Neurocomputing 74 (2011) 2430-2437

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

GPU-accelerated and parallelized ELM ensembles for large-scale regression

Mark van Heeswijk **, Yoan Miche *P, Erkki Oja? Amaury Lendasse ?

2 Aalto University School of Science and Technology, Department of Information and Computer Science, P.O. Box 15400, FI-00076 Aalto, Finland
b Gipsa-Lab, INPG, 961 rue de la Houille Blanche, F-38402 Grenoble Cedex, France

ARTICLE INFO ABSTRACT

Available online 13 May 2011 The paper presents an approach for performing regression on large data sets in reasonable time, using

an ensemble of extreme learning machines (ELMs). The main purpose and contribution of this paper are

Keywords:

ELM to explore how the evaluation of this ensemble of ELMs can be accelerated in three distinct ways:
Ensemble methods (1) training and model structure selection of the individual ELMs are accelerated by performing these
GPU steps on the graphics processing unit (GPU), instead of the processor (CPU); (2) the training of ELM is

Parallelization
High-performance computing

performed in such a way that computed results can be reused in the model structure selection, making
training plus model structure selection more efficient; (3) the modularity of the ensemble model is
exploited and the process of model training and model structure selection is parallelized across
multiple GPU and CPU cores, such that multiple models can be built at the same time. The experiments
show that competitive performance is obtained on the regression tasks, and that the GPU-accelerated
and parallelized ELM ensemble achieves attractive speedups over using a single CPU. Furthermore, the
proposed approach is not limited to a specific type of ELM and can be employed for a large variety

of ELMs.

© 2011 Published by Elsevier B.V.

1. Introduction

Due to advances in technology, the size and dimensionality of
data sets used in machine learning tasks have grown very large
and continue to grow by the day. For this reason, it is important to
have efficient computational methods and algorithms that can be
applied on very large data sets, such that it is still possible to
complete the machine learning tasks in reasonable time.

Meanwhile, video cards’ performances have been increasing
more rapidly than typical desktop processors and they now
provide large amounts of computational power—compared again
with typical desktop processors [1].

With the introduction of NVidia CUDA [2] in 2007, it has
become easier to use the GPU for general-purpose computation,
since CUDA provides programming primitives that allow you to
run your code on highly parallel GPUs without needing to
explicitly rewrite the algorithm in terms of video card operations.
Examples of successful applications of CUDA include examples
from biotechnology, linear algebra [3], molecular dynamics simu-
lations and machine learning [4]. Depending on the application,
speedups of up to 300 times are possible by executing code on a
single GPU instead of a typical CPU, and by using multiple GPUs it
is possible to obtain even higher speedups. The introduction of

* Corresponding author.
E-mail address: mark.van.heeswijk@tkk.fi (M. van Heeswijk).

0925-2312/$ - see front matter © 2011 Published by Elsevier B.V.
doi:10.1016/j.neucom.2010.11.034

CUDA has lead to the development of numerous libraries that use
the GPU in order to accelerate their execution by several orders of
magnitude. An overview of software and libraries using CUDA can
be found on the CUDA zone web site [2].

In this work, one of these libraries is used, namely CULA [5],
which was introduced in October 2009 and provides GPU-accel-
erated LAPACK functions (see [6] for the original LAPACK). Using
this library the training and model structure selection of the
models can be accelerated. The particular models used in this
work are a type of feedforward neural network, called extreme
learning machine (ELM) [7-10] (see [11-14] for recent develop-
ments based on ELM).

The ELM is well-suited for regression on large data sets, since
it is relatively fast compared with other methods [11,15] and it
has been shown to be a good approximator when it is trained
with a large number of samples [16]. Even though ELMs are fast,
there are several reasons to implement them on GPU and reduce
their running time. First of all, because the ELMs are applied to
large data sets the running time is still significant. Second, large
numbers of neurons are often needed in large-scale regression
problems. Finally, model structure selection needs to be per-
formed (and thus multiple models with different structures need
to be executed) in order to avoid under- or overfitting the data.

By combining multiple ELMs in an ensemble model, the test
error can be greatly reduced [10,17,18]. In order to make it
feasible to apply an ensemble of ELMs to regression on large data
sets, in this paper various strategies are explored for reducing the

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.11.034
mailto:mark.van.heeswijk@tkk.fi
dx.doi.org/10.1016/j.neucom.2010.11.034

M. van Heeswijk et al. / Neurocomputing 74 (2011) 2430-2437 2431

computational time. First, the training and model structure
selection of the ELMs is accelerated by performing these steps
largely on GPU. Second, the training of the ELM is performed in
such a way that values computed during training can be reused
for very efficient model structure selection through leave-one-out
cross-validation. Finally, the process of building the models is
parallelized across multiple GPUs and CPU cores in order to
further speed up the method.

Experiments are performed on two large regression data sets:
the first one is the well-known Santa Fe Laser data set [19] for
which the regression problem is based on a time series; the
second one is the data set 3 from the ESTSP'08 competition [19],
which is also a time series, but consists of a particularly large
number of samples, and needs a large regressor [20,21].

