, the
value of the Delta Test should always decrease. In practice, huge number
of parameters prevents P matrices with large k£ to reach same results of
those cases with lower k. When optimizing the DT as a projection problem,
there will be a value of k = k, after which the search procedure is unable
to return lower DT values. Thus, we can conclude that matrix Pgyy, is our
best estimate and considering k > k, values is a waste of resources.

Previous discussion stems the strategy for automatic selection of k£ and pro-
jection matrix P. Start with £ = 1 and optimize P4y, to obtain DT estimate
dti. Then, increase k by 1, optimize P 44, acquiring dt; and compare dt; with
dty_q. If it holds that dt; < dt;,_, then continue increasing k, otherwise stop
the process and return matrix Py, 1) as the final solution. This strategy
is presented in Algorithm 3.1

14

CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION

Algorithm 3.1 Automatic Selection of k
1: best — o0
2: k=1
3: while true do
4: (dt, Pyxx) = optimize(X, Y, k)

5. if dt > best then
6: break

7. end if

8 best =dt

9: bestP — P ixi

100 k=k+1

11: end while
12: return bestP

In the Algorithm [3.1], function optimize returns both the value dt and the
corresponding projection matrix used to obtain that value. This function
uses at least one search algorithm to minimize the Delta Test. The input
parameters are the data set (X,Y) and the target projection dimension k. All
algorithms explained in Chapter [depend on the initial solution(s) (Genetic
Algorithm as stochastic algorithm, and Forward-Backward Search and Tabu
Search influenced by starting position). To have reliable estimate of the
DT, several calls of optimize function are necessary. In the experiments we
have chosen to run the optimization function 10 times for each value of k.
However, this approach can be too time consuming if the best value for k is
very large. In such situation, all optimization steps in early iterations with
smaller k£ are unnecessary. In order to speed up the computation, we slightly
modify the Algorithm 311

If the optimization for current projection dimension k (with value dt;) im-
proves the dt;_; value then immediately move onto the next k+ 1 projection
dimension. Otherwise, when the dt,, is larger than the previously found best
value, try to improve it by running optimization several times until it does
improve. If we cannot get lower DT value after T tries, stop increasing k.
When the process stops at some kg, the optimization of the previous values
k < kg is not necessarily run 7' times. Then, we back up to two previous
cases, ks — 1 and ks — 2, and finish optimizing both projection dimensions
up to T times. Once the optimizations on k, — 1 and k, — 2 are done, the
projection matrix producing a data set X with the lowest DT is returned
as the final result. In the experiments, number of tries 7" is set to 10. The
whole procedure is given as Algorithm [3.2]

15

CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION

Algorithm 3.2 Faster Automatic Selection of &k

1: T'= 10 {set the maximum number of tries}
2: best — oo

3: k=1

4: while true do

5: 1 — 1

6: whilei <7T do

7 dtlk, 1] = optimize(X, Y, k)
8: if dt[k,1] < best then

9: best = dt[k,]

10: break

11: end if

12: 1=1+1

13: end while
14: if ¢ > T then

15: break
16: end if
17: kE=k+1

18: end while
19: Finish optimization for dimensions £ — 1 and k — 2 cases up to T tries
20: return P for minimum dt among dt[{k — 1,k —2},{1,...,T}]

At the end of these steps, a proper projection dimensionality k£ has been
found and the data can be projected to a lower-dimensional space. One can
then use this data for the actual regression task using any desired model.

3.3.2 Combining Scaling and Projection

Although the idea of projection is to reduce the dimensionality, in the follow-
ing discussion we explore one interesting case when projection matrix Py
has more column than rows, i.e. when k > d. As explained in Section B.3.1]
increasing k leads to harder and harder problems which cannot obtain smaller
DT values. The good value of £ in our experiments was always less than d,
so the question is why even consider cases when £k > d.

The case that is of interest is the combination of the scaling and the projec-
tion. This combination aims to shape the data to have the following form:

X?Vpx(dqtk) = [XA?deu X%xk]) (36)

16

CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION

where X5 is the scaled version of X (Equation B.I)), XF is the projected
version of X (Equation B.4) and X5F is the new scaled+projected input
matrix. The new matrix that needs to be optimized has the form:

wy 0 - 0 apn a2 --- au
0 we -+ 0 an ax - ax
Pgp = : (3.7)
PR w a/ a/ .. a/
0 0 d Qd1 Qg2] gar) |
PS Pp

where Pg is the same as in Equation and is responsible for scaling the
data, while Pp is “classic” projection given by Equation (34). For the rest
of the thesis we call this approach scaling plus projection, and denote it as
scaling + projection.

With a combination of both scaling and projection, the optimization problem
should be able to reach a DT value that is not larger than the value obtained
for scaling or projection alone. Consider the following two special cases. In
the first special case, projection columns are set to zero values, i.e. Pp = 0,
and we have X5F = [X5 0yx]. This special case is just a scaling problem
with additional zero columns that do not influence the search process, but
only increase computational time. The second special case is similar, with
all scaling weights set to zero Pg = 0, and we have new data set X°F =
[Onx4, XF], which is a pure projection problem with extra computational
cost. These two extreme cases suggest that by allowing both scaling weights
in Pg and elements in Pp to have real values, it becomes possible to find
solutions that are at least as good as solutions for either scaling or projection
problem. In the experiments we will clearly see the benefit of this merger.

Comparing projection and scaling -+ projection in terms of number of pa-
rameters to optimize, in projection of Py, there are dk numbers, while in
scaling + projection we have d + dk = d(k + 1). The combined approach
has only d extra parameters, which are from limited [0, 1] range, making it
not that more challenging than projection alone. The same difference of d
parameters also exists between two projection cases Pg.r and Pgy ki1, and
instead of projecting to more and more dimensions it might be fruitful to in-
clude scaling to replace that one extra dimension of projection. On the other
hand, in terms of computational speed, combined method takes much longer
since we are increasing the dimensionality (from & dimensions in projection
to k + d dimensions in scaling + projection) which increases the nearest
neighbor computations.

17

CHAPTER 3. VARIABLE SELECTION, SCALING AND PROJECTION

Since we are using projection in the combined method, which requires pa-
rameter k to be specified before optimization of Pgp, same algorithm that
is used in projection alone (Section B.3.1]) can be applied here as well. The
difference is only in the extra dimensions responsible for scaling Pg that are
added to form bigger d x (d + k) matrix Pgp.

The scaling + projection problem includes scaling, and thus we can also
employ the fixed variant (Section B2]) into the combined method. The
combination of scaling with a fixed number of variables and projection will
be referred to as fized scaling + projection. The projection in this problem
is not modified, only the scaling is replaced with the fixed version.

18

Chapter 4

Search Algorithms

Search algorithms in the context of variable selection are responsible for
exploring through solution space in order to find an optimal solution with
respect to the relevance criterion (the relevance criterion acts as an objective
function for the process of optimization). There are many choices of to
consider, and each of the available algorithms has its own advantages and
drawbacks. Among the popular search algorithms used in machine learning
are Forward Search [10], Backward Search [10] and Forward-Backward Search
[11, B5]. All three methods are greedy in nature, and thus do not guarantee
to return an optimal solution to the problem. The following sections briefly
explain the workings of these three algorithms with special attention on the
Forward-Backward Search.

As mentioned in Chapter Bl for a data set with d variables there are total of
2¢ — 1 possible subsets to consider. To guarantee optimality, an exhaustive
search must be performed on all subsets. Since for large d this is infeasible,
simple methods such as Forward and Backward Search explore only small
portion of solution space, that is, they sacrifice optimality for faster execution
time. Both methods take at most d(d — 1)/2 steps explained in Section A1
Section [£.2] explains Tabu Search and the setup of its parameters, and Section
[4.3 presents Genetic Algorithm, its operators, and the setup established for
experiments.

19

CHAPTER 4. SEARCH ALGORITHMS

4.1 Forward Search, Backward Search and
Forward-Backward Search

Forward Search starts with an empty set S of variables and progressively adds
new variables to S as long as the relavance criterion is improving over previous
set with one less variable. In the first iteration d subsets are examined and
the one with the best value of relevance criterion is selected, that is, one
variable X; is added permanently to the set S. In the next iteration, all
subsets with two variables out of which one is X; are explored. There are
d — 1 such subsets. Following the scheme in iteration j, a total of d — 7 4+ 1
subsets are examined and the best variable is added to S. Finally, Forward
Search explores at most d(d — 1)/2 subsets since the algorithm may converge
to a solution where |S| < d, i.e. the best subset has less than d variables.

Backward Search is similar to Forward Search, except that it starts with all
variables included in the set S, and then removes variables one by one if the
relevance criterion improves. With same calculations, Backward Search also
explores at most d(d — 1)/2 subsets.

Forward-Backward Search (FBS) is the combination of both previous meth-
ods. It can start from any subset of variables, and then considers new so-
lutions which either add or drop one variable. This adding and dropping of
variables is continued until the criterion no longer improves. Forward Search
and Backward Search always return the same solution since the starting point
is always the same. On the other hand, Forward-Backward Search can start
from any subset of variables, which can result in different returned solutions.
In order to get good selection of variables, FBS is run couple of tens or hun-
dreds of times (depending on the problem) with different starting positions,
and the best solution is returned as the final estimation of the criterion that
is being optimized. The complete algorithm is summarized in the following
3 steps:

In the previously given steps, it is possible to generate an empty subset, which
halts the execution of the optimization. If an empty subset is generated, we
just remove it from the consideration set and enable the search to continue
without interruption. This explicit check for the presence of an empty subset
is left out from the algorithms presented in the thesis.

20

CHAPTER 4. SEARCH ALGORITHMS

1. Initialization:

Let S be the selected input variable set, which can contain any input
variables, and F' the unselected input variable set, which contains the
variables not present in S. Compute Var|r| using Delta Test on the set

S.

2. Forward-Backward selection step:

Find the variable Xg to include or remove from the set S to minimize
Var|r|

Xg = arg miny, x,{Var[r] | {SUX;} U{S\ X;}, X" € S, X’ € F}

3. If the old value of Var|r| on the set S is lower than the new result, stop;
otherwise, update set S and save the new Var|r|. Go to step 2.

4. Return set S as a solution.

4.1.1 Forward-Backward Search in Variable Scaling

The first modification that requires the adaptation to the scaling problem is
the definition of the adding and dropping of variables. Because the weights
are no longer binary {0,1} indicators, but rather values from discretized
[0, 1] range, adding can be constructed as increasing the scaling weight, and
dropping as decreasing the scaling weight for a single variable. In the exper-
iments, the distinction between increase and decrease is not explicit, that is,
we only consider the change of a value for a single variable. Suppose that the
set of scales has values H = {0,0.5,1}, corresponding to h = 2. Then, for a
solution v = (0,1,0.5) with d = 3 variables, the following set of solutions

(0.5,0.5, 1), (0, 0, 1), (0,0.5, 0),
(1,05, 1), (0, 1, 1), (0,0.5,0.5),

are examined as the closest solutions to v. This closeness is encountered again
in terms of neighbors for the Tabu Search in next section. In this setting,
the number of solutions for examination is exactly hAd. The solution from the
examined set with the best relevance criterion is the selected solution for the
next iteration. That is, we perform a change, also called move or step, from
v to the best solution. This is the reason FBS is sometimes called a stepwise
algorithm.

