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Abstract: Soft-sensors for estimating in real-time important quality variables are a key
technology in modern process industry. The successful development of a soft-sensor whose
performance does not deteriorate with time and changing process characteristics is troublesome
and only seldom achieved in real-world setups. The design of soft-sensors based on local
regression models is becoming popular. Simplicity of calibration, ability to handle nonlinearities
and, most importantly, reduced maintenance costs while retaining the requested accuracy are the
major assets. In this paper, we introduce several approaches for defining an appropriate locality
neighborhood and we propose a recursive version of local linear regression for soft-sensor design.
To support the presentation, we discuss the results in designing a soft-sensor for estimating the
ethane concentration from the bottom of a full-scale deethanizer.
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1. INTRODUCTION

Estimating in real-time product quality or other important
process variables when on-line analyzers are not available
is an essential component of modern process industry. Soft-
sensors are a key technology for the task and allow to
optimize production toward high-quality products while
reducing operational and off-specification costs. In chem-
ical and power industry, soft-sensors are extensively used
to estimate hard-to-measure primary variables in process
units starting from other easy-to-measure secondary vari-
ables (Kadlec et al., 2009). Widely accepted technologies
for soft-sensor design are based on prediction models like
Multivariable Linear Regression (MLR), Principal Com-
ponent and Partial Least Squares Regression (PCR and
PLSR) and Artificial Neural Networks (ANN).

The design of a soft-sensor from data is, however, a
daunting process. After a careful selection of relevant
secondary variables and representative observations, a
prediction model must be selected and its parameters
finely tuned. Generally, a single global method is calibrated
using all known observations. Even if an accurate soft-
sensor is developed, its estimation performances are likely
to deteriorate when the process characteristics change.
Thus, maintenance issues arise as repeated calibrations are
needed to reinstate the performance; in turn, this implies
additional money- and time-consuming workloads.

To minimize model maintenance tasks while retaining es-
timation accuracy, recursive and local methods have been
reported in the research and industrial literature. Recur-

sive methods (e.g., Recursive PLS by Qin 1998) can adapt
automatically the model to new operating conditions but
they are known to function well only with slow changes in
process characteristics and, if the global model is linear,
only with mild nonlinearities. Local methods (e.g., Lazy
Learning by Bontempi et al. 1999) are calibrated only on
a small subset of observations in a neighborhood which
is similar to the new operating conditions. Local tech-
niques are globally nonlinear, often achieve the requested
accuracy and can be promptly upgraded to automatically
include new operations. Usually, the local regression model
is a simple linear regressor like MLR (or, PCR and PLSR).
Such properties make Local Linear Regression (LLR) a
valid alternative for soft-sensor design.

Although local methods are classically based on distance
and nearest neighbors (Cheng and Chiu, 2004) with a
fixed (or cross-validated) number of neighbors, how to
define similarity (or locality) between observations remains
an open issue. Emphasis has been on adjusting the dis-
tance metric (Fukunaga and Flick, 1984) and some recent
contributions suggested the definition of a correlation-
based neighborhood specifically designed to learn a linear
regression model (Fujiwara et al., 2009, 2010). Without
changing the metric, Gupta et al. 2008 proposed adapting
the number of neighbors to the local topology of the data
by using convex neighborhoods and suggested three strate-
gies like natural neighbors, natural neighbors inclusive and
enclosing k-nearest neighbors. Jin et al. 2003 proposed
another convex neighborhood based on the Delaunay tes-
sellation. In this work, the prime aim is to introduce the
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aforementioned strategies for neighborhood definition and
discuss their potential in soft-sensor design.

The paper is structured as follows. Section 2 briefly
overviews local linear regression and discusses the tech-
niques for neighborhood definition. Section 3 supports
the presentation by proposing a recursive version of these
local linear regression models and discusses the results on
a full-scale problem consisting of estimating the ethane
concentration from the bottom of a full-scale deethanizer.

2. LOCAL LINEAR REGRESSION

Local linear regression (LLR) is a nonlinear regressor in
the scenario of statistical estimation. The spirit of LLR is
that, over a small subset of the input domain, a simple
linear regression model can approximate sufficiently well
the true mapping to the output. Local linear regression has
the property of simplicity of traditional linear regression
and it can overcome the drawback of low model accuracy.