Results of the experiments show competitive performance on
the regression task, and validate our approach of using a GPU-
accelerated and parallelized ensemble model of multiple ELMs:
by adding more ELM models to the ensemble, the accuracy of the
model can be improved; model training and structure selection
of the individual ELM models can be effectively accelerated; and
due to the modularity of the ensemble model, the process of
building all models can be parallelized across multiple GPUs and
CPU-cores. Therefore, the proposed approach is very suitable for
application in large-scale regression tasks.

Although a particular type of ELM is used in this paper (i.e. an ELM
with conventional additive nodes), the proposed approach is not
limited to this specific type of ELM. Indeed, the proposed approach
can be employed for ELMs with a much wider type of hidden nodes,
which need not necessarily be ‘neuron-alike’ [22,16,12].

The organization of this paper is as follows. Section 2 discusses the
models used in this work and how to select an appropriate model
structure. Section 3 gives an overview of the whole algorithm.
Specifically, how multiple individual models are combined into an
ensemble model and what parts are currently accelerated using GPU.
Section 4 shows the results of using this approach on the two
mentioned large data sets. Finally, the results are discussed and an
overview of the work in progress is given.

2. Extreme learning machine for large-scale regression

The problem of regression is about establishing a relationship
between a set of output variables (continuous) y;e R,1<i<M
(single-output here) and another set of input variables
Xi=x,...xHe R. In the regression cases studied in the experi-
ments, the number of samples M is large: 10 000 for one case and
30 000 for the other.

2.1. Extreme learning machine (ELM)

The ELM algorithm is proposed by Huang et al. in [8] and uses
single-layer feedforward neural networks (SLFN). The key idea of
ELM is the random initialization of a SLFN weights. Below, the
main concepts of ELM as presented in [8] are reviewed.

Consider a set of M distinct samples (x;,y;) with x; e R and
yi e R. Then, a SLFN with N hidden neurons is modeled as the
following sum:

N
ST Bfwixi+by), je[1.M], (1)
i=1
with f being the activation function, w; the input weights to the
ith neuron in the hidden layer, b; the hidden layer biases and f;
the output weights.
In the case where the SLFN would perfectly approximate the
data (meaning the error between the output y; and the actual

value y; is zero), the relation is

N
> Bif (wix;+by) =y;.j e [1,M], 2)

i=1
which can be written compactly as

HE =Y, 3)
where H is the hidden layer output matrix defined as

f(wixq+bq) f(WnXq+by)
H= : e : (4)
fwixy +b1) f(wWnXpy +by)

and f=(B; ...y and Y=(y1...ym)".

With these notations, the theorem presented in [8] states that
with randomly initialized input weights and biases for the SLFN,
and under the condition that the activation function f is infinitely
differentiable, the hidden layer output matrix can be determined
and will provide an approximation of the target values as good as
wished (non-zero) [8,16].

The output weights f can be computed from the hidden layer
output matrix H and target values Y by using a Moore-Penrose
generalized inverse of H, denoted as H' [23]. Overall, the ELM
algorithm is then:

Algorithm 1. ELM

Given a training set (X;,y),X; € R%,y; € R, an activation
function f : R— R and N the number of hidden nodes,

1: - Randomly assign input weights w; and biases b;, i € [1,N];
2: - Calculate the hidden layer output matrix H;

3: - Calculate output weights matrix f=H'Y.

The proposed solution to the equation Hf =Y in the ELM
algorithm, as # = H'Y has three main properties making it a rather
appealing solution:

1. It is one of the least-squares solutions to the mentioned
equation, hence the minimum training error can be reached
with this solution;

2. It is the solution with the smallest norm among the least-
squares solutions;

3. The smallest norm solution among the least-squares solutions
is unique and is f=H'Y.

Theoretical proofs and a more thorough presentation of the
ELM algorithm are detailed in the original paper in which Huang
et al. present the algorithm and its justifications [8]. Furthermore,
as described in [22,16,12], the hidden nodes need not be ‘neuron-
alike’.

The only parameter of the ELM algorithm is the number of
neurons N to use in the SLFN. The optimal value for N can be
determined by performing model structure selection, using an
information criterion like BIC, or through a cross-validation
procedure.

2.2. Model structure selection by efficient LOO computation

Model structure selection enables one to determine an optimal
number of neurons for the ELM model. This is done using some
criterion which estimates the model generalization capabilities
for varying numbers of neurons in the hidden layer. One such
possibility is the classical Bayesian information criterion (BIC)
[24,25], which is used in [17].

2432 M. van Heeswijk et al. / Neurocomputing 74 (2011) 2430-2437

In this paper a different method of performing the model
structure selection is used. Namely, leave-one-out (LOO) cross-
validation, which is a special case of k-fold cross-validation,
where k is equal to the number of samples in the training set
(i.e. k=M). In LOO cross-validation, the models are trained on M
training sets, in each of which exactly one of the samples has been
left out. The left-out sample is used for testing, and the final
estimation of the generalization error is the mean of the M
obtained errors. Due to the fact that maximum use is made of
the training set, the LOO cross-validation gives a reliable estimate
of the generalization error, which is important for performing
good model structure selection.