21

CHAPTER 4. SEARCH ALGORITHMS

4.2 Tabu Search

Tabu Search (TS) is a meta-heuristic method designed to guide local search
methods to explore the solution space beyond local optimality. The first most
successful usage was by Glover [36] 37, [38] for combinatorial optimization.
Later TS was successfully used in scheduling [39 40, [41], design [42] [43],
routing [44), [45] and general optimization problems [46, [47) 48]. The TS has
become a powerful method with different components tied together, that is
able to obtain excellent results in different problem domains.

Suppose we have a optimization problem in the form of an objective or cost
function f(v), and that solutions are members of a discrete set, i.e. v € V.

The term meta-heuristic refers to the underlying idea of TS — it uses other
technique, lets denote it L, for the search through the solution space. During
the search, TS uses internal memory structures to modify the way L visits
solutions. The memory is used to prevent the reversal of recent moves, and
also to reinforce the exploration of promising ares of space. The memory
designed for the first task is called short-term memory, while the second type
is called long-term memory. The idea behind TS is to use technique L until it
reaches an optimum, in which case the search is allowed to visit solutions with
worse objective values. The memory structures keep track of local optima
and the technique L is forbidden to revisit these in upcoming iterations. The
concept of accepting worse solutions is also present in Simulated Annealing
[49], where the acceptance is stochastic and based on a cooling scheme.

The basic elements behind TS are the definition of the search space and the
neighborhood structure. Definition of search space is mentioned again in
the context of genetic algorithms. For variable selection problem, the search
space V is easily defined as a set of vectors of length d with binary {0,1}
values. As mentioned in the previous section, the case when all variables are
excluded is impossible and thus removed from the search space. This is classic
encoding of solutions in variable selection problem, where 1 represents that
the variable is selected and 0 that the variable is not selected. The scaling
case has been adapted in the same manner as scaling for FBS, with [0, 1]
interval transformed into a set of equidistant values.

Next important issue is the definition of the neighborhood of a solution wv.
The neighborhood, denoted Ne(v), is defined as the set of solutions that are
reachable from the solution v. Reachability is defined through moves or local
transformations applied to v in order to produce solutions in Ne(v). In later
section we define the moves for both problems: selection and scaling. There
are the same as in FBS, but with more formal TS notation.

22

CHAPTER 4. SEARCH ALGORITHMS

The short-term memory responsible for preventing cycling effects, also called
tabu list, keeps track of recently used moves. Once an (sub)optimal solu-
tion has been found, tabu list forbids the search to revisit this solution by
restricting the use of a move with reversing effect. Moves stored in tabu list
are called tabu, and thus forbidden to use for a fixed number of iterations.
Storing only moves does not guarantee prevention of cyclic effects, as not all
information is kept when the optimum has been found. To stop revisiting,
one can store complete solutions in the memory. However, this approach
becomes impractical as the complexity of the problem increases, and sub-
stantial amount of execution time is spent on comparing new solutions to
those in memory. This is the reason for storing smaller pieces of information,
such as moves, segments or other attributes of solutions.

One important parameter of TS is the tenure, which is defined as the number
of iterations a single move is considered tabu. In some implementations this
corresponds to the length of the tabu list, usually coded as cyclic list. The
tenure value is fixed throughout the whole search for most of the problems,
but other approaches are possible: varying tenure value or randomly choosing
the value for each move. In some problems this might help the search process,
but in this thesis we only consider fixed tenures.

During the search, tabu list can prevent the moves to solutions which have
not been encountered before (assuming no storage of complete solutions).
This leads to a situation when TS discards a move to a solution with better
objective value than the currently best one. To enable such moves, another
level is added to TS, which allows the search to override tabu list and aspire
to the new solution. This is known as aspiration criterion. The simplest
aspiration criterion is to allow the move in the case as described, when the
best solution has been found. Other criteria can be defined to revoke the
tabu status, but they are seldom used. In the implementation of TS for
the experiments, no aspiration criteria are used as they involve computing
the actual objective value of a solution. By dropping the aspiration criteria,
these saved DT evaluations are then used for new solutions, allowing more
exploration of the search space in the same amount of time.

Due to the fact that this thesis considers the variable selection and the scaling
problem, two different algorithms are designed. Both algorithms use only
short-term recency based memory to store reverse moves instead of solutions
to speedup the exploration of the search space. This setup is known as Simple
Tabu Search [17], and the pseudocode is given as Algorithm [A.11

In the Algorithm A1l a new term is introduced — stopping condition. The
stopping condition, or termination criterion, prevents the TS to run indef-

23

CHAPTER 4. SEARCH ALGORITHMS

Algorithm 4.1 Simple Tabu Search storing reverse moves in list

1: TabuList =]

2: choose starting solution v € V'

3: while not stopping condition do

4: T ={u|u € Ne(v),move(v,u) € TabuList}
N = Ne(v)\ T

choose v € N with minimum f(u)

add move(u, v) to TabuList

v=u

remove from TabuList moves added tenure iterations ago
10: if f(v) < bestF then

11: bestF' = f(v)

12: bestV =wv

13: end if

14: end while

15: return bestV

initely. This condition can be set to one of the following possibilities: the
amount of time spent on optimization, the number of calls of the objective
function f, the amount of memory used, and other choices. The first two
conditions are the usually employed in the domain of optimization.

There are other parts of the TS which make it a powerful method, such as
probabilistic TS, candidate list generation, intensification and diversification
strategies, auxiliary objectives. These are not considered here, but for a
detailed explanations on the topics see [17].

The following sections give the definition of moves and neighborhood struc-
tures for variable selection and scaling. The structures are exactly the same
as the ones given for FBS. As TS is a meta-heuristic method, the final algo-
rithm can be seen as FBS with tabu conditions.

4.2.1 Tabu Search for Variable Selection

In the case of variable selection, a move is defined as a flip of the status of
exactly one variable in the data set. The status is excluded (0) or included
(1) from the selection. For a data set of dimensionality d, a solution is then
a vector of zeros and ones v = (vy, v, ...,vq), where v; € {0,1},i =1,...,d,
are indicator variables representing the selection status of k-th dimension.

The neighborhood of a selection (solution) v is a set of selections u which

24

CHAPTER 4. SEARCH ALGORITHMS

have exactly one variable that has different status. This can be written as

Ne(v) ={u| g e {1,...,d} vy #ug Avi = u;,i # q} (4.1)

With this setup, each solution has exactly the same amount of neighbors,
which is equal to d.

4.2.2 Tabu Search for Variable Scaling

TS for the optimization of scaling weights is defined in the same manner
as FBS for the same problem in Section [T.Il The difference is the no-
tion of neighbors of a solution in TS. In TS, a solution v is now a vector
with scaling values from a discretized set v, € H = {0, 1/h, 2/h,..., 1},
where h is discretization parameter. Two solutions are neighbors if they dis-
agree on exactly one variable. For example, for h = 10, d = 3 and solution
v; = (0.4,0.2,0.8), a solution vy = (0.7,0.2,0.8) would be a neighbor, but
not the solution v3 = (0.1,0.5,0.8). The move between solutions is defined
as a change of value for one dimension, which can be written as a vector
(dimension, old value, new value).

4.2.3 Setting the Tabu Conditions

As mentioned, the tenure for a move is defined as the number of iterations
that it is considered tabu. This value is determined empirically when the TS
is applied to solve a concrete problem. For the variable selection problem,
the thesis proposes a value which is dependent on the number of dimensions
so it can be applied to several problems. In the experiments, two tabu lists,
and thus two tenures, are used. The first list is responsible for preventing the
change along certain dimension for d/4 iterations. The second one prevents
the change along the same dimension and for specified scaling value for d/4+2
iterations. The combination of these two lists gives better results than when
each of the conditions is used alone.

For example, for h = 10, if a move is performed along dimension 3 from
value 0.1 to 0.5, which can be written as a vector m = (3;0.1,0.5), then the
value 3 is stored in the first list and the reverse move m~! = (3;0.5,0.1) is
stored in the second list. The search will be forbidden to use any move along
dimension 3 for d/4 iterations (first condition), and after that time, it will
be further 2 iterations restricted to use the move m=! (second condition), or
in other words to go back from 0.5 to 0.1.

25

CHAPTER 4. SEARCH ALGORITHMS

With these settings, in the case of variable selection, two conditions are then
implicitly merged into one condition: restrict a flip of the variable for d/4+ 2
iterations. This is because there are only two values {0, 1} as possible choices.

4.3 Genetic Algorithm

Genetic Algorithm (GA) is one of the algorithms of the larger family of
optimization techniques known as Evolutionary Algorithms (EAs) [50]. All
of these algorithms share concepts found in biological processes, such as
natural selection and survival of the fittest principle. The algorithms are
population based, meaning that there is a set of solutions present at all
stages of the optimization. The solutions are chosen randomly from the
search space of the problem, and all EAs are considered stochastic search
algorithms. The process of searching through the solution space is influenced
by several mechanisms common to all EAs: how are the solutions encoded
as the chromosomes, initialization of the population, selection operators, and
reproduction operators. We briefly give the representation and workings of
the GA on a general level, while numerous publications give more formal
definitions and theory behind genetic algorithms [51, [52], 53)].

To understand better GA (and other EAs), this algorithm should be com-
pared to the classical optimization methods. Regarding the search process,
classic methods uses deterministic rules to move from one solution to the next
in the search space, while EAs use probabilistic rules. In EA, the starting po-
sition is a set of solution, as in classic approach it is only a single point which
is improved upon in sequential steps. Classical methods also use derivative
information (first-order, second-order) to guide the search, while EA uses
only information about the fitness of the individuals. That is, GA uses only
information about the surface of the space to decide on new directions of the
search.

Genetic algorithms have been widely used in machine learning community
for variable selection [2] 54], 55], 56], 57, 58], with most of the work devoted to
classification tasks.

4.3.1 Genetic Algorithm Basics

The Algorithm shows the outline of GA, which with small modifications
can be made into any other EA paradigm. The functionality of each of the
operators is explained in the following sections.

26

CHAPTER 4. SEARCH ALGORITHMS

Algorithm 4.2 Outline of Simple Genetic Algorithm

1: select selection operators o; and oo

2: select reproduction operators p

3: P — create initial population

4: while not stopping condition do

5. e =fitness(P) {evaluate population}

6: P =o4(e) {select parents}

7. Py=p(P) {reproduction — generate offspring}
80 P =o09(P,P,) {select new generation}

9: end while

._.
e

return p the fittest individual in P

Representing Solutions

In the context of the GA, each individual in the population represents a
solution to an optimization problem. The characteristics of an individual are
represented by a chromosome. These characteristics refer to the variables of
the problem, and in the context of the EA, a variable is called a gene. For
variable selection problems, each gene corresponds to: a selection status for
variable selection; scaling weight for variable scaling; real number in the
matrix for projection problem. For the rest of the thesis, we interchange
the terms solution, individual and chromosome, since values (genes) in a
chromosome fully explain the individual, which is in fact a solution for the
problem. This is also done with the terms variable and gene. The nature of
a problem also has the impact on the coding scheme of individuals.

Initial Population

GA is population-based algorithm, thus requires a pool of solutions in order
to apply the operators. The first step in GA (and all other EAs) is the cre-
ation of this population. Most of the time this is done by randomly sampling
the solution space. The goal of random selection is to ensure that most of
the search space is covered, that is, the solutions should be uniformly spread
across the space. If some of the regions are left out, there is a possibility that
the search will neglect this regions. The size of the population is one of the
parameters to be decided before optimization. There is a trade-off between
the size of the population and the convergence speed of the GA. The larger
the population, the better it is spread across the space (more diversity), and
less iterations are needed to find a good solution. On the other hand, smaller

27

CHAPTER 4. SEARCH ALGORITHMS

populations need more generations to reach an acceptable solution. One has
also to consider the computation time per iteration: the more individuals in
the population, the more time it takes to compute one generation.