Suppose we are given a set of N training samples X → Y =
{(x1, y1), . . . , (xN , yN )}, where xi ∈ Rd and yi ∈ R. For
an arbitrary input test point g ∈ Rd, local linear regression

estimates its output as ŷ = β̂Tg + β̂0, which fits a least-
squares hyperplane over the local neighborhood Jg of g:

(β̂, β̂0) = arg min
β,β0

∑
xj∈Jg

(yi − βTg − β0)2. (1)

The definition of the neighborhood and the number of
neighbors are crucial for local linear regression. In this sec-
tion, we describe several neighborhood definition strategies
for local linear regression, from a geometrical point of view.

We divide the different neighborhoods into two categories:
not-enclosing neighborhood and enclosing neighborhood,
based on whether the neighborhood Jg encloses the test
point g. If Jg encloses the test point, we call it an
enclosing neighborhood; that is, g ∈ conv(Jg), where the
convex hull of a point set S={s1, . . . , sn} is defined as
conv(S)={

∑n
i=1 ωisi|

∑n
i=1 ωi = 1, ωi ≥ 0}. Intuitively,

linear regression over an enclosing neighborhood leads
to geometrical interpolation, whereas for not-enclosing
neighborhoods we have extrapolation.

2.1 Not-enclosing neighborhoods

Firstly, we overview two different strategies for defining
a not-enclosing neighborhood: classic k-nearest neighbors
(kNN) and correlation-based neighborhoods (CoN).

k-nearest neighbors (kNN): Classic k-nearest neighbor
defines a neighborhood of g using k of its neighbors,
according to a specified distance metric. Usually, the
Euclidean metric is used and the number of neighbors k is
fixed or cross-validated. Figure 1(a) shows an example of
a kNN neighborhood of size k = 3 for the test point g.

Despite its simplicity, one major problem in kNN is the
selection of the neighborhood size:

• selecting too few neighbors may lead to a neighbor-
hood that does not enclose the test point (as in Figure
1(a)) which might give a large estimation variance.

• selecting too many neighbors to impose enclosure may
cause the regression model to over-smooth.

Thus, how to select adaptively the number k remains an
open issue, especially in applications to large scale prob-
lems where cross-validation is computationally unbearable.
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Fig. 1. Not-enclosing neighborhoods: k-nearest neighbors
J kNNg ={x1,x5,x6} and correlation-based neighbors

J CoNg ={x1,x5,x8}.

Correlation-based neighbors (CoN): The correlation-
based neighborhood proposed by Fujiwara et al. (2009)
tries to find neighbors that are most correlated with the
current test point. The J-statistic by Raich and Cinar
(1994), a combination of T 2 and Q statistics from Prin-
cipal Components Analysis (PCA), is used as index of
correlation dissimilarity. In the example of Figure 1(b),
points {x1,x5,x8} are found as the most correlated with g
and, thus, define its neighborhood. The basic strategy has
several parameters to be tuned but a promising extension
based on spectral clustering has been recently proposed by
the same authors (Fujiwara et al., 2010). Unfortunately,
the computational complexity of the extension is at least
O(N3) making it unusable in many practical applications.

In soft-sensor design, Correlation-based Just-in-Time (Co-
JIT) uses a conventional CoN with Just-in-Time modeling,
JIT (Bontempi et al., 1999). A moving window with fixed
length is used to create a sequence of sample sets and the
most correlated sample set is chosen for LLR modeling.

2.2 Enclosing neighborhoods

Recently, Gupta et al. (2008) proved that if a test point
is in the convex hull enclosing its neighborhood, then the
variance of the local linear regression estimate is bounded
by the variance of the measurement noise. Such a property
is fundamental to avoid erratic results. The authors also
suggested three enclosing neighborhood definition strate-
gies; these strategies are overviewed in the following.

Enclosing k-nearest neighbors (ekNN): It is based on
the kNN of the test point g and extends it to define a
neighborhood that encloses it, Figure 2(a). ekNN is the
neighborhood of the kNNs with the smallest k such that
g ∈ conv(Jg(k)), where Jg(k) is the set of kNNs of g
(Gupta et al., 2008). If g is outside of convex hull of the
set X , no such k exists. Define distance to enclosure as

D(g,Jg) = min
z∈conv(Jg)

‖g − z‖2, (2)
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where z is any point in the convex hull around the
neighborhood of g. Note that D(g,Jg) = 0 only if g ∈
conv(Jg). Then, the ekNN neighborhood is Jg(k∗) with

k∗ = min
k
{k|D(g,Jg(k)) = D(g,X )}. (3)

The computational complexity for building a convex hull
using k neighbors isO(kbd/2c), where b·c is a floor function.