The amount of computation for LOO cross-validation might
seem excessive, but for linear models one can compute the LOO
error Ej,, without retraining the model M times by using PRESS
statistics [26]. Since ELMs are essentially linear models of the
outputs of the hidden layer, the PRESS approach can be applied
here as well:

1N yi—¥i
Eloo = MI:ZI 1—hatil’, (5)

where y; and y; are respectively the ith training sample, and its
approximation by the trained model, and hat;; is the ith value on
the diagonal of the HAT-matrix, which is the matrix which
transforms Y into Y:

Y =HB=HH'Y =HMH"H) 'H"Y = HAT - Y. (6)

From the above equation, it can be seen that a large part of the
HAT-matrix consists of Hf, the Moore-Penrose generalized
inverse of the matrix H. Therefore, combined training and model
structure selection of the ELM can be optimized by using a
method that explicitly computes H'. The H' computed during
training can then be reused in the computation of the LOO error.

Furthermore, since only the diagonal of the HAT-matrix is
needed, it suffices to compute the row-wise dot-product between
H and H'T, and it is not needed to compute HH' in full.

In summary, the algorithm for efficient training and LOO-
based model structure selection of ELM then becomes:

Algorithm 2. Efficient ELM training and model
selection.

structure

Given a training set (X;,y;),X; € R%,y; € R, an activation

function f : R— R and & = {nq,ny, ...,nmqw} defining set of

possible numbers of hidden neurons.

1: Generate the weights for the largest ELM:

2: - Randomly generate input weights w; and biases b;,
ie[1,nmax];

3: for all nj e R do

4: Train the ELM:

5: - Take the input weights and biases for the first n; neurons;

6: - Calculate the hidden layer output matrix H;

7: - Calculate H by solving it from H'HH' =H";

8: - Calculate output weights matrix §=H'Y;

9: Compute Ejyp:

10: - Compute diag(HAT) (row-wise dot-product of H and H'T);

112 = Eooj =17 0% 1 s

12: end for

13: As model structure, select the ELM with that number of

hidden neurons n; € X, which minimizes Ej,,;

In Fig. 1, the running times for training and combined training
and model structure selection are compared. It can be seen that
by explicitly computing H', the training procedure becomes

Time (s)
N

0 — 1 1 1]

0 500 1000 1500 2000

Number of hidden neurons

Fig. 1. Comparison of running times of ELM training (solid lines) and ELM training
+ model structure selection (dotted lines), with (black lines) and without
(gray lines) explicitly computing and reusing H'.

somewhat slower, but due to the re-use of H' in the model
structure selection, combined training and model structure selec-
tion became a lot faster. In practice, one can of course use the
fastest function, depending on whether the model just needs to be
trained or the model structure also needs to be selected.

3. Ensemble model of ELM

A common way to achieve reduced error in a certain task is by
building multiple models and average (or take a linear combina-
tion of) of their outputs. This is what is called an ensemble model.
The idea behind it is that the individual models make different
errors (in different directions), and that these errors tend to
cancel each other out, resulting in a reduced error.

In order to determine the optimal combination of the models,
the individual models have to be evaluated on a subset of the data
(say, a calibration set) for which the target values are known.
After evaluation, each model’s predictions of the target values in
the calibration are known. Now, using these predictions, the
linear combination of these predictions that best fits the true
target values can be determined. Computing this linear combina-
tion is done with positivity constraints on the weights.

Alternatively, instead of the outputs of the models, their leave-
one-out outputs can be used for determining the optimal linear
combination of the models. This way, a separate calibration set is
not needed, and the ensemble method can be build using just the
training set. Also, using leave-one-out output prevents overfitting
the linear combination to the data on which it is optimized. For
more information on this particular method of creating ensemble
models, see [18].

Since ELMs are partially random non-linear models, they
provide a set of quasi-independent models. For that reason, it is
possible to use an ensemble methodology in order to achieve
better generalization performance. The independence between
the ELMs is increased by using a random subset of variables for
the training of each ELM. A total of 100 ELM models are build,
and for each ELM individually, the number of hidden neurons is
tuned by performing the LOO cross-validation as described in
Section 2.2.

After model structure selection, the ELMs can be combined
into an ensemble model. In a previous work [17], a calibration set
(separate from the training set) was used to determine the
ensemble weights (i.e. the linear combination of the ELMs).
However, since in this paper during the model structure selection,
the leave-one-out error is computed on the training set, the leave-
one-out output on the training set is already computed, and can
be used to determine the optimal linear combination of models.

M. van Heeswijk et al. / Neurocomputing 74 (2011) 2430-2437 2433

No—] — yloo,
X — — yloo,
X = ylooyg

Fig. 2. Block diagram showing the overall setup of the ensemble of ELMs.

Added advantage of this approach is that there is no need to
sacrifice part of the training set for the calibration of the
ensemble, and the models can thus be trained more effectively.

Once the ensemble weights are calibrated using the LOO
output of the ELMs, the calibrated ensemble is evaluated on a
test set. The output of the ensemble is computed as the linear
combination of the outputs of the individual models. Fig. 2
summarizes the overall implementation.