Evaluation

Evaluation is a simple step, which involves computing the objective func-
tion value for each individual in the population. As discussed later, some
selection operators use this information in order to select the individuals for
the reproduction step. It is usually the practice to scale the values of the
objective values to a more representative range. This is accomplished with a
fitness function, which can be linear or non-linear. This function transforms
the objective values into the fitness values.

Selection

One of the main operators in GA is the selection operator. Its main purpose
is to emphasize better solutions. Selection takes part in two phases of the
algorithm:

e Selecting individuals for reproduction o;: New individuals, called
offspring, are created by applying crossover and/or mutation. The se-
lection for the crossover phase should favor fit individuals, ensuring
that their genes are passed onto the next generation. In the case of
mutation, selection mechanisms should focus on “weak” individuals.
Introducing new genetic material into weaker chromosomes might im-
prove their fitness, enabling them to compete with fitter individuals.

e Selecting individuals for the new population o,: When the off-
spring are generated, the decision is on how to select the individuals
for the next generation based on the current generation and offspring.
This can be done using only offspring or the combination of both sets.
The selection operator should ensure that good individuals are present
in the next population.

Selection operators are often characterized by their selective pressure, which
is defined as the speed at which the best solution will occupy entire popula-
tion by repeated application of the selection operator alone. High selective
pressure makes the population lose diversity and degrades the exploration

28

CHAPTER 4. SEARCH ALGORITHMS

abilities of GA, while low selective pressure might take more time to con-
verge.

The selection is mostly based on the value of the objective function, leading
to proportional selection. In this setting, individuals with better objective
value are selected more often. To prevent the values of the objective function
from dominating the selection process, all values are transformed by fitness
function, which scales the objective values into fitness values. Fitness values
form more suitable range of values to prevent the dominating effect of better
individuals.

One operator that does not need fitness scaling is the tournament selection,
which is used in the experiments. Tournament selection selects a group of
n; > 1 individuals randomly from the population. The objective values of
these individuals are then compared, and the best one is returned by the
operator. For the crossover with two parents, the selection is performed
twice, once for each parent. If the tournament size n, is not too large, this
type of selection prevents the best individual from dominating. In the case of
small tournament size, the chances that bad individuals are selected increase.

Selection operator called elitism is one of the most used selection operators.
With elitism, a number e, of the best individuals of the current population
is just copied into the new population. This approach guarantees that the
fitness of the population never deteriorates. The remaining part of the new
population is filled with individuals decided by the selection operator os.

Reproduction

Reproduction is the process of generating offspring from the selected parents
by applying crossover and/or mutation. Crossover is responsible for creating
new individuals by recombining the genes of the two or more parents. Muta-
tion works by randomly changing the values of the genes in a chromosome.
The purpose of mutation is to introduce new genetic material and bring di-
versity in the population. Care must be taken in order to not destroy the
genes of the best individuals.

Crossover operators are categorized based on the representation scheme: bi-
nary or real valued problem. For each of the problems there exist specific
crossovers. An important part of GA is that the crossover is probabilistic, that
is, once the parents have been selected, they exchange their genes with cer-
tain probability. Usually, a high crossover probability (also called crossover
rate) is used to favor creation of new individuals.

29

CHAPTER 4. SEARCH ALGORITHMS

Stopping Conditions

The mentioned operators are applied in each generation until a stopping
criterion is satisfied. The simplest stopping condition is to limit the search
based on the number of generations that GA is allowed to execute. Other
simple solution is to limit on elapsed time since the start of the algorithm.
More elaborate criteria exist as well, that are based on convergence of the
algorithm: terminate when there is no change in the population, terminate
when no improvement is made over a number of consecutive generations,
terminate if an acceptable solution is found. These are all loose definitions
of the convergence of GA.

4.3.2 Setup for the Experiments

In this section, we give a list of operators and encoding schemes that are
used in the experiments.

Encoding of the Individuals

As is the case in TS, the individuals of the GA are vectors with binary
values. Since this thesis also considers variable scaling, other encoding must
be chosen to accommodate new approach. If instead of using 0 and 1, the
algorithm uses real numbers to determine the weigh of a variable, the GA
could fall into the category of Real Coded Genetic Algorithms (RCGA).
However, the number of scaling weights has been discretized in order to easily
compare the performance of GA to those of FBS and TS. This discretization
makes the algorithm a classical GA where the cardinality of the alphabet
increases to h + 1 values (with h being the number of subintervals). Both
approaches, classical BCGA with extended alphabet and RCGA, are tested
in the experiments. For RCGA, the scaling set is not discretized, i.e. weights
take values from the whole scaling interval [0, 1].

Initial Population

Regarding the initial population for BCGA, some individuals are included
in the population deterministically to ensure that each scaling value for each
variable exists in the population. These individuals are required if the clas-
sical GA crossover operators (one/two-points, uniform) are applied in order
to reach all possible combinations (assuming no mutation). For example, for

30

CHAPTER 4. SEARCH ALGORITHMS

h = 3 (producing H = {0,1/3,2/3,1}) and 3-dimensional problem (d = 3),
the following individuals are always included in the population: (0, 0, 0),
(1/3,1/3, 1/3), (2/3, 2/3, 2/3) and (1, 1, 1)

Selection, Crossover and Mutation Operators

The GA algorithm is designed to be as fast as possible so when several de-
signs options appeared, the fastest one (in terms of computation time) was
selected. The selection operator chosen is the binary tournament selection by
Goldberg [51], instead of the roulette wheel operator [59] or other complex
operators [60]. Tournament selection does not require computation of any
probabilities, saving a considerable amount of operations in each iteration.
This is especially important for large populations. Binary tournament has
very low selective pressure, allowing less fit individuals to be selected. Never-
theless, this selection mechanism allows better exploration capabilities which
are important in the case of variable scaling (discretized or unrestricted).
However, the algorithm also incorporates the elitism mechanism, keeping the
10% of the best individuals of the population, so the convergence is still
feasible.

For the initial test, the classical operators (one-point, two-point, uniform) for
binary problems were tested. The performance of these operators was similar
and acceptable. Nonetheless, since the algorithm could be included into the
Real Coded GA class, an adaptation of the BLX-« [6I] was implemented as
well. This operator is designed for continuous problems, and works as follows:
given two individuals I, = (i},i3,...i%) and I, = (3,43, ...i3) with (i € R), a
new offspring O = (o, ...,0j,...,04) can be generated where 0,7 = 1...d
is a random value chosen from a uniform distribution within the interval
limin — @ * B,limag + - B] where ipin = min(ij,i5), imee = max(ij,i3),
B = ip4: — tmin and a € R. The adaptation to discrete alphabet requires
rounding of gene values to match the scaling weights. The working of the

BLX-« is depicted in Figure 4.1 for the case d = 2.

The mutation operates at a gene level, so a gene has the chance to get any
value of the alphabet.

The setup of the GA is summarized in the following list:

e Selection operator: Binary tournament (n, = 2)
e Crossover operator: BLX-a (a = 0.5)

e Crossover rate: 0.85

31

CHAPTER 4. SEARCH ALGORITHMS

e Mutation operator: Random uniform on gene level
e Mutation rate: 0.1
e Elitism: 10% of population size

e Replacement: Complete, i.e. generational approach

With the complete replacement, the selection operator oo chooses only the
offspring, i.e., in line 8 of the Algorithm we have oo(P, Py) = P,.

y
ocd2
I
———-F-———o"
} 0=(0,0,) |
Otd] L‘A dl J‘Otd]
| d, }
|
o ———J-————-
I, ocd2

Figure 4.1: BLX-« crossover in 2-dimensional space. Offspring O is chosen
randomly from extended rectangle (solid line) defined by two parents I3, I
(dashed line).

4.3.3 Parallel Implementation

Genetic algorithms work with a population of independent solutions, which
makes it easy to distribute the workload from one processor to several, speed-
ing the execution time. It is very easy to adapt them to parallel architectures.

Going into more detail, the first step is to decide upon the distribution of
the population. The GA can still remain with a single population, or the
population can be divided into several populations. The latter approach is
also called GA with multiple populations. When considering the second case,
subpopulations can remain separated or communicate between themselves.
Communication involves extra cost, as well as decisions about the pattern of
communications (policy), the number of individuals for exchange (also called
migration), and the rate of exchange. Careful decisions must be taken in
order not to burden the execution with excessive communication patterns.

32

CHAPTER 4. SEARCH ALGORITHMS

The idea behind parallel GAs is to divide larger problem into smaller ones,
and use separate processors to solve these problems simultaneously. There
are many possibilities for this division, and the the common classification of
parallel GA is in following caterogies: single-population master-slave GAs
[62], multiple-population GAs, fine-grained GAs, and hierarchical GAs. We
briefly explain the first two categories.

Master-slave topology is defined by having a master processor, or node, to
perform sequential part of the GA — selection and reproduction, while all
the other processors, slaves, evaluate the individuals of the population. The
communication consists of sending the individuals from the master node to
the slaves (first direction), and after evaluation, the slaves send the fitness
values for the individuals they received to the master node. Master-slave
approach uses only single population, thus there is no difference in results
between parallel master-slave GA and serial GA, assuming same operators.

Multi-population GAs divide the population into several smaller groups,
called subpopulations. Subpopulations exchange information by migrating
some of the individuals. The migration is control by several parameters,
such as the sizes of the subpopulations, rate of migration, the number of mi-
grating individuals, migration pattern, and the selection of which individuals
should migrate. Multiple-population parallel GAs are also known as the is-
land model, since subpopulation are split into groups (islands) with migration
patterns between any two subpopulations.

Smaller populations lower the diversity of solutions, and this decreases the
expected convergence time. When a population is spread across multiple
processors, we may expect faster results due to this convergence. However,
the final solution returned should be of the same quality as that of serial
GA, suggesting that the division should be done carefully to balance this
trade-off.

Unlike master-slave version, multiple-population approach does not return
the same results as the serial GA, since operators do not take into account
the whole population, only one subpopulation at a time.

Another important aspect in parallel implementations is the synchronization
scheme. There are two types: synchronous and asynchronous, and both can
be adapted to each of the parallel categories of the GAs. In the synchronous
implementation, all processors always have the same population at disposal
and the communication exist to synchronize the processes. This effectively
means that faster processors have to wait for the slower ones. When all pro-
cessors execute their jobs, the algorithm continues onto the next generation.
On the other hand, in asynchronous case, all processors execute the code

33

CHAPTER 4. SEARCH ALGORITHMS

without any delay, resulting is much less idle time. However, the interpreta-
tion and comparison of the results with synchronous GAs is difficult, since
the communications occur at random times.

Implementation for Delta Test Optimization

As discussed in Section [£.3.2] the algorithm is designed to be as fast as possi-
ble. Nonetheless, the fitness function (DT) still remains expensive in compar-
ison with the other stages of the algorithm (selection, crossover, mutation).
At first, all the stages of the GA were parallelized, but the results showed that
the communication and synchronization operations could be more expensive
than performing the stages synchronously and separately on each processor
(we consider that a processor executes one process of the algorithm). Hence,
only the computation of the DT for each individual is distributed between
the different processors. This corresponds to the master-slave topology that
is easily implemented. Some questions might arise at this point like: Are the
processors homogeneous?; How many individuals are sent at a time?; Is the
fitness computation time constant?