Natural neighbors (NN): Natural neighbors are based on
the Voronoi tessellation of the training samples and the
test point (Sibson, 1981). The natural neighbors of g are
defined as those points whose Voronoi cells are adjacent to
the cell including g. Natural neighbors has the so-called
local coordinates property, which is used to prove that
the natural neighbors form an enclosing neighborhood if
g ∈ conv(X ). Figure 2(b) shows an example of natural
neighbors.
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Fig. 2. Enclosing neighborhoods: Enclosing k-nearest
neighbors J ekNNg ={x1,x3,x5,x6,x8}, Natural neigh-

bors JNNg ={x1,x2,x3,x5,x6}, Natural neighbors in-

clusive JNNig ={x1,x2,x3,x5,x6,x7,x8,x9} and De-

launay tessellation neighbors JDTNg ={x1,x3,x5}.

Natural neighbors inclusive (NNi): In some cases of non-
uniformly distributed local areas, a training point which is
far from the test point can be one of its natural neighbors,
but a nearer point is excluded for its neighborhood. In or-
der to overcome this situation, natural neighbors inclusive
has been proposed (Gupta et al., 2008) to include both
the natural neighbors and those training points within the
distance to the furthest natural neighbor. That is,

JNNig = {xj ∈ X |‖g − xj‖ ≤ max
xi∈JNN

g

‖g − xi‖}. (4)

Figure 2(c) is an example of natural neighbors inclusive.

Delaunay tessellation neighbors (DTN) and Delaunay
topological regression (DTR): Proposed by Jin et al.
(2003), the strategy is based on the Delaunay triangulation
(or tessellation in a d-dimensional space, d > 2) of the
training points. After tessellation, a neighborhood is de-
fined from the vertices of the triangle (or polyhedron) that
envelopes the test point g. Figure 2(d) shows an example.

Based on the DTN of the test point, Delaunay topological
regression does not work according to Equation 1, for it
estimates the output through interpolation. The output
of g is estimated as a convex combination of the outputs
y = (y1 · · · yd+1)T of the vertices of its enclosing:

ŷ = αT

 y1
...

yd+1

 , with

d+1∑
i=1

αi = 1 and αi ≥ 0. (5)

The weight vector α is calculated from the linear system

α =

(
x1 x2 · · · xd+1

1 1 · · · 1

)−1(
g
1

)
, (6)

where x1, · · · ,xd+1 are the vertices of the enclosing of g.
If the test point does not fall inside the convex hull defined
by known data points, it is not even inside any constructed
polyhedron. To overcome this situation, there are several
approaches reported in the literature. In our experiments
for local linear regression in soft-sensor design, we prefer
the stability of the projection method proposed by Corona
et al. (2010) over the methods reported by Jin et al.
(2003). The method constructs a consistent estimate for
the external data points by searching for their closest
projection onto the convex hull. As the projected points
are on the facet of the convex hull, their weights and output
estimates can be calculated using Equation 6 and 5.

3. THE INDUSTRIAL DEETHANIZER

In this section, the development of a soft-sensor using the
strategies for local linear regression previously introduced
is discussed on a full-scale deethanizer. The recursive
extensions of the methods are presented and the results
compared and discussed.

The deethanizer, Figure 3, separates ethane from a feed
stream of light naphtha with the operational objective to
produce as much ethane as possible; that is, operations
should minimize propane’s concentration in the top while
satisfying a constraint on the amount of ethane in the
bottom. Such a constraint is quantified by the maximum
concentration of ethane lost from the bottom; the opera-
tion range is set to be within 1.8−2%. The other constraint
is on the maximum concentration of propane from the
top, which is set to be smaller than 2%. Breaking the
constraints has important economic implications: Out-of-
specification products (high ethane and/or propane con-
centrations) and unnecessary production costs (low ethane
and /or propane concentrations). According to the plant’s
management, the constraint on the bottom ethane is rarely
met. In this work, we focus on estimating this variable.
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Fig. 3. The deethanizer: Flowsheet with instrumentation.

Although the ethane concentration is analyzed by a
continuos-flow chromatograph, a measure is returned only
every 18 minutes and with a delay of 90 minutes. Clearly,
the delay and low sampling frequency associated with the
analytical measurement of ethane pose severe limitations
to the integration of the analysis within a control strategy.
Hence, the goal is to develop a soft sensor capable to
estimate in real-time this primary variable, starting from
a set of secondary process variables measured online.

3.1 Sensor development

For the scope, a set of process measurements has been
collected from the plant’s distributed control system. The
data correspond to 3 weeks of continuous operation in
winter asset. The output variable of the soft-sensor is the
ethane concentration AI-1503A1 (Figure 3). Although the
data are available as 3-minute averages for 26 process
variables, for the analysis only 9 have been retained as
inputs to the soft-sensor (Table 1). The selection is based
on the physical knowledge of the process (Corona et al.,
2009). The number of available input observations is 7200
and the number of output observations is 1200, because
measured every 6 sampling times.