Further parallelization possibilities can clearly be seen from
Fig. 2: every ELM can be constructed independently from the
other ELMs and therefore the creation of the ELMs is parallelized
over multiple GPUs and CPUs. Also, the ELMs themselves can be
accelerated. These optimizations will be discussed in detail in the
next section.

4. GPU-acceleration of ELMs and parallelization
4.1. Motivation

Many techniques have been developed in the field of machine
learning to analyze data, and to extract useful information from it,
which can be used to gain insight in the data or perform a task like
prediction. However, due to advances in technology, the size and
dimensionality of the data sets used in machine learning continue to
grow by the day. Therefore, it is important to have efficient
computational methods and algorithms that are able to handle these
large data sets, such that the model selection and learning can still be
performed in reasonable time.

The ELM is well-suited for application on large data sets, since it is
relatively fast compared with other methods and it has been shown
to be a good approximator when it is trained with a large number of
samples [16]. Even though ELMs are fast, there are several reasons to
reduce their running time. First of all, because the ELMs are applied to
large data sets, the running time is still significant. Second, on large
data sets, typically large numbers of neurons are needed, which
increases the running time of ELM. Third, in order to avoid under- and
overfitting the data, one has to perform model structure selection,
and thus compute multiple models with different structure.

In the next subsections, the methods used to reduce the
running time of the ensemble of ELMs are discussed.

4.2. GPU-acceleration of ELM

Since the running time of the ELM algorithm largely consists of
a single operation (solving the linear system), it is the prime
target for optimizing the running time of the ELM. If this
operation can be accelerated, then the running time of each
ELM (and thus of the ensemble) can be greatly reduced. In this
work, this operation is performed on the GPU.

Currently, there are several libraries in development aimed at
speeding up a subset of the linear algebra functions found in
LAPACK [6]:

e CULA tools [5]: A library introduced in October 2009, implement-
ing a subset of LAPACK functions. The free variant of this package
contains functions for solving a linear system (culaGesv), and
performing a least-squares solve (culaGels).

o MAGMA [27]: A recently introduced linear algebra package aiming
at running linear algebra operations on heterogeneous architec-
tures (i.e. using both multi-core CPU and multiple GPUs present
on the system, in order to solve a single problem).!

In this work, CULA Tools is used, which was the first widely
available GPU-accelerated linear algebra package, and was devel-
oped in cooperation with NVidia. Therefore, it is likely to be
well-supported. Specifically, the (culaGesv) and (culaGels)
functions were used, and wrappers around these functions were
written, such that they can be used from MATLAB in the training
and model structure selection of the ELM.

Similar functions are offered by MATLAB and its underlying
LAPACK library. An overview of all functions used in this paper
can be found in Table 1. Since in our application of these functions
all linear systems are fully determined, they give exactly the same
result and only vary in running time.

Something worth noting about computations on GPU, is that
even though double precision calculations are possible, GPUs
perform much better in single precision [1]. In the NVidia
GTX295 cards that were used in this work, the single precision
performance is eight times higher than the double precision
performance.? Therefore, one should use single precision calcula-
tions wherever possible.

A second reason for using single precision calculations wher-
ever possible is that the way only half as much memory is needed,
and the amount of needed memory determines how far the
method will scale. In our experiments, each GPU has 896 MiB of
video card memory at its disposal. This means that the part of our
algorithm that is executed on GPU (i.e. line 7 in Algorithm 2) can
use at most this amount of memory. For a training problem of
25000 samples, approximately 100 MiB is needed, and the
amount of memory needed scales linearly with the number of
samples. Therefore, on the used hardware, the approach scales to
approximately 200 000 samples. If one would use the NVidia
Tesla C2070, which has 6 GiB of memory, the approach would
scale to approximately 1.5 M samples.

In order to get an idea of the running time of the function
culaGels, it is compared with MATLAB’s commonly used m1di-
vide (also known as \), as well as with the gels function from
MATLAB’s underlying highly optimized multi-threaded LAPACK
library.>

Since on the CPU the performance in single precision is about
twice the double precision performance, the functions are com-
pared in both single precision and double precision.*

! It should be noted that this library is being developed by the creators of the
widely used LAPACK.

2 In NVidia’s latest generation of video cards, the double precision perfor-
mance has been greatly increased and operates at half the speed of single
precision.

3 Used MATLAB is version R2009b, which on our Intel i7 920 machine uses the
highly optimized MKL library by Intel.

4 The functions compared here are the functions typically used in the general
case of training an ELM (i.e. the case with non-square H). In our optimized
implementation as explained in Algorithm 2, we are dealing with a square matrix
on the left-hand side of the equation (line 7). Therefore, we actually use the
culaGesv and gesv functions for slightly higher performance.

2434 M. van Heeswijk et al. / Neurocomputing 74 (2011) 2430-2437

Table 1
An overview of the various functions used.

Function name Description Runs on
mldivide, \ Solve linear system (MATLAB) CPU
gesv Solve linear system (LAPACK) CPU
gels Least-square solve (LAPACK) CPU
culaGesv Solve linear system (CULA) GPU
culaGels Least-square solve (CULA) GPU
25 r
20
@ 15 t
Q
=
= 10
5 L
0 be====== S=c==:z:-= go-co--- kb feulilalinlule ey A

500 1000 1500 2000 2500 3000 3500 4000
Number of variables
Fig. 3. Time (s) needed to solve a linear system of 5000 variables and one target

variable, using mldivide (light-gray lines), gels (gray lines), culaGels (dashed
black line) for double precision (solid lines) and single precision (dashed lines).