The algorithm assumes that all processors are equal with the same amount
of memory and speed. If they are not, it should be considered to send
the individuals iteratively to each processors as soon as they have finished
with the computation of the fitness of an individual. This is equivalent to
the case when the fitness function computational time might change from
one individual to another. However, the computation of the DT does not
significantly vary from one individual to the another in a larger population.
Thus, using homogeneous processors and constant time consuming fitness
function, the amount of individuals that each processor should evaluate is
size of population/number of processors.

The algorithm has been implemented so that the amount of communication
(and the number of packets) is minimized. To achieve this, all the processors
execute exactly the same code so, when each one of them has to evaluate
its part of the population, it does not require to get the data from the mas-
ter because it already has the current population. The only communication
during execution of GA are receiving and sending of values of the DT, but
not the individuals themselves. The exchange of DT values is done after the
evaluation of the individuals. To ensure that all processors have the same
population all the time (considering the presence of random values), at the
beginning of the algorithm the master processor sends the seed for the ran-
dom number generator to all the slaves. Having same random seed implies

34

CHAPTER 4. SEARCH ALGORITHMS

that they all produce the same values when calling the function to obtain a
random number. This enables quicker communication between processors as
the only information sent is computed DT value of the individual. This is
especially important since some problems require large individuals, increas-
ing the amount of traffic in the network and slowing the execution of the
algorithm.

4.3.4 Genetic Algorithm for Multi-Objective Optimiza-
tion

The main idea in MO problems is to find the global pareto-optimal front.
Of course, this cannot be guaranteed, but the algorithms designed for this
problem must have two properties: generating solutions along other pareto-
optimal fronts and finding new fronts. In the reproduction phase, it is com-
mon to generate solutions that are dominated by other individuals in the
population. These have to be discarded since they are of no interest. The al-
gorithm used for multi-objective optimization in the fixed scaling problem is
the Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) proposed
in [34].

NSGA-IT algorithm works in two basic steps: sorting of solutions based on
dominance and elitism selection to keep the best fronts encountered. Since
the population size does not change, the last front for inclusion has to be
divided in two parts. The division is done to keep the most diverse solutions
for the next generations. This diversity in NSGA-II is calculated using the
crowding distance, which measures the distance between solutions in the
objective function space. With this approach, the algorithm excludes the
sharing parameter, which is responsible for calculating the proximity between
population members and has to be defined by user. Sorting of solutions is
done by careful book-keeping in order to speed up the execution time. For
details refer to [34]. The overall complexity of the algorithm is O(mp?),
where m is the number of objectives (in our case m = 2) and p is the size
of the population. One thing worth mentioning is the constant factor in the
mentioned asymptotic running time. The algorithm works by sorting on the
set of both the current population and the offspring, doubling the size of the
set. With this taken into account, the more precise complexity is O(m/(2p)?).

35

Chapter 5

Experiments: Search Algorithms

The experiments were carried out on a variety of computer architectures and
different setups, but MATLAB was used as the main environment to run
the experiments. In this chapter we compare the performance of the search
algorithms explained in Chapter @] on several regression data sets.

A number of data sets with varying number of samples and dimensionality
was used to test the quality of the composition of Delta Test with the three
mentioned search algorithms. The following data sets were used for compar-
ing the performance of FBS, TS and GA, with Table L.I] summarizing the
sizes of all data sets.

1. Housing data set [67]: The housing data set is related to the estimation
of housing values in suburbs of Boston. The value to predict is the me-
dian value of owner-occupied homes in $1000’s. The data set contains
506 instances, with 13 input variables and one output.

2. Tecator data set [68]: The Tecator data set aims at performing the
task of predicting the fat content of a meat sample on the basis of its
near infrared absorbance spectrum. The data set contains 215 useful
instances for interpolation problems, with 100 input channels, 22 prin-
cipal components (which remain unused) and 3 outputs, although only
one is going to be used (fat content).

3. Anthrokids data set [69]: This data set represents the results of a three-
year study on 3900 infants and children representative of the U.S. pop-
ulation of year 1977, ranging in age from newborn to 12 years of age.
The data set comprises 121 variables with the weight of a child being
the target variable. As this data set presented many missing values, a

36

CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS

prior sample and variable discrimination had to be performed to build
a robust and reliable data set. The final set without missing values
contains 1019 instances, 53 input variables and one output (weight).
More information on this data set reduction methodology can be found
in [63].

4. The Santa Fe time series competition data set [70]: The Santa Fe data
set is a time series recorded from laboratory measurements of a Far-
Infrared-Laser in a chaotic state, and proposed for a time series compe-
tition in 1994. The set contains 1000 samples, and it was reshaped for
its application to time series prediction using regressors of 12 samples.
Thus, the set used in this work contains 987 instances, 12 inputs and
one output.

5. ESTSP 2007 competition data set [71]: This time series was proposed
for the European Symposium on Time Series Prediction 2007. It is an
univariate set containing 875 samples, while the regressor size for this
series varied for different set of experiments as explained in this chapter
and the next one.

Dataset Samples Input variables
Boston Housing 506 13
Anthrokids 1019 53
Tecator 215 100
Santa Fe 987 12
ESTSP 2007 819 %)

Table 5.1: Data sets used for testing the performance of search algorithms.

5.1 Approximate Nearest Neighbor Influence

First we show the importance of using faster nearest neighbor search when
optimizing the DT. Table[5.2lshows the average running times for the Genetic
Algorithm for Santa Fe, ESTSP 2007 and Anthrokids data sets. As can be
seen, the computational savings from using underlying data structure in ANN
is substantial, with improvement of 80% for Santa Fe and roughly 90% for
both ESTSP 2007 and Anthrokids. The results are averaged over 10 runs,
while the GA uses 200 complete generations as the stopping criterion.

37

CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS

Data set Naive search Approximate k-NN
Santa Fe 620 124
ESTSP 2007 2573 283
Anthrokids 2938 314

Table 5.2: Average running time in seconds for DT optimization using naive
NN approach and approximate k-NN search.

5.2 Performance of Search Algorithms

Next experiment compares different search algorithms used for searching
through solutions space, for selection and discretized scaling. The scaling
weights are set up to take values from H = {0,0.1,0.2,...,0.9,1} set. This
experiments involves standard Forward-Backward Search, Tabu Search and
Genetic Algorithm. Table [5.3] summarizes the statistics of DT values ob-
tained with all three methods on 5 data sets. The stopping condition for all
methods was set to 10000 DT evaluations. Since FBS is a greedy method,
and converges in less than 10000 evaluations, it is reinitialized from another
random starting solution. This procedure is repeated until the algorithm
examines specified 10000 solutions. TS is only initialized once from a single
solution and evaluates the subsequent solutions until it reaches the mentioned
stopping criterion. Fach of the methods is run 10 times since all of them are
influenced by random initial solution(s). The size of the population of the
GA was set to 150 [3], 4].

All data sets were normalized to zero mean and unit variance, including the
output variable. Therefore, all DT values shown in this section are normal-
ized by the variance of the output. The normalization was done variable-wise
for all data sets except for Tecator, in which variable selection works better
with sample-wise normalization.

As can be seen from Table 5.3, FBS performs quite well over TS. This is
due to couple of initializations of FBS as soon as it has converged. On the
other hand, TS is only initialized from one point and explores the solution
space until it reaches 10000 evaluations. This shows that there are many
local minima for all data sets, and that reinitialization is beneficial for local
methods. For two data sets with the least number of variables, Housing and
Santa Fe with 13 and 12 variables respectively, there are less than 10000
possible solutions in total for the selection problem, and search algorithms
should return the global minimum for these data sets. However, only FBS
is able to do so on both of them in all 10 runs, and GA only on Santa Fe.
TS has trouble finding these in some runs, mostly due to high tenure value

38

CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS

Selection Scaling

Dataset DT value FBS TS GA FBS TS GA
Mean 0.00872 0.00878 0.01316 | 0.01419 0.01432 0.00856
Anthrokid Std 0.00073 0.00030 0.00148 | 0.00102 0.00186 0.00049
OKIES Min 0.00840 0.00844 0.01183 | 0.01273 0.01233 0.00799
Max 0.01078 0.00918 0.01512 | 0.01556 0.01681 0.00907
Mean 0.01368 0.01312 0.01480 | 0.01452 0.01427 0.01254
Std 0.00024 0.00026 0.00033 | 0.00072 0.00088 0.00019
ESTSP 2007 iy 0.01339 0.01257 0.01425 | 0.01326 0.01309 0.01217
Max 0.01410 0.01345 0.01515 | 0.01571 0.01596 0.01290
Mean 0.07104 0.07123 0.07113 | 0.05816 0.05871 0.05690
Housi Std 0.00000 0.00040 0.00030 | 0.00142 0.00610 0.00119
using Min 0.07104 0.07104 0.07104 | 0.05518 0.05558 0.05578
Max 0.07104 0.07199 0.07199 | 0.06073 0.07591 0.05948
Mean 0.01647 0.01783 0.01647 | 0.01112 0.01163 0.01053
Santa Fo Std 0.00000 0.00145 0.00000 | 0.00070 0.00086 0.00073
n Min 0.01647 0.01647 0.01647 | 0.00954 0.01095 0.00942
Max 0.01647 0.02097 0.01647 | 0.01221 0.01334 0.01115
Mean 0.01485 0.01310 0.01702 | 0.02372 0.02588 0.01388
Tecator Std 0.00175 0.00098 0.00064 | 0.00222 0.00382 0.00025
Min 0.01327 0.01114 0.01624 | 0.02104 0.02175 0.01365
Max 0.01944 0.01387 0.01844 | 0.02758 0.03495 0.01442

Table 5.3: Performance comparison of Forward-Backward Search, Tabu
Search and Genetic Algorithm for selection and discretized scaling

of 5 for both. Nevertheless, TS has much better results in data sets with
large number of variables, particularly for Tecator, for which it found the
best minimum value, even outperforming GA for scaling.

The results of GA for selection are disappointing, which suggest that GA
has problems converging to some local minima. However, its performance
in scaling problem is noticeably superior to those of FBS and TS, and even
surpasses the selection results of FBS/TS (except for Tecator). In scaling,
the exploration capabilities of GA are more evident, while FBS and TS both
highly depend on initial solution.

Table[5.4lshows the computation time of the three algorithms for Anthrokids,
ESTSP 2007 and Tecator data sets. Also shown is the percentage of this time
used for generating new solutions. It is clear that most of the optimization is
spent on DT evaluations. As expected, the GA has the highest time spent on
generating new populations, due to the complexity of its operator which also
involves generating random numbers. Random number generation is absent
in both FBS and TS. The surprising result was the time spent by FBS and TS
on Anthrokids data, with TS having roughly 40% faster running time on the
same number of DT evaluations. Figure 5.1 explains this observation. TS
starting from one initial position favors moves toward those regions of space

39

CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS

FBS TS GA
time % | time % | time %
Anthrokids 361.5 0.16 | 217.5 0.04 | 442.4 1.64
ESTSP 2007 | 98.9 0.22 | 100.5 0.04| 99.5 1.62

Data

Tecator 175 0.18 | 16.3 0.10 | 24.8 2.42
Santa Fe 30.1 1.68 | 29.7 0.24| 29.6 1.81
Housing 228 168 | 246 0.31] 20.5 1.79

Table 5.4: Average running time in seconds and percentage of that time spent
of generating new solutions. Given values are for the selection problem.

that have less variables selected in the solution. Combining this results with
DT values from Table 5.3 TS is able to find solutions with DT values on
the same level as FBS, but with smaller number of variables. This effectively
reduces the computation time which goes up to 40% for Anthrokids, while
for the other data sets there is no clear distinction.