Table 1. The deethanizer: Selected input vari-
ables for the soft-sensor.

Variable (TAG) Variable (TAG)

Feed Flowrate (FIC-1397) Vapor Flowrate (FIC-1430)
Enriching Temp. (TIC-1457) Vapor Temp. (TIC-1434)
Reflux Flowrate (FIC-1456) Bottom Temp. (TI-1414)
Reflux Temp. (TI-1452) Bottom Temp. (TI-1418)
Distillate Pressure (PIC-1451)

Initially, to set a reference for comparison, a PLSR model
and a Local Linear Regression model over a kNN neigh-
borhood (LLR-kNN) has been calibrated using the first
one-third of the available data (400 observations, where
both the input and the output variables are measured).
The remaining two-thirds of the data (800 observations)
have been used as independent test for the models. The
number of latent variables (2) used in this static PLSR
model has been optimized by standard Leave-One-Out
cross-validation, LOO (Hastie et al., 2009). As for static
LLR-kNN model, the number of nearest neighbors has
been fixed to be equal to 10% of the calibration set.
Given the presence of collinearity among the inputs, the
dimensionality of the input space has been reduced to 2

using a Principal Component Analysis. Also the number of
components in the PCA model has been cross-validated.

To present the estimation performances, a testing period
corresponding to a 3-day window is reported. This window
has been selected because, during the testing period, the
unit was subjected to an abrupt feed change (in flowrate
and possibly in composition) and run under critical op-
erating conditions. The temporal evolution of 4 relevant
process variables is depicted in Figure 4; here, it is possible
to note how the variation in the feed triggered an action
on the vapor to reboiler flowrate and in the reflux flowrate.
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Fig. 4. Operation measurements for a selection of inputs.

The events initiated a sequence of oscillations in the ethane
concentration which has been only partially recovered by
the static sensors (Figure 5). In particular, it is possible
to notice that the static PLSR is not capable to recover
the full extension of the variation, and the static LLR-
kNN is unstable and it also lacks an overall accuracy
during the normal operation of the column. Over the full
testing period, the accuracy of the static models expressed
in terms of root mean squared error (RMSE) is equal to
0.311% for PLSR and 0.358% for LLR-kNN. The RMSE
is used as figure of merit to assess accuracy because it is
expressed in the same units of the output variable (%).
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Fig. 5. Estimation results for the static models.
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The results obtained using static models motivate the
idea of applying local linear regression recursively for the
development of a more accurate soft-sensor while trying to
minimize the maintenance tasks.

Recursive models: In the recursive design, the basic prin-
ciple of JIT modeling with a moving window to upgrade
the models is used. Concretely, a moving window with
fixed length W is first created. Within the current window,
when a new input measurement is ready and an estimation
is needed, a local regression model is constructed. Then,
the output of this new input is estimated with the cur-
rent model. Whenever a new input-output measurement
is available, it is added to the window and the oldest
observation dropped out to keep a fixed length. This simple
principle can be used with local linear regression methods
over kNN, NN, NNi, ekNN neighborhoods and DTR.

To avoid collinearity and impose orthogonality between
the inputs, PCA can be used for dimensionality reduction
in each moving window (recursive local PCR). For com-
parison, a number of components ranging from 2 to 5 has
been chosen. The other parameter of the method is the
length of the moving window; W = 50 has been used in
the experiments (i.e., up to 50 input-output observations
in each window are available for training the models).

The estimation results over the discussed test window
are depicted in Figure 6 for recursive LLR-kNN and for
correlation-based JIT. Notice that for the kNN neighbor-
hood, the number of nearest neighbors had to be selected
beforehand; in the experiments, the number of nearest
neighbors is fixed and set to be equal to 10% of the
window length W , k = 0.1W . On the other hand, CoJIT
works differently as it updates the model on the basis of a
correlation similarity between the chosen data sets and the
current test point, see (Fujiwara et al., 2009) for details.
The parameters of CoJIT has been set as i) combination
coefficient of J statistic λ = 0.01, ii) threshold of J statistic
JI = 0, iii) number of principal components varying be-
tween 2 and 5 and iv) window length W ∈ {10, 20, . . . , 50}.
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Fig. 6. Estimation results for the recursive local linear
methods with not enclosing neighborhoods.