20

Speedup by using GPU (folds)

0 1 1 1 1 1 1)
500 1000 1500 2000 2500 3000 3500 4000

Number of variables

Fig. 4. Speedup achieved in solving system of 5000 variables and one target
variable, by using culaGels instead of m1divide, (light-gray lines), gels (gray
lines) for double precision (solid lines) and single precision (dashed lines).

In Fig. 3, the running times of the various functions for solving
a linear system are shown. In Fig. 4, the speedup by using
culaGels over the other algorithms can be seen (i.e. the lines
from Fig. 3, divided by the black line from Fig. 3).

From these figures, it can be seen that the precision greatly
affects the performance. Also, MATLAB’s underlying LAPACK
function gels perform much better than the commonly used
mldivide. Finally, culaGels offers the fastest performance
of all.

4.3. Parallellization across CPUs/GPUs

Looking at Fig. 2, one can see that the ELMs that are part of the
ensemble model can be prepared and trained in a completely
independent way. Therefore, running time can be optimized by
dividing the preparation of all models across multiple CPU cores,
and multiple GPUs.

This is achieved using MATLAB’s parallel computing toolbox
[28], which allows to create a pool of so-called MATLAB workers.

Each of the workers runs its own thread for executing the
program, and gets its own dedicated GPU assigned to it, which
is used to accelerate the training and model structure selection
that has to be performed for each model. As an example, consider
the case of an ensemble of 100 ELMs, and four workers. In this
case, each of the workers builds 25 ELMs.

Although in this paper, the parallelized ensemble model was
not executed across multiple computers, the current code could
be executed on multiple computers by using the MATLAB dis-
tributed computing toolbox.

5. Experiments and results

Experiments are performed on two relatively large regression
data sets. The first one is the full Santa Fe Laser data set [19] for
which the regression problem is based on a time series. The
second data set is the ESTSP’08 competition data set number 3
[19] which is also a regression problem based on a time series
computationally more challenging due to the size of the regressor
used [20,21]. Sizes of the data sets are given in Table 2: 85% of the
data is used for training, and the remaining 15% for test.

The ensemble model built in the experiments consists of 100
ELMs. In order to increase diversity between the ELMs, we
randomly select which input variables from the regressor it uses.
The ELMs have between 100 and 1000 neurons with sigmoid
(tanh) transfer functions, and contain a linear neuron for every
input they have,> such that they perform well on linear problems.
Furthermore, in our implementation of ELM, an output bias is
trained in addition to the output weights. Adding this feature has
minimal overhead, and cross-validation experiments show this
has no negative impact. However, it allows the ELM to adapt to
changing properties of the data on retraining like, for example, a
shift in the mean of the target data.

The ELMs are trained on 85% of the data and have their
structure selected through the earlier discussed efficient LOO
cross-validation on the training set.

Once the ELMs have been build, the ensemble weights are
computed based on the LOO output of the ELMs on the training
set. Finally, the ensemble is tested on the test set. See Table 3 for a
summary of the parameters.

The used hardware consists of a desktop computer with Intel
Core i7 920 CPU and NVidia GTX295 GPUs.

The experiments have been repeated several times for both data
sets. Table 4 gives the total running times of the ensemble for the
various functions used to build the ELMs (see Table 1 for a description
of the functions). The functions are both evaluated in single precision
and double precision (indicated by subscript sp and dp respectively).

Table 4 and Fig. 5 also show how the running time scales with
the number of MATLAB workers.

The ensembles are also evaluated by their normalized mean
square error (NMSE), where NMSE is defined as

MSE 1/MZ?/1=1(V:‘—371')2
varY) var(Y) ’

NMSE = (7)
where M is the number of samples. Table 5 gives the NMSE of the
ensembles on the test set.

Fig. 6 shows how the number of ELMs in the ensemble affects
the NMSE of the ensemble. It can be seen that the more models
are added to the ensemble, the lower the NMSE of the ensemble
becomes.

5 The neurons in the hidden layer are ordered such that the linear ones come
first. Therefore, the linear neurons are always selected by the model structure
selection procedure.

M. van Heeswijk et al. / Neurocomputing 74 (2011) 2430-2437

6. Discussion

The experiments show a 3.3 times speedup over the typical
double precision implementation of an ensemble of ELMs, by
using the GPU to speed up the slowest part of the algorithm, and
parallelizing across multiple CPU cores and GPUs (i.e. t(m1divgp)/
t(culaGesvyp)).

Table 2

Sizes of the used data sets. First column gives original total size of the data, while
the other columns only mention the number of samples used in each type of set
(training, test).