100 i

T
1

80
60 :

407

20

T
1

% of selected variables

0

Il Il Il Il
2000 4000 6000 8000
Evaluations

Figure 5.1: Percentage of selected variables throughout the execution of
Forward-Backward Search, Tabu Search and Genetic Algorithm for An-
throkids data.

Figure shows the evolution of the DT value as a function of DT evalu-
ations. As discussed, GA does poorly in selection, while in scaling its no-
ticeably better. TS has better performance on average over FBS in later
iterations since it searches from a single initial solution, while FBS is better
in first 1000-2000 DT evaluations benefiting from several starting points. In
selection case, we see that GA is able to find promising regions of solution
space in the first couple of evaluations, but is unable to converge. Having in
mind exploratory capabilities of GA and local convergence of TS, a hybrid

40

CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS 41

approach was developed in [2] with superior result than all three algorithms
presented here.

0.04 w w — 0.04
0.03 0.03\
5002\~ K 0.02
0.01 0.01
0 ‘ ‘ ‘ 0 ‘ ‘ ‘
0 2500 5000 7500 1000(¢ 0 2500 5000 7500 10000
Evaluations Evaluations
(a) Selection on Anthrokids data (b) Scaling on Anthrokids data
0.02 ‘ ‘ e 0.02

0.0178 \.

0.0174%

5 0.015 X 5 0.015

0.0125 0.0125

0.0% 2500 5000 7500 1000¢ 0% 2500 5000 7500 10000

Evaluations Evaluations
(c) Selection on ESTSP 2007 data (d) Scaling on ESTSP 2007 data
0.04 ; ; —_—— 0.04
0.03 0.03
= i - :
fa) Y fa)
0.0Z < 0.0
0.0 2500 5000 7500 1000¢ % 2500 5000 7500 10000
Evaluations Evaluations
(e) Selection on Tecator data (f) Scaling on Tecator data

Figure 5.2: Performance of Forward-Backward Search, Tabu Search and Ge-
netic Algorithm as a function of the number of DT evaluations.

For all previous experiments, GA is set up as binary coded GA, both for
selection and for scaling. In the case of scaling, the alphabet consists of scal-
ing weights from a discretized [0, 1] range. The next experiment investigates
whether this restriction affects the results of the GA. Table shows the
difference between DT values obtained with discretized scaling (BCGA) and
pure scaling (RCGA).

The performance of BCGA and RCGA in the scaling problem are quite

CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS

Data BCGA RCGA
Anthrokids 0.00856 0.00894
ESTSP 2007 0.01254 0.01253

Housing 0.05690 0.05524
Santa Fe 0.01053 0.00966
Tecator 0.01388 0.01385

Table 5.5: Average DT values for Binary Coded and Real Coded Genetic
Algorithm in variable scaling.

similar and neither is clearly the best choice in terms of average DT value.
The advantage of RCGA over BCGA is the absence of rounding of genes to
match the scaling weights in set H, which saves time in each generations.
Therefore, we use Real-Coded GA in the rest of the experiments, which also
relieves the burden of choosing the right set of scaling weights H. Following
section explains how can we further lower the value of the DT by smartly
initializing the population.

5.3 Custom Initialization of Population for Ge-
netic Algorithm

As shown in Figure 5.1, majority of solutions had less than 50% of selected
variables. With this in mind, the initialization of population of GA was
modified to take this into account, that is, the population is created to have
a lot of zeros among the individuals.

This new approach involves having a percentage of the initial population with
lots of zero values, while the rest is created in standard way by sampling from
uniform distribution. Table shows the effect of having many zeros in the
initial population for the scaling problem. In this experiment, the stopping
condition for GA is 50 generations, while retaining the same population size
of 150. The table only shows the splitting of the population into two parts
and their respective percentages, while the actual creation of the individual
consists of distributing 90% of zero genes randomly along d dimensions, and
the 10% rest of the genes take values from uniform distribution over [0, 1]
range. The custom creation can also be applied to projection, where elements
in projection matrix are set to zero in a similar manner. The only difference
is the sampling of values for the non-zero genes, which in the projection case
is done by taking random samples from [—1, 1] range.

42

CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS

Custom/Uniform Housing Tecator Anthrokids Santa Fe ESTSP

0%/100% 0.0554 0.0134 0.0083 0.0101 0.0123
10%/90% 0.0551 0.0133 0.0079 0.0099 0.0122
20%/80% 0.0553 0.0127 0.0077 0.0096 0.0123
30%/70% 0.0554 0.0124 0.0076 0.0099 0.0123
40%/60% 0.0550 0.0118 0.0075 0.0091 0.0123
50%/50% 0.0552 0.0109 0.0073 0.0091 0.0123
60%/40% 0.05491 0.0110 0.0073 0.0091 0.0122
70%/30% 0.0548 0.0105 0.0073 0.0087 0.0124
80%,/20% 0.0553 0.0098 0.0072 0.0085 0.0124
90%/10% 0.0549 0.0092 0.0071 0.0080 0.0124
100%,/0% 0.0605 0.0087 0.0073 0.0080 0.0126

Table 5.6: Average DT values calculated for several initialization ratios for
the Genetic Algorithm.

From Table we see the advantage of introducing many zero genes for
the scaling problem. The best mean values are marked in bold, and the only
data set not benefiting from this zero insertion is ESTSP. However, the results
for this data set are quite similar for any custom/uniform initialization and
having many zero genes does not degrade performance too much. The best
overall improvement is found for Tecator (more than 68% in some cases),
which can be attributed to very high dimensional data, out of which only
few tens of variables are needed for lower DT values. Comparing the best
results from Table to those in Table 5.3 with custom initialization GA is
able to reach lower DT than in 10000 evalutions without it (50 generations
with population size of 150 accounts for 7500 DT calls).

For the rest of the thesis we use this custom initialization for GA, but we
slightly modify percentages of zero genes in individuals. The setup is as
follows: 80% of the individuals have many zeros, while the remaining 20% are
created in a standard way by choosing randomly from a uniform distribution.
The custom individuals are further divided into three equally sized parts in
which individuals have different number of zero genes. First part consists
of individuals with 90% of zero genes placed randomly over d dimensions,
while the rest of the genes are randomly initialized. Second part consists
of individuals with 80% of zero genes, while the third part has 70% of zero

43

CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS

genes in its individuals. Table 5.7 presents this custom initialization.

Standard Custom Initialization, 80 % of the population
20 % Part 1 Part 2 Part 3
100 % 90 % zeros 80 % zeros 70 % zeros
Random 10 % Random 20 % Random 30 % Random

Table 5.7: Summary of the custom initialization of the GA population. Genes
to be set to zero are selected randomly.

The splitting of the custom part into three segments should be able to make
this process suitable for data sets with different number of variables. For
small d < 20, 10% is only 2 variables, which is sometimes not enough to
for prediction of the output variable. The custom part is set to a value less
than 100% of the population to initialize the rest of the population as diverse
as possible for all genes. This is particularly noticeable for Housing data in
Table (.6l where the DT values degrade with this absence of diversity.

5.4 Improvements on Parallel Architectures

This section shows the benefits that are obtained by adding parallel pro-
gramming to the serial GA. The serial version was designed as described in
Section and that setup was used for the experiments in the previous
section. However, the evaluation of the individuals was performed on a single
processor.

For the tests with parallel programming, the GA parameters are the same as
described, except for the two things: custom initialization is replaced with the
standard random, and the crossover type was one-point crossover instead of
the better performing BLX-«a. The stopping condition was set to 600 seconds
to easily compare serial and parallel implementations. The setup was tested
on three data sets (Anthrokids, ESTSP 2007, Tecator) and two problems
(selection and discretized scaling). The Tecator data set was normalized
variable-wise for this experiment instead of the sample-wise normalization as
before. In this section, we are more interested in the the effect of increasing
the number of processor to the optimization of the DT, and less on the actual
minimization. The performance is presented in Table 5.8 for different number
of processors (np) used, including a statistical analysis of the value of DT
and the number of generations evaluated.

CHAPTER 5. EXPERIMENTS: SEARCH ALGORITHMS 45

Figures 5.3 show the effect of increasing the number of processor in the num-
ber of generations done by the algorithm for a constant number of individ-
uals. As it was expected, if the number of individuals increase, the number
of generations is smaller. This effect is compensated with the introduction
of more processors that increase almost linearly the number of generations
completed. The linearity is not that clear for small population with 50 indi-
viduals since the communication overhead starts to be significant. However,
large population sizes guarantee good scalability for the algorithm.

200 00—
——50—4-100 150 ——50 —-4+-100 150
il Y el .
c c
0 RS
g S g
= 2 40 —
8 3
50 e 20
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of processors Number of processors
(a) Selection on Anthrokids data (b) Scaling on Anthrokids data
30— 30—
| =—50 ——100 - 150| | =+—50 100 - 150|
(%) [2]
.§ 20 " é 20 _
© @
Q ()
2 " /’//A : . /
i —— P —
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of processors Number of processors
(c) Selection on ESTSP 2007 data (d) Scaling on ESTSP 2007 data
400““““ 200“““““
——50 —+-100 150 ——50—+-100 150
2 300 —" | 215 "
R RS
@ 200 3 100
c c
(5] ()
9 100 éé‘/A O 59 é/‘é/‘
0 0

1 2 3 4 5 6 7 8
Number of processors
(e) Selection on Tecator data

1 2 3 4 5 6 7 8
Number of processors
(f) Scaling on Tecator data

Figure 5.3: Number of completed generations for different population sizes
(50,100,150).

Data set Population | Measurement Selection Scaling
np=1 np=2 np=4 np=38 np=1 np=2 np=4 np=38
50 Mean (DT) 0.01278 0.01269 0.01204 0.01347 | 0.01527 0.01425 0.01408 0.0142
Mean (Generations) 35.5 74.8 137.8 169.3 16.7 35.3 70 86
Anthrokids 100 Mean (DT) 0.01351 0.01266 0.01202 0.0111 0.01705 0.01449 0.0127 0.01285
Mean (Generations) | 17.2 35.4 68.8 104 8.5 17.3 35 44.5
150 Mean (DT) 0.01475 0.01318 0.01148 0.01105 | 0.01743 0.0151 0.01328 0.01375
Mean (Generations) | 11 22.7 45.6 61 5.7 11.2 23.2 31
50 Mean (DT) 0.13158 0.14297 0.13976 0.1365 0.14151 0.147 0.14558 0.1525
Mean (Generations) | 627 1129.4 2099.2 3369.5 298.1 569.5 1126.6 1778.5
Tecator 100 Mean (DT) 0.13321 0.13587 0.13914 0.13525 | 0.14507 0.14926 0.14542 0.1466
Mean (Generations) 310.8 579.6 11104 1731 154.4 299.9 583 926.5
150 Mean (DT) 0.13146 0.1345 0.13522 0.1323 0.14089 0.15065 0.14456 0.1404
Mean (Generations) 195 388.1 741.2 1288 98.3 197.8 377 634.5
50 Mean (DT) 0.01422 0.01452 0.01444 0.01403 | 0.01401 0.01413 0.014 0.0142
Mean (Generations) | 51 99.2 190.8 229 29.1 57.6 113.8 126.7
ESTSP 2007 100 Mean (DT) 0.01457 0.01419 0.01406 0.01393 | 0.01445 0.01414 0.01382 0.01393
Mean (Generations) | 24.8 50.5 93 128.7 14 27.9 57.8 67.7
150 Mean (DT) 0.01464 0.01429 0.01402 0.0141 0.01467 0.01409 0.01382 0.01325
Mean (Generations) | 16.6 33.6 63.2 82.5 9.1 18.7 37.6 49.5

Table 5.8: Performance of serial and parallel implementations on three data sets.