In terms of accuracy, the Recursive LLR-kNN achieved
a RMSE equal to 0.373% (using 2 principal components)
and CoJIT a RMSE equal to 0.312% (using 3 principal
components and a window-length W = 50). From the
figure, it is possible to notice how the use of a recursive of
LLR-kNN over a static one is beneficial only at reducing
the offset in the estimates. However, the smaller number of
points available for training the model leads to instability.
As pointed out in Section 2, the effect is due to a not-
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(b) Recursive LLR-NN
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(c) Recursive LLR-NNi
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Fig. 7. Estimation results for the local linear methods with
enclosing neighborhoods.

enclosing neighborhood. Although based on a different
principle, also CoJIT suffers from the same limitation.

The shortcomings associated with an unbounded variance
of the estimates are overcome by using the enclosing neigh-
borhoods. Figure 7 shows the results over the discussed
testing window for the recursive versions of LLR-ekNN,
LLR-NN and LLR-NNi. From the diagrams, it is possible
to notice how the estimates strongly benefitted in terms
of accuracy and stability. Also the dynamic changes as-
sociated with the process operations are promptly and
correctly recovered although a tendency to over-estimate
the full magnitude of the variation is observed (an effect
already observable with the previously discussed models).

Figure 7(d) shows the results for the recursive DTR model
which, instead of fitting a local linear model, performs in-
terpolation within the enclosing. On the discussed testing
window, the method performs in a rather accurate way and
fully recovers the dynamic variations in the unit. However,
it is also possible to notice the presence of a few unstable
predictions; a behavior easily explained by recalling that
in a DTR model the size of the enclosing neighborhood is
minimal given the dimensionality of the input space.

3.2 Discussion

Table 2 presents the estimation accuracy for all the recur-
sive methods used in the experiments. The table clearly
summarizes the benefit of using an enclosing neighborhood
over a not-enclosing one. In addition, it is important to
notice that such neighborhoods are characterized by an
intrinsic adaptivity in constraining locality, which allows
for the design of a regression model which is virtually
parameter-free. When used in soft-sensor design, the only
parameters that need to be tuned are related to intrinsic
complexity of the function that is to be estimated (via the
selection of input variables or, if dimensionality reduction
is used, the number of variables to be retained) and the
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dynamics of the process to be modeled (via the definition
of the length of the moving window).

Table 2. Estimation results as RMSE in pre-
diction. The underlined RMSEs corresponds to

the models reported in the figures.

PCs kNN CoJIT NN NNi ekNN DTR

2 0.373 0.319 (50) 0.335 0.285 0.757 0.267
3 0.515 0.315 (40) 0.283 0.261 0.257 0.246
4 3.584 0.312 (50) 0.251 0.246 0.231 0.243
5 2.760 0.330 (50) 0.259 0.253 0.254 0.244

For the sake of completeness, we also report that a re-
cursive PLSR model with the same window length and 3
latent variables was able to outperform all the recursive
local linear models presented. The test accuracy of this
Recursive-PLSR model in terms of RMSE is 0.180%, con-
firming the unquestionable quality of this method.

4. CONCLUSION

In this work, the design of soft-sensors based on local linear
regression has been investigated. Several strategies for
defining locality have been introduced and the potentiali-
ties for developing a recursive version of the methods have
been proposed and illustrated on a real-world application.

The experimental results achieved on estimating the
ethane concentration in a full-scale industrial deethanizer,
confirmed that an appropriate selection of the neighbor-
hood is critical for learning a local regression model. En-
closing neighborhoods are preferable, mostly because of
their stability but also due to their automatic adaptivity
to the topology of the measurements, which eliminates
the necessity of user-defined parameters. In this respect,
the recursive extensions of the methods are virtually
parameter-free, if we exclude the length of the moving win-
dow and the definition of the input space dimensionality;
such parameters are, however, problem related and can be
learned from data. Among the local regression methods,
the best accuracies have been achieved using an enclosing
kNN neighborhood and a Delaunay tessellation. Overall,
the methods achieved an accuracy which is comparable to
the standard methods used in industry and the analytical
accuracy of the measurements.

As a final remark, we would like to point out an important
aspect that needs to be taken into account when imple-
menting a soft-sensor based on a recursive local linear
method. A successful application of the techniques in a
real-world scenario is possible only if the developed sensor
is complemented with an appropriate validation system on
the process measurements. Concretely, if the soft-sensors
are used to support existing on-line measurements, the
analytical instruments need to be carefully maintained in
order to avoid a fit against unreliable measurements. In the
presence of unreliable measurements, the calibration would
inevitably lead to undesirable results like undetectable
biases and drifts in the analysis, as well as faulty hardware
sensors. The same holds also when the soft-sensors are
calibrated against laboratory measurements.
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