Total size Training Test
(samples x variables)
Santa Fe 10081 x 12 8569 1512
ESTSP'08 31446 x 168 26729 4717
Table 3
Parameters used in the experiments.
Parameter Santa Fe ESTSP’08
Regressor size 12 168
Randomly selected variables 2-12 2-168

#Hidden neurons
Crit. for model struct. selection

100:100:1000
LOO error on training set

Trained on Random 85% of the data
Tested Remaining 15% of the data

Ensemble weights

Based on LOO output of ELMs

2435

Even if the parallelized GPU implementation is compared with
the fastest parallelized CPU implementation, still a significant
speedup is observed.

An unexpected result is the fact that the gesv functions have
approximately the same running time as the m1divide functions,
contrary to the observations in the earlier benchmarks in Section
4.2. We expect this to be the case, because the functions are
applied in a different situation (i.e. in the case with multiple
columns on the right-hand side). However, the result of the GPU
variants of the functions being faster than the CPU variants of the
functions always holds.

Another unexpected result was the fact that running a job in
the MATLAB parallel toolbox with 1 worker (i.e. not parallelized),
is much slower than running the job without the Parallel Toolbox.
It turns out this is due to the fact that every worker limits its
execution to a single thread. Therefore, the code running within
that worker runs on a single core, and no speedups are achieved
by MATLAB’s multi-threaded LAPACK (which normally uses
multiple cores). Therefore, one has to take care to load the
machine with enough workers, such that all CPU cores can be
effectively used.

Table 5
Results for both data sets: normalized mean square test error and standard
deviation (in parenthesis).

Santa Fe ESTSP’08

NMSE (std.) 1.87e—3 (4.61e—4) 1.55¢—2 (6.57e—4)

Table 4

Results for both data sets: running times (in seconds) for running the entire ensemble in parallel on N workers, using the various functions in single precision (sp) and

double precision (dp).

N t (mldivgp) (S) t (gesvap) (s) t (mldivgp) (S) t (gesvsp) (S) t (culaGesvygp) (s)
Santa Fe 0 674.0 672.3 515.8 418.4 401.0
1 1781.6 1782.4 1089.3 1088.8 702.9
2 917.5 911.5 567.5 554.7 365.3
3 636.1 639.0 392.2 389.3 258.7
4 495.7 495.7 337.3 304.0 207.8
ESTSP 0 2145.8 2127.6 1425.8 1414.3 1304.6
1 5636.9 5648.9 3488.6 3479.8 2299.8
2 2917.3 2929.6 1801.9 1806.4 1189.2
3 2069.4 2065.4 1255.9 1248.6 8419
4 1590.7 1596.8 961.7 961.5 639.8
a b
1800 6000
= 1600 a
= = 5000
2 1400 :'é
§ 1200 : 4000
=}
1000
o 5 3000
£ 800 =
@600 P 2000 |
S 400 g
f=l s-— =] -
T £ 1000
g 200} T 21000 e
0 0
1 2 3 4 1 2 3 4

Number of workers

Number of workers

Fig. 5. Running times (in seconds) for running the entire ensemble in parallel on (a) Santa Fe and (b) ESTSP'08, for varying numbers of workers, using m1divide (light-gray
lines), gesv (gray lines), culaGesv (black line) for double precision (solid lines) and single precision (dashed lines).

2436

Q

0.01

0.008

0.006

0.004

NMSE ensemble

0.002 |

0 20 40 60 80 100

Number of models in ensemble

M. van Heeswijk et al. / Neurocomputing 74 (2011) 2430-2437

b

0.016 |
0.0158 | |

0.0156 } 1

NMSE ensemble

0.0154

0.0152

R ER

0 20 40 60 80 100
Number of models in ensemble

Fig. 6. NMSE of an ensemble model with varying number of models on (a) Santa Fe and (b) ESTSP'08.

Finally, Fig. 6 clearly shows how the number of ELMs in the
ensemble affects the NMSE of the ensemble, and it can be seen
that the more models are added to the ensemble, the lower the
NMSE of the ensemble generally becomes.

Although results on the errors of the individual models
compared with the errors of the ensemble model are not exten-
sively reported here, it is important to mention that the test error
achieved by the ensemble model is almost always lower than the
test error of the best model in that ensemble, which provides a
convincing argument for using an ensemble model.

7. Conclusion and future work

Results of the experiments show competitive performance on
the regression task, and validate our approach of using a GPU-
accelerated and parallelized ensemble model of multiple ELMs:
by adding more ELM models to the ensemble, the accuracy of the
model can be improved; model training and structure selection of
the individual ELM models can be effectively accelerated; and due
to the modularity of the ensemble model, the process of building
all models can effectively be parallelized across multiple GPUs
and CPU-cores. Furthermore, the proposed approach is not lim-
ited to a specific type of ELM and can be employed for a large
variety of ELMs.

Finally, in the future we would like to investigate the effect of
running the ELM entirely on GPU, as well as explore the use of
other types of ELMs, as well as other models such as reservoir
computing methods [29], in the ensemble model.

References

[1] NVidia CUDA Programming Guide 3.1: <http://www.nvidia.com/object/
cuda_get.html .

[2] NVidia CUDA Zone: <http://www.nvidia.com/object/cuda_home.html).

[3] V. Volkov,].W. Demmel, Benchmarking GPUs to tune dense linear algebra, in:
SC '08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
no. November (Piscataway, NJ, USA), IEEE Press, 2008, pp. 1-11.