SIWHLIHOOTV HOUVHS -SINANIHAdIXH "¢ HHLdVHO

9y

Chapter 6

Application to Time Series
Prediction

In this chapter, we closely investigate DT minimization on different problem
types (scaling, projection, scaling + projection, fixed variants) in the domain
of time series analysis and prediction. For these experiments, only GA is
used since it is the best performing algorithm in the scaling problem. The
version without discretization is chosen. In the following sections, we are
also considering projection problems, where a projection matrix contains real
values. Thus, with the use of RCGA, we are avoiding the setup of discretized
values for both the scaling and projection.

6.1 Delta Test Minimization on Different Prob-
lems

First, we investigate how DT behaves on different problem types mentioned
in Chapter Bl These types are: selection, scaling, projection, scaling + pro-
jection, fixed scaling and fixed scaling + projection. Four time series are used
as a benchmark for the performance of DT optimization: Santa Fe, Mackey
Glass 30 [72], ESTSP 2008a [73] and Darwin SPL [74] [75], with Table
giving the number of values in each series and the chosen regressor sizes.
Out of these four series, only ESTSP 2008a has been preprocessed in order
to remove the trend. The final series was obtained by taking the first order
difference.

As was the case with previous experiments, all data sets are normalized
to zero mean and unit variance, including the output variable. For this

47

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

Name Values Regressor size
Santa Fe 1000 12
Mackey Glass 30 1500 20
ESTSP 2008a 354 20
Darwin SPL 1400 15

Table 6.1: Time series used for different variable selection problems.

experiment, no splitting of data sets was performed (i.e. training and test
sets), because we are interested in the minimization of the DT without model
building. Optimizations are done only for the first horizon of prediction (one-
step ahead), while the stopping condition for the GA is set to 200 generations
allowing the algorithm to find solutions with high fitness. The actual model
building for long-term prediction is done in Section [6.2l

For easier notation in this section, we use SL as an abbreviation for mini-
mization of DT in variable selection, S for variable scaling, SP for scaling +
projection (SP-k when projection dimension is k), F'S for fixed scaling (FS-d;
when dy variables are fixed), and FSP for fixed scaling + projection (FSP-
dg-k for the problem with d; fixed variables and k projection dimensions).
For all the setups of parameters, the optimization process is done 10 times
for each selection problem.

6.1.1 DT Performance

The average DT values computed for each problem and for each data set are
plotted in Figure 6.1l For these experiments, we set k = 1 and dy = [d/2],
resulting in SP-1, FS-[d/2] and FSP-[d/2]-1.

Looking at the results in Figure [6.I], we are able to reach lower DT values for
all problems compared to pure variable selection. The best result is obtained
for SP-1 in all cases. Inclusion of projection leverages the possibility of using
a newly created variable to gain an advantage over scaling alone. We see
that with one additional variable included to the data, we are able to lower
DT by a large margin in some data sets (almost 100% for Mackey Glass 30).

In general, the fixed variations provide slightly worse DT values than their
standard counterparts (e.g. Santa Fe, Mackey Glass 30), meaning that learn-
ing models will be able to give similar performance on the halved data set.
Since only half of the variables are used, the training times of models will
greatly benefit from this reduction. The fixed version also gives an insight
into the most relevant variables, and in these experiments the [d/2] most

48

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

0.02 0.8 : w : : :
[Mean DT Min DT (Bl Mean DT Min DT
0.01 0
504
1 1 1 1 — 02 1 1 1 N
SL S FS FSP 0 SL FS FSP
Problem Problem
(a) Santa Fe (b) ESTSP 2008a
5X 10_3 0.2—— : : : .
‘-Mean DT Min DT [Mean DTI Min DT
4 0.15
3 =
= 0.1
) (@]
2
0 0 SL FS FSP
Problem Problem
(c) Mackey Glass 30 (d) Darwin SPL

Figure 6.1: DT performance (average and minimum values) for four time
series.

important dimensions for prediction. For the ESTSP 2008a data set, values
of fixed scaling are not on the same level as those of pure scaling, suggesting
that more than d/2 variables are required for better prediction.

6.1.2 Computational Time

A computational time comparison of selection problems is shown in Figure
0.2l

It is noticeable that SP-1 sometimes requires less computational time to
perform the 200 generations than scaling, and even getting close to or slightly
improving (Darwin SLP) times computed for pure selection. This might seem
contradictory, as the size of the individuals is twice the size of those used
for scaling in GA setup. Although the computational time for GA doubles
when moving from scaling to SP-1, the running time of DT optimization is
dominated by nearest neighbor search (Section [2I]). The faster calculation
time for DTSP-1 could be attributed to the construction of the underlying
data structure of approximate nearest neighbors, which uses a hierarchical
space decomposition tree called balanced-box decomposition (BBD) tree [30].

49

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

20 20
» 15 «» 150
© ©
c c
8 100 8 100
(O] (0]
n)
50 50
0 0
SL S SP FS FSP SL S SP FS FSP
Problem Problem
(a) Santa Fe (b) ESTSP 2008a
40

w
o

Seconds
N
o
o

100
0 SL S SP FS FSP SL S SP FS FSP
Problem Problem
(c) Mackey Glass 30 (d) Darwin SPL

Figure 6.2: Average running times obtained for four time series.

Additional dimensions might lead to favorable splitting of the points/samples
into leafs of the tree, eventually improving response time for query searches.

The fixed versions gave good results in terms of DT values for some data
sets, but their computational times are generally higher than their non-fixed
versions. When using multi-objective optimization there is an additional cost
inherent in NSGA-II method, which sorts solutions based on the dominance
notion. The additional O(mp?) complexity of NSGA-IT for p = 150 slightly
increases the running time for most data sets. The exceptions are ESTSP
2008a and Darwin SPL series, where the computational time for fixed meth-
ods is lower than for their non-fixed counterparts.

Casting the scaling problem with a fixed number of variables into multi-
objective setting increases the run time on the tested data sets. In order
to achieve lower running times, the number of individuals in the population
has to be reduced, which influences the exploration capabilities of the GA
in a negative way. The additional computational time of NSGA-IT prevents
it from being used in this type of problem. Therefore, faster and simpler
techniques should be employed to lower the running times of the fixed scaling
(plus projection) problem. One such possibility is island GA with migration
policies which do not have such high complexity.

20

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

In the next section, the computational time for scaling + projection is further
analyzed for several values of k.

6.1.3 Projection to many Dimensions

From the previous results one can extract the conclusion that SP-1 has clearly
outperformed the rest of the methods while still keeping reasonably low com-
putational times in many scenarios. Following experiment compares DT val-
ues and computational time when projection is done to k = {1,2,3,4,5}
dimensions. Figure illustrates the DT results obtained and Figure
represents the computational time evolution.

x10° | | | 0.4
|—~—Mean DT+ Min DT|
6.5 0.35

6 6 /\// 5 03 — .
5.5 0.25—

«I v

~ [~+Mean DT ~ MinDT|

I I S T T

Projection dimension k Projection dimension k
(a) Santa Fe (b) ESTSP 2008a
55X 1Q_3 ‘ ‘ ‘ ‘ 0.0 : : : E :
[~—Mean DT+ Min DT| [~+=Mean DT - Min DT|
2 = 0'08\\\0—0//‘
5| —— | B
15 0.07
R T e N T G
Projection dimension k Projection dimension k
(c) Mackey Glass 30 (d) Darwin SPL

Figure 6.3: SP-k results using projection to k = {1,2,3,4,5} dimensions for
four time series.

By looking at the results it is easy to observe that, for all data sets, the value
of DT has an optimum value after which it starts to rise again when adding
more projections. With Algorithm B.1] this value is reached if we start from
k = 1. The downside of this approach is huge computational cost, as for each
projection dimension one has to run GA several times in order to get reliable
DT estimate. Algorithm [B.1] will miss the correct value of k for Santa Fe and
Darwin SPL series. However, the improvement in these cases is negligible

ol

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

16 20
4
15
3 // 219 /\
c c
S 14 3 / \
(8] Q
13 / /
N - T S VO s 4 s
Projection dimension k Projection dimension k
(a) Santa Fe (b) ESTSP 2008a
40 65
8 35 i 3
; / S 60 A
8] o
8 30 /v $ ‘\/ \/
G R 50 55 45

Projection dimension k
(c) Mackey Glass 30

Projection dimension k
(d) Darwin SPL

Figure 6.4: Average running times obtained for SP-{1,2, 3,4, 5} for four time
series.

if we take into account the additional number of parameters needed for the
projection matrix (in both cases there are extra 2d parameters).

The adjustable number of projections aids in obtaining lower DT values. The
progression of the DT curves as a function of k£ shows a minimum where the
optimum DT has been registered. As we only tested projections to k < 5
dimensions, better values may be found for higher values of k, at the expense
of computational time. The increase in computational time as a function
of k is sometimes irregular (Darwin SPL and ESTSP 2008a), while for the
other two series it shows increasing tendency as expected due to the increased
number of parameters.

Finally, the lowest DT values achieved for each data set and the correspond-
ing problem are listed in Table

02

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

Data set Problem Minimum DT
Santa Fe SP-1 / SP-3 0.0051 (11.22)
ESTSP 2008a SP-4 0.2122 (2.13)
Darwin SLP SP-5 0.0686 (0.466)
Mackey Glass 30 SP-2 0.0015 (1.2E-4)

Table 6.2: Minimum DT values obtained for tested time series (denormalized
values in brackets).

6.2 Long-Term Prediction using OP-ELM

Finally, we integrate variable selection aspects with the model building step
into one global methodology, depicted in Figure The high-dimensional
data is first projected based on input selection carried out with Delta Test
and Genetic Algorithm. After this projection, the OP-ELM method is used
for the actual prediction of future values. The term projection encompasses
all selection problems as explained in Section [3.3] and in the experiments we
test the following problems: scaling, projection and scaling + projection.

Data \7 Prediction

Variable Projection

LN

GA DT

SEEEEN OP-ELM

Figure 6.5: Global methodology for long-term times series prediction.

The predictions are done by inspiring new methodology — Optimally-Pruned
Extreme Learning Machine [64] (OP-ELM). OP-ELM has its roots from the
ELM [65] principle of fast training of a Single Layer Feed-forward Neural
Network. The OP-ELM improves the novel ELM concept by pruning out the
unnecessary neurons, thus making the estimation more reliable and stable.
The OP-ELM does not require any extra parameters compared to the ELM.

The proposed methodology is tested on two time series: ESTSP 2007 and
ESTSP 2008b competition data. Before applying the first step (variable
projection) of the methodology, both time series are preprocessed in order

93

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

to remove trend and/or seasonality. These preprocessing steps are explained
for both series in the following sections.

6.2.1 ESTSP 2007 Competition Data

This dataset is from a prediction competition organized in the European
Symposium of Time Series Prediction conference (ESTSP) in 2007. The
dataset has 875 samples and it is shown in Figure

28 -

T

24 -

Values

T

22

20 N

T

| | | | | | | |
100 200 300 400 500 600 700 800
Time

Figure 6.6: ESTSP 2007 competition data.

There is a clear seasonality present throughout the data, except around time
point 400. Since the data seems to be corrupted or otherwise completely
different from the rest of the data, some portion of the data is removed prior
to any other preprocessing. In order to keep the phase correct, two full
sequences of 52 values were removed.