[4] B. Catanzaro, N. Sundaram, K. Keutzer, Fast support vector machine training
and classification on graphics processors, in: Proceedings of the 25th
International Conference on Machine Learning (ICML 2008), Helsinki, Finland,
ACM, 2008, pp. 104-111.

[5] CULA (GPU-Accelerated LAPACK): <http://www.culatools.com/).

[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,]. Dongarra, J.D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’-
guide, third ed., Society for Industrial Mathematics, Philadelphia, PA, 1999.

[7] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning
scheme of feedforward neural networks, in: Proceedings of the International
Joint Conference on Neural Networks, 2004.

[8] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (1-3) (2006) 489-501.

[9] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Real-time learning capability of
neural networks, IEEE Transactions on Neural Networks 17 (July) (2006)
863-878.

[10] M. van Heeswijk, Y. Miche, T. Lindh-Knuutila, P.A. Hilbers, T. Honkela, E. Oja,
A. Lendasse, Adaptive ensemble models of extreme learning machines for
time series prediction, in: C. Alippi, M.M. Polycarpou, C.G. Panayiotou,
G. Ellinas (Eds.), ICANN 20009, Part II, Heidelberg, Springer, 2009, pp. 305-314.

[11] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A fast and
accurate online sequential learning algorithm for feedforward networks,
IEEE Transactions on Neural Networks 17 (November) (2006) 1411-1423.

[12] G. Feng, G.-B. Huang, Q. Lin, R. Gay, Error minimized extreme learning
machine with growth of hidden nodes and incremental learning, IEEE
Transactions on Neural Networks 20 (8) (2009) 1352-1357.

[13] Y. Lan, Y.C. Soh, G.-B. Huang, Ensemble of online sequential extreme learning
machine, Neurocomputing 72 (August) (2009) 3391-3395.

[14] G.-B. Huang, X. Ding, H. Zhou, Optimization method based extreme learning
machine for classification, Neurocomputing 74 (1-3) (2010) 155-163,
doi:10.1016/j.neucom.2010.02.019.

[15] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, OP-ELM: optimally
pruned extreme learning machine, IEEE Transactions on Neural Networks
21 (October) (2010) 158-162.

[16] G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental
constructive feedforward networks with random hidden nodes, IEEE Trans-
actions on Neural Networks 17 (4) (2006) 879-892.

[17] M. van Heeswijk, Y. Miche, E. Oja, A. Lendasse, Solving large regression
problems using an ensemble of GPU-accelerated ELMs, in: M. Verleysen (Ed.),
ESANN 2010: 18th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, Bruges, Belgium, d-side
Publications, April 2010, pp. 309-314.

[18] Y. Miche, E. Eirola, P. Bas, O. Simula, C. Jutten, A. Lendasse, M. Verleysen,
Ensemble modeling with a constrained linear system of leave-one-outputs,
in: M. Verleysen (Ed.), ESANN 2010: 18th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning, Bruges,
Belgium, d-side Publications, 2010, pp. 19-24.

[19] Santa Fe Laser and ESTSP’08 Competition Data available at: ¢ http://www.cis.
hut.fi/projects/eiml/research/downloads/datasets >.

[20] M. Olteanu, Revisiting linear and non-linear methodologies for time series
prediction-application to ESTSP’'08 competition data, in: Proceedings of the
2nd European Symposium on Time Series Prediction, ESTSP’08, Porvoo,
Finland, September 2008, pp. 139-148.

[21] N. Kourentzes, S.F. Crone, Automatic modeling of neural networks for time
series prediction—in search of a uniform methodology across varying time
frequencies, in: Proceedings of the 2nd European Symposium on Time Series
Prediction, ESTSP 08, Porvoo, Finland, September 2008, pp. 117-127.

[22] G.-B. Huang, L. Chen, Convex incremental extreme learning machine,
Neurocomputing 70 (October) (2007) 3056-3062.

[23] C. Rao, S. Mitra, Generalized Inverse of the Matrix and Its Applications, John
Wiley & Sons Inc., 1971.

[24] G. Schwarz, Estimating the dimension of a model, The Annals of Statistics
6 (1978) 461-464.

[25] Y. Miche, A. Lendasse, A faster model selection criterion for OP-ELM and
OP-KNN: Hannan-Quinn criterion, in: M. Verleysen (Ed.), ESANN 2009:
European Symposium on Artificial Neural Networks, d-side publications,
April 2009, pp. 177-182.

[26] R.H. Myers, Classical and Modern Regression with Applications, second ed.,
Duxbury, Pacific Grove, CA, USA, 1990.

[27] MAGMA: (Matrix Algebra on GPU and Multicore Architecture): ¢http://icl.cs.
utk.edu/magma/).

[28] MATLAB Parallel Computing Toolbox: ¢ http://www.mathworks.com/).

[29] D. Verstraeten, B. Schrauwen, M. D’'Haene, D. Stroobandt, An experimental
unification of reservoir computing methods, Neural Networks 20 (April)
(2007) 391-403 (Echo State Networks and Liquid State Machines).

http://www.nvidia.com/object/cuda_get.html
http://www.nvidia.com/object/cuda_get.html
http://www.nvidia.com/object/cuda_home.html
http://www.culatools.com/
http://www.cis.hut.fi/projects/eiml/research/downloads/datasets
http://www.cis.hut.fi/projects/eiml/research/downloads/datasets
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://www.mathworks.com/

M. van Heeswijk et al. / Neurocomputing 74 (2011) 2430-2437 2437

Mark van Heeswijk has been working as an exchange
student in both the EIML (Environmental and Indus-
trial Machine Learning, previously TSPCi) Group and
Computational Cognitive Systems Group on his
Master’s Thesis on “Adaptive Ensemble Models of
Extreme Learning Machines for Time Series Predic-
tion”, which he completed in August 2009. Since
September 2009, he started as a Ph.D. student in the
EIML Group, ICS Department, Aalto University School
of Science and Technology. His main research interest
is in the field of high-performance computing and
machine learning. In particular, how techniques and
hardware from high-performance computing can be
applied to meet the challenges one has to deal with in machine learning. He is also
interested in biologically inspired computing, i.e. what can be learned from
biology for use in machine learning algorithms and in turn what can be learned
from simulations about biology. Some of his other related interests include: self-
organization, complexity, emergence, evolution, bioinformatic processes, and
multi-agent systems.

Yoan Miche was born in 1983 in France. He received
an Engineer’s Degree from Institut National Polytech-
nique de Grenoble (INPG, France), and more specifi-
cally from TELECOM, INPG, on September 2006. He
also graduated with a Master’s Degree in Signal, Image
and Telecom from ENSERG, INPG, at the same time. He
is currently finishing in both Gipsa-Lab, INPG, France
and ICS Laboratory, Aalto University School of Science
and Technology, Finland, his Ph.D. His main research
interests are steganography/steganalysis and machine
learning for classification/regression.

Erkki Oja (S'75-M'78-SM’90-F'00) received the D.Sc.
degree from Helsinki University of Technology in 1977.
He is Director of the Adaptive Informatics Research
Centre and Professor of Computer Science at the
Laboratory of Computer and Information Science, Aalto
University (former Helsinki University of Technology),
Finland, and the Chairman of the Finnish Research
Council for Natural Sciences and Engineering. He holds
an honorary doctorate from Uppsala University, Swe-
den. He has been a research associate at Brown
University, Providence, RI, and visiting professor at
the Tokyo Institute of Technology, Japan. He is the
author or coauthor of more than 300 articles and book
chapters on pattern recognition, computer vision, and neural computing, and
three books: “Subspace Methods of Pattern Recognition” (New York: Research

Studies Press and Wiley, 1983), which has been translated into Chinese and
Japanese; “Kohonen Maps” (Amsterdam, The Netherlands: Elsevier, 1999), and
“Independent Component Analysis” (New York: Wiley, 2001; also translated into
Chinese and Japanese). His research interests are in the study of principal
component and independent component analysis, self-organization, statistical
pattern recognition, and applying artificial neural networks to computer vision
and signal processing. Prof. Oja is a member of the Finnish Academy of Sciences,
Fellow of the IEEE, Founding Fellow of the International Association of Pattern
Recognition (IAPR), Past President of the European Neural Network Society
(ENNS), and Fellow of the International Neural Network Society (INNS). He is a
member of the editorial boards of several journals and has been in the program
committees of several recent conferences including the International Conference
on Artificial Neural Networks (ICANN), International Joint Conference on Neural
Networks (IJCNN), and Neural Information Processing Systems (NIPS). Prof. Oja is
the recipient of the 2006 IEEE Computational Intelligence Society Neural Networks
Pioneer Award.

Amaury Lendasse was born in 1972 in Belgium. He
received the M.S. degree in Mechanical Engineering
from the Universite Catholique de Louvain (Belgium)
in 1996, M.S. in control in 1997 and Ph.D. in 2003 from
the same university. In 2003, he has been a post-
doctoral researcher in the Computational Neurody-
namics Lab at the University of Memphis. Since 2004,
he is a senior researcher and a docent in the Adaptive
Informatics Research Centre in the Aalto University
School of Science and Technology (previously Helsinki
University of Technology) in Finland. He has created
and is leading the Environmental and Industrial
Machine Learning (previously time series prediction
and chemoinformatics) Group. He is chairman of the annual ESTSP conference
(European Symposium on Time Series Prediction) and member of the editorial
board and program committee of several journals and conferences on machine
learning. He is the author or the coauthor of around 100 scientific papers in
international journals, books or communications to conferences with reviewing
committee. His research includes time series prediction, chemometrics, variable
selection, noise variance estimation, determination of missing values in temporal
databases, non-linear approximation in financial problems, functional neural
networks and classification.

	GPU-accelerated and parallelized ELM ensembles for large-scale regression
	Introduction
	Extreme learning machine for large-scale regression
	Extreme learning machine (ELM)
	Model structure selection by efficient LOO computation

	Ensemble model of ELM
	GPU-acceleration of ELMs and parallelization
	Motivation
	GPU-acceleration of ELM
	Parallellization across CPUs/GPUs

	Experiments and results
	Discussion
	Conclusion and future work
	References