After removing some data points, the modified series was separated into
learning and test sets. First two thirds of the data was used for the learning,
while the remaining third served as a test set. The regressor size of 60" was
chosen to capture the seasonality plus some extra values. The learning and
test sets contain 406 and 148 samples, respectively. The goal is to predict
next 50 values of the series.

The next step after splitting involved fitting a sawtooth wave into the learning
data, then removing this wave from both data sets, in order to get rid of the
seasonality. In other words, the preprocessing for the test set is done only
based on the information available in the learning set.

! This series had a different regressor size (55) in the previous experiments.

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

After these steps, we have the preprocessed learning data shown in Figure
0. (.

Values

-1t Al

Il Il Il Il Il Il Il Il Il Il
50 100 150 200 250 300 350 400 450 500
Time

Figure 6.7: ESTSP 2007 learning data after preprocessing.

6.2.2 ESTSP 2008b Competition Data

Like the previous dataset, this one is also from a prediction competition,
except this one is taken from the ESTSP conference organized in 2008. The
series is a second series out of three given in the competition, and consists
of 1300 values shown in Figure[6.8. Before any preprocessing steps, the data
set was divided into learning and test sets containing the first two thirds and
the last third, respectively. After initial tests with OP-ELM with different
regressor sizes, the chosen size was set to 50. Thus, the number of samples
is 717 and 285 for the learning and test set respectively. The goal for this
competition data is prediction of the next 100 values.

For this data set, two preprocessing steps were used. First one takes care of
the clear upward jump around time point 600 and the second one deals with
the seasonality of the series. Both steps are done using only the information
available in the learning set, even when preprocessing the test set.

Step function fitting found the exact place of the jump at time point 588. The
large scale seasonality was removed using a double square wave. Finally, the
standard deviation of the data was removed according to the fitted double
square wave, in the high parts and in the low parts separately. The result of
preprocessing gives the data shown in Figure [6.9.

95

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

x 10’

Values

0.5]]

| | | | |
200 400 600 800 1000 1200
Time

Figure 6.8: ESTSP 2008b competition data.

Values

| | | | | |
100 200 300 400 500 600 700 800
Time

Figure 6.9: ESTSP 2008b learning data after preprocessing.

6.2.3 Prediction Performance

For the long-term prediction, we use the Direct Strategy, which has proven
to be accurate and easily implementable choice [35]. This means that 1) a
projection matrix is optimized and 2) a model is build on top of projected
data for each prediction horizon. Once the data is projected, the OP-ELM is
trained, and later used to predict the future samples. Table summarizes
the performance of OP-ELM) for both series on the our test set and the actual
test. Our test consists of samples obtained by splitting the series (denoted
Ty in the table) and the actual test set are the values from the competition
(denoted T5). The performance on the data sets with all variables included
is also given for comparison (denoted “original” in the table).

In both data sets, the predictions on projected data are always the highest,

26

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

Data set Problem | MSE(T}) MSE(T3)
original 0.6376 0.8033
scaling 0.6231 0.8525
ESTSP 2007 projection | 0.7824 1.1829
S+p 0.6413 0.8419
original 2.5996 1.8181
«| scaling 2.5963 1.7381
ESTSP 2008b projection | 2.8181 2.1515
s+p 2.6108 1.8114

* .
error in scale of x 1016

Table 6.3: Summary of the average test errors over all prediction horizons
for all methods.

suggesting that linear projection does not suit OP-ELM model. On the
other hand, projection is a difficult task with large number of parameters,
and the final projection dimension may be much lower than desired for time
series prediction. The new approach with scaling + projection produces
mixed results, with better results in ESTSP 2007 series. Finally, the ranking
of approaches with test set 77 roughly corresponds to the ranking on the
test set Ty. For ESTSP 2008b scaling is the best on both test sets, with
original and scaling + projection switching places. In general, it is surprising
that no input selection approach has such good performance, considering the
regressor sizes of 60 (ESTSP 2007) and 50 (ESTSP 2008b).

Figure [6.10 shows the values of the Delta Test for all prediction horizons for
three types of problems, plus the original data is included for comparison
purposes.

As we can see, the scaling+projection obtains the lowest DT values, while and
the original data sets using all unprocessed inputs have the highest values.
Comparing this ranking with the results presented in Table [6.3] the OP-
ELM achieves roughly the same performance with all selection aspects, even
though the scaling+projection obtains the lowest DT. The improvement is
roughly 40% and 50% for ESTSP 2007 and ESTSP 2008b series respectively.
The correspondence between the DT values and the actual performance of
the prediction methodologies warrants further study.

The final prediction for both series are shown in Figures [6.11] and [6.12]

o7

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

0.09 —0 ——P——S——5+F

AAAA
O

O-O0-0-0-0-0-0-4
vvvvvv

| |
5 10 15 20 25 30 35 40 45 50
Prediction Horizon

(a) ESTSP 2007 data.

I I I T
—0 —e—P—e—S—x—S+P‘

v | | |
10 20 30 40 50 60 70 80 90 10C
Prediction Horizon

(b) ESTSP 2008b data.

Figure 6.10: Delta Test values for original (O), projected (P), scaled (S) and
scaled-+projected (S+P) data for all prediction horizons.

o8

CHAPTER 6. APPLICATION TO TIME SERIES PREDICTION

Prediction
N N N
2
| |

N
N
|

20r

|
700 750 800 850 900
Time

Figure 6.11: ESTSP 2007 competition data. Prediction for 50 steps ahead.
Solid line represents the real data and dashed one the prediction.

[IEN
o

Prediction

| | | | | | | | |
1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400
Time

Figure 6.12: ESTSP 2008b competition data. Prediction for 100 steps ahead.
Solid line represents the real data and dashed one the prediction.

Chapter 7

Conclusions

In this thesis, we present several aspects of variable selection using Delta
Test as relevance criterion. New aspect or problem types of, i.e. fixed scaling
and scaling + projection, are introduced and their influence on DT optimiza-
tion compared to the standard approaches (selection, scaling and projection).
Overall, the best values are obtained with the combination of scaling and pro-
jection, while the optimization cost is slightly increased, both in the number
of parameters of the projection matrix and nearest neighbor calculation time.

The scaling with fixed number of variables provides efficient way of find-
ing the most useful small subset of variables for the actual regression task.
Unfortunately, casting this type of problem into a multi-objective setting in-
creases the run time on the tested data sets. The algorithm, NSGA-II, with
non-dominated sorting algorithm prevents it from being used in this type of
problem. Therefore, faster and simpler techniques should be employed to
lower the running times of the fixed scaling (plus projection) problem. One
such possibility is island GA with migration policies that do not have such
high complexity.

Three search algorithms (Forward-Backward Search, Tabu Search, Genetic
Algorithm) are tested in two different problem domains: selection and dis-
cretized scaling. Tabu Search has proven to be a better choice for higher-
dimensional data in variable selection, while retaining the simplicity in the
form of Simple Tabu Search, which uses only short-term recency based mem-
ory. This algorithm is easily extended from Forward-Backward Search with
additional checks for tabu status. Genetic Algorithm does not provide satis-
factory results in selection, but its mechanism is more suitable for complex
problems (projection), and its exploration capabilities have proved to over-
come both tested neighborhood techniques (FBS, TS). The setup of GA is

60

CHAPTER 7. CONCLUSIONS

extended to include the full interval [0, 1] of scaling weights, which makes the
problem fully continuous. For future work, other population based algorithms
that are designed for continuous solution spaces, such as Differential Evolu-
tion and Particle Swarm Optimization, remain to be tested and compared to
the performance of GA. Replacing serial GA with a parallel implementation
allows the algorithm to explore more solutions in the same amount of time,
enabling faster results for all selection problems.

Finally, variable selection using DT and GA has been included into global
methodology for long-term time series prediction. For prediction purposes,
we used OP-ELM, a fast and accurate methodology suitable for the task of
long-term predictions using Direct strategy. The methodology is tested on
two competition time series using different approaches to variable selection:
no input selection, scaling, projection, and the combination of both. The re-
sults are not as expected, with the first approach (no input selection) being on
the same level as scaling and scaling + projection, even though the DT values
are substantially reduced in all cases. Although projection approach did not
provide satisfactory results, it still provides the user with projected lower-
dimensional data, which can be crucial for methods that cannot effectively
handle data sets with large number of dimensions. However, the additional
dimensions added to the scaling problem can improve the predictions with
small extra computational cost.

For further work, this relationship between the DT values and the actual
model performance will be studied. Also, the obtained projection perfor-
mance will be evaluated in even more high-dimensional cases, to ensure the
validity of the global search ability of the GA and to study the limits of the
search.

61

Bibliography

[1]

2]

3]

[4]

[5]

(6]

7]

D. Sovilj, A. Sorjamaa, and Y. Miche, “Tabu search with delta test for
time series prediction using OP-KNN”, in ESTSP, Furopean Symposium
on Time Series Prediction (A. Lendasse, ed.), pp. 187-196, Multiprint
Oy / Otamedia , Espoo, Finland, September 17-19 2008.

A. Guillén, D. Sovilj, F. Mateo, I. Rojas, and A. Lendasse, “New
methodologies based on delta test for variable selection in regression
problems”, in Workshop on Parallel Architectures and Bioinspired Algo-
rithms, (Toronto, Canada), October 25-29 2008.

A. Guillén, D. Sovilj, F. Mateo, I. Rojas, and A. Lendasse, “Minimizing
the delta test for variable selection in regression problems”, Interna-

tional Journal on High Performance Systems Architecture, vol. 1, no. 4,
pp- 269-281, 2008.

F. Mateo, D. Sovilj, R. Gadea, and A. Lendasse, “RCGA-S/RCGA-
SP methods to minimize the delta test for regression tasks”, in 10th
International Work-Conference on Artificial Neural Networks, IWANN
2009, Salamanca, Spain, June 10-12, 2009. Proceedings, Part I (J. C.
at el., ed.), vol. 5517 of Lecture Notes in Computer Science, pp. 359-366,
Springer, 2009.

F. Mateo, D. Sovilj, and R. Gadea, “Approximate k-NN delta test min-
imization method using genetic algorithms: Application to time series,”
Neurocomputing, August 2009. Submitted.

D. Sovilj, A. Sorjmaa, Q. Yu, Y. Miche, and E. Séverin, “OP-ELM and
OP-KNN in long-term prediction of time series using projected input
data”, Neurocomputing, August 2009. Submitted.

M. Verleysen and D. Francois, The curse of dimensionality in data min-
ing and time series prediction, vol. 3512 of Lecture Notes in Computer
Science, pp. 758-770. Heidelberg: Springer, 2005.

62

BIBLIOGRAPHY

[8] J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction.
Springer Publishing Company, Incorporated, 2007.

[9] E. Eirola, E. Liitidinen, A. Lendasse, F. Corona, and M. Verleysen,
“Using the delta test for variable selection”, in European Symposium on
Artificial Neural Networks 2008, Bruges (Belgium), pp. 25-30, April
2008.

[10] P. Pudil, J. Novovi¢ova, and J. Kittler, “Floating search methods in
feature selection”, Pattern Recognition Letters, vol. 15, no. 11, pp. 1119—
1125, 1994.

[11] P. Somol, P. Pudil, J. Novovi¢ova, and P. Paclik, “Adaptive floating
search methods in feature selection”, Pattern Recogn. Lett., vol. 20,
no. 11-13, pp. 1157-1163, 1999.

[12] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2004.

[13] J. H. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975.

[14] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution A
Practical Approach to Global Optimization. Natural Computing Series,
Berlin, Germany: Springer-Verlag, 2005.

[15] J. Kennedy and R. Eberhart, “Particle swarm optimization”, in In Pro-
ceedings of the IEEE International Joint Conference on Neural Net-
works, pp. 19420-1948, 1995.

[16] M. Dorigo and G. D. Caro, “Ant colony optimization: A new meta-
heuristic”, in In Proceedings of the IEEE Congress on Evolutionary Com-
putation, vol. 2, p. 1477, July 1999.

[17] F. Glover and F. Laguna, Tabu Search. Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

[18] T. A. Feo and M. G. C. Resende, “A probabilistic heuristic for a com-
putationally difficult set covering problem”, vol. 8, pp. 6771, 1989.

[19] T. A. Feo and M. G. C. Resende, “Greedy randomized adaptive search
procedures”, Journal of Global Optimization, vol. 6, pp. 109-133, 1995.

[20] G. Box, G. M. Jenkins, and G. Reinsel, Time Series Analysis: Forecast-
ing & Control. Prentice Hall, 3rd ed., February 1994.

63

BIBLIOGRAPHY

[21]

[22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

P. J. Brockwell and R. A. Davis, Introduction to Time Series and Fore-
casting. Springer, March 2002.

M. Casdagli, “Nonlinear prediction of chaotic time series”, Physica D,
vol. 35, pp. 335-356, 1989.

A. Lendasse, E. de Bodt, V. Wertz, and M. Verleysen, “Nonlinear fi-
nancial time series forecasting - application to the bel 20 stock mar-

ket index”, Furopean Journal of Economic and Social Systems, vol. 14,
pp- 81-92, February 2001.

H. Pi and C. Peterson, “Finding the embedding dimension and variable
dependencies in time series”, Neural Computation, vol. 6, no. 3, pp. 509—
520, 1994.

tions and noise variance estimation”, in ESANN 2007, European Sympo-
sium on Artificial Neural Networks, Bruges (Belgium), pp. 67-72, April
25-27 2007.

S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The x-tree: An index
structure for high-dimensional data”, in Proceedings of 22nd VLDB Con-
ference, pp. 28-39, 1996.

P. B. Callahan and S. R. Kosaraju, “A decomposition of multidimen-
sional point sets with applications to k-nearest-neighbors and n-body
potential fields,” Journal of the ACM, vol. 42, no. 1, pp. 67-90, 1995.

J. L. Bentley, “Multidimensional binary search trees used for associative
searching”, Communications of the ACM, vol. 18, no. 9, pp. 509-517,
1975.

J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time”, ACM Transactions
on Mathematical Software (TOMS), vol. 3, no. 3, pp. 209-226, 1977.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions”, Journal of the ACM, vol. 45, no. 6, pp. 891-923, 1998.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Chichester, UK: Wiley, 2001.

64

BIBLIOGRAPHY

[32] K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12 of Interna-
tional Series in Operations Research and Management Science. Kluwer
Academic Publishers, Dordrecht, 1999.

[33] R. E. Steuer, Multiple Criteria Optimization : Theory, Computation,
and Application. New York, Toronto: Wiley, 1986.

[34] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and eli-
tist multiobjective genetic algorithm: NSGA-IT", IEEFE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

[35] A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse, “Methodology
for long-term prediction of time series”, Neurocomputing, vol. 70, no. 16-
18, pp. 2861-2869, 2007.

[36] F. Glover, “Future paths for integer programming and links to artificial
intelligence”, Computers & Operations Research, vol. 13, no. 5, pp. 533~
549, 1986.

[37] F. Glover, “Tabu search part i”, ORSA Journal on Computing, vol. 1,
no. 3, pp. 190-206, 1989.

[38] F. Glover, “Tabu search part ii”, ORSA Journal on Computing, vol. 2,
pp. 4-32, 1990.

[39] M. DellAmico and M. Trubian, “Applying tabu search to the job-shop
scheduling problem”, Annals of Operations Research, vol. 41, no. 1-4,
pp. 231-252, 1993.

[40] A.H. Mantawy, S. A. Soliman, and M. E. El-Hawary, “A new tabu search
algorithm for the long-term hydro scheduling problem”, pp. 29-34, 2002.

[41] C. Zhang, P. Li, Z. Guan, and Y. Y. Rao, “A tabu search algorithm with
a new neighborhood structure for the job shop scheduling problem”,

Computers € Operations Research, vol. 34, pp. 3229-3242, November
2007.

[42] J. Xu, S. Chiu, and F. Glover, “Probabilistic tabu search for telecom-
munications network design”, Journal of Combinatorial Optimization,
Special Issue on Topological Network Design, vol. 1, pp. 69-94, 1996.

[43] J. Xu, S. Chiu, and F. Glover, “Using tabu search to solve steiner tree-
star problem in telecommunications network design”, Telecommunica-
tion Systems, vol. 6, pp. 117-125, 1996.

65

BIBLIOGRAPHY

[44] J. Brandao, “A tabu search algorithm for the open vehicle routing prob-
lem,” Furopean Journal of Operational Research, vol. 157, pp. 552-564,
September 2004.

[45] S. Scheuerer, “A tabu search heuristic for the truck and trailer routing
problem”, Computers & Operations Research, vol. 33, no. 4, pp. 894-909,
2006.

[46] F. Glover, “Parametric tabu-search for mixed integer programs”, Com-
puters € Operations Research, vol. 33, no. 9, pp. 2449-2494, 2006.

[47] A.-R. Hedar and M. Fukushima, “Tabu search directed by direct search
methods for nonlinear global optimization”, Furopean Journal of Oper-
ational Research, vol. 170, pp. 329-349, April 2006.

[48] K. S. Al-Sultan and M. A. Al-Fawzan, “A tabu search hooke and jeeves
algorithm for unconstrained optimization”, Furopean Journal of Opera-
tional Research, vol. 103, pp. 198-208, November 1997.

[49] S. Kirkpatrick, G. C.D., and M. Vecchi, “Optimization by simulated
annealing,” pp. 671-680.

[50] A. P. Engelbrecht, Computational Intelligence: An Introduction. John
Wiley & Sons, Ltd, 2nd ed., 2002.

[51] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison Wesley, 1989.

[52] M. D. Vose, The Simple Genetic Algorithm: Foundations and Theory.
MIT Press, 1999.

[53] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1996.

[54] 1. Oh, J. Lee, and B. Moon, “Local search-embedded genetic algorithm
for feature selection”, in ICPR, pp. 11:148-151, 2002.

[55] 1. Oh, J. Lee, and B. Moon, “Hybrid genetic algorithms for feature selec-
tion”, IEEFE Trans. Pattern Anal. Mach. Intell, vol. 26, no. 11, pp. 1424~
1437, 2004.

[56] W. F. Punch, E. D. Goodman, M. Pei, L. Chia-Shun, P. Hovland, and
R. Enbody, “Further research on feature selection and classification using
genetic algorithms”, in Proceedings of the Fifth International Conference
on Genetic Algorithms (ICGA’93) (S. Forrest, ed.), (San Mateo, Cali-
fornia), pp. 557-564, Morgan Kaufmann Publishers, 1993.

66

BIBLIOGRAPHY

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

M. Raymer, W. Punch, E. Goodman, L. Kuhn, and A. Jain, “Dimen-
sionality reduction using genetic algorithms”, IEEETEC: IEEE Trans-
actions on Fvolutionary Computation, A Publication of the IEEE Neural
Networks Council, vol. 4, 2000.

Y. Saeys, I. Inza, and P. Larranaga, “A review of feature selection tech-
niques in bioinformatics”, Bioinformatics, vol. 23, no. 19, pp. 2507-2517,
2007.

J. E. Baker, “Reducing bias and inefficiency in the selection algorithm”,
in Proceedings of the Second International Conference on Genetic algo-
rithms and their application, (Hillsdale, NJ, USA), pp. 14-21, L. Erl-

baum Associates Inc., 1987.

U. K. Chakraborty, K. Deb, and M. Chakraborty, “Analysis of selec-
tion algorithms: A markov chain approach”, Evolutionary Computation,
vol. 4, no. 2, pp. 133-167, 1996.

L. Eshelman and J. Schaffer, “Real-coded genetic algorithms and interval
schemata”, in Foundation of Genetic Algorithms 2 (L. Darrell Whitley,
ed.), pp. 187-202, Morgan-Kauffman Publishers, Inc., 1993.

J. J. Grefenstette, “Parallel adaptive algorithms for function optimiza-
tion,” Technical Report TCGA CS-81-19, Department of Engineering
Mechanics, University of Alabama, Vanderbilt University, 1981.

F. Mateo and A. Lendasse, “A variable selection approach based on the
delta test for extreme learning machine models”, in Proceedings of the
European Symposium on Time Series Prediction (M. Verleysen, ed.),
pp. 57-66, d-side publ. (Evere, Belgium), September 2008.

Y. Miche, A. Sorjamaa, and A. Lendasse, “OP-ELM: Theory, experi-
ments and a toolbox”, in LNCS - Artificial Neural Networks - I[CANN
2008 - Part I (R. N. Vera Kurkova and J. Koutnik, eds.), vol. 5163/2008
of Lecture Notes in Computer Science, pp. 145-154, Springer Berlin /
Heidelberg, September 2008.

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
Theory and applications”, Neurocomputing, vol. 70, pp. 489-501, De-
cember 2006.

Approximate Nearest Neighbour library homepage.
http://www.cs.umd.edu/ mount /ANN/

67

BIBLIOGRAPHY 68

[67] Housing data set.
http://archive.ics.uci.edu/ml/datasets/Housing

[68] Tecator data set.
http://lib.stat.cmu.edu/data sets/tecator

[69] Anthrokids data set.
http://ovrt.nist.gov /projects /anthrokids

[70] Santa Fe Competition data sets.
http://www-psych.stanford.edu/ andreas/ Time-Series/SantaFe.html

[71] ESTSP 2007 competition data set.
http://www.cis.hut.fi/projects/tsp /index.php?page—timeseries

[72] Mackey-glass time series.
http://www.bme.ogi.edu/“ericwan/data.html

[73] ESTSP 2008 competition data sets.
http://www.cis.hut.fi/projects/tsp/index.php?page—timeseries

[74] Darwin Sea Level Pressure (period 1882-1998).
http://www.stat.duke.edu/ mw/ts_data_sets.html

[75] Climate prediction center homepage.
http://www.cpc.noaa.gov/

	Abbreviations and Acronyms
	Introduction
	Publications

	Delta Test
	Complexity of Delta Test

	Variable Selection, Scaling and Projection
	Variable Selection
	Variable Scaling
	Variable Scaling with Fixed Number of Variables

	Variable Projection
	Automatic Selection of Projection Dimension
	Combining Scaling and Projection

	Search Algorithms
	Forward Search, Backward Search and Forward-Backward Search
	Forward-Backward Search in Variable Scaling

	Tabu Search
	Tabu Search for Variable Selection
	Tabu Search for Variable Scaling
	Setting the Tabu Conditions

	Genetic Algorithm
	Genetic Algorithm Basics
	Setup for the Experiments
	Parallel Implementation
	Genetic Algorithm for Multi-Objective Optimization

	Experiments: Search Algorithms
	Approximate Nearest Neighbor Influence
	Performance of Search Algorithms
	Custom Initialization of Population for Genetic Algorithm
	Improvements on Parallel Architectures

	Application to Time Series Prediction
	Delta Test Minimization on Different Problems
	DT Performance
	Computational Time
	Projection to many Dimensions

	Long-Term Prediction using OP-ELM
	ESTSP 2007 Competition Data
	ESTSP 2008b Competition Data
	Prediction Performance

	Conclusions

