
Author's Accepted Manuscript

Ensemble delta test-extreme learning ma-
chine (DT-ELM) for regression

Qi Yu, Mark van Heeswijk, Yoan Miche, Rui
Nian, Bo He, Eric Séverin, Amaury Lendasse

PII: S0925-2312(13)00975-2
DOI: http://dx.doi.org/10.1016/j.neucom.2013.08.041
Reference: NEUCOM13699

To appear in: Neurocomputing

Received date: 20 June 2013
Revised date: 19 August 2013
Accepted date: 26 August 2013

Cite this article as: Qi Yu, Mark van Heeswijk, Yoan Miche, Rui Nian, Bo He,
Eric Séverin, Amaury Lendasse, Ensemble delta test-extreme learning
machine (DT-ELM) for regression, Neurocomputing, http://dx.doi.org/10.1016/j.
neucom.2013.08.041

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/neucom

http://dx.doi.org/10.1016/j.neucom.2013.08.041
http://dx.doi.org/10.1016/j.neucom.2013.08.041
http://dx.doi.org/10.1016/j.neucom.2013.08.041
http://dx.doi.org/10.1016/j.neucom.2013.08.041
http://dx.doi.org/10.1016/j.neucom.2013.08.041
http://dx.doi.org/10.1016/j.neucom.2013.08.041
http://dx.doi.org/10.1016/j.neucom.2013.08.041

Ensemble Delta Test- Extreme Learning Machine
(DT-ELM) For Regression

Qi Yu∗a, Mark van Heeswijka, Yoan Michea, Rui Niane, Bo Hee, Eric Séverinb,
Amaury Lendassea,c,d

aDepartment of Information and Computer Science, Aalto University, FI-00076, Espoo,
Finland

bLEM, Université Lille 1, 59043, Lille cedex, France
cIKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain

dComputational Intelligence Group, Computer Science Faculty, University Of The Basque
Country, Paseo Manuel Lardizabal 1, Donostia-San Sebastián, Spain

eCollege of Information and Engineering, Ocean University of China, 266003, Qingdao,
China

Abstract

Extreme learning machine (ELM) has shown its good performance in regression
applications with a very fast speed. But there is still a difficulty to compromise
between better generalization performance and smaller complexity of the ELM
(number of hidden nodes). This paper proposes a method called Delta Test-
ELM (DT-ELM), which operates in an incremental way to create less complex
ELM structures and determines the number of hidden nodes automatically. It
uses Bayesian Information Criterion (BIC) as well as Delta Test (DT) to restrict
the search as well as to consider the size of the network and prevent overfitting.
Moreover, ensemble modeling is used on different DT-ELM models and it shows
good test results in Experiments Section.

Keywords: Extreme learning machine, Incremental Learning, Bayesian
information criterion, Delta Test, Ensemble modeling.

1. Introduction

Extreme learning machine (ELM), which is a simple and efficient learning
algorithm for single-hidden layer feedforward neural networks (SLFNs), has been
recently proposed in [1]. ELM has shown good generalization performances for
many real applications [2, 3, 4, 5] with an extremely fast learning speed [6, 7,
8, 9, 10, 11, 12]. However, like other similar approaches based on feedforward
neural networks, some issues with the practical applications of the ELM still
arise, most importantly, how to obtain the most appropriate architecture of the

Email address: qi.yu@aalto.fi (Qi Yu∗)

Preprint submitted to Elsevier October 18, 2013

network. In other words, how to select or search for the optimal number of
hidden neurons remains a difficult problem.

In ELM, the generalization error is determined by changing the number of
hidden neurons. Regardless of the fact that it is tedious and time consuming, it
may bring two other severe problems: overfitting and the high complexity of the
model, and it gets even serious when the data set presents high dimensionality
and large number of observations.

Many methods have been introduced recently trying to choose the most
suitable network structure of ELM and to further reduce the number of neurons
without affecting the generalization performance. Pruning methods are one type
of algorithms to address this problem. For example, Rong et al. in [13] proposed
a pruned ELM (P-ELM) for classification, and Miche et al. in [11, 14] presented
a method called optimally pruned ELM (OP-ELM). But pruning methods in
general are rather inefficient since most of the time they are dealing with a
network structure larger than necessary. On the other hand, some researchers
manage to solve the problems via incremental learning. Like the Incremental
extreme learning machine (I-ELM) [15] which adds the randomly generated
hidden node one-by-one to the hidden layer until achieving an expected training
accuracy or reaching the maximum number of hidden nodes. There are also
some modifications made to I-ELM, like shown in [16, 17, 18]. However, these
methods need to set the expected training error or maximum number of neurons
in advance.

In this paper, a method called Delta Test - Extreme Learning Machine (DT-
ELM) is proposed. It is operated in an incremental way but stops automatically
if the Delta Test error remains unchanged for a certain number of iterations
(this is the only parameter of the proposed method). . Bayesian Information
Criterion (BIC) and Delta Test (DT) are used to minimize the Mean Square
Error and find the suitable hidden layer neurons while avoiding overfitting.
Moreover, ensemble modeling is performed on different DT-ELM models and it
shows better test results.

2. Extreme Learning Machine

The Extreme Learning Machine algorithm is proposed by Huang et al. in
[1] as an original way of building a single Hidden Layer Feedforward Neural
Network (SLFN). The essence of ELM is that the hidden layer needs not to be
iteratively tuned [1], and moreover, the training error ‖ Hβ−y ‖ and the norm
of the weights ‖ β ‖ are minimized.

Given a set of N observations (xi, yi), i ≤ N . with xi ∈ Rp and yi ∈ R.
A SLFN with m hidden neurons in the hidden layer can be expressed by the
following sum:

m∑
i=1

βif(ωixj + bi), 1 ≤ j ≤ N (1)

where βi are the output weights, f be an activation function, ωi the input
weights and bi the biases. Suppose the model perfectly describe the data, the

3

relation can be written in matrix form as Hβ = y, with

H =

 f(ω1x1 + b1) . . . f(ωmx1 + bm)
...

. . .
...

f(ω1xn + b1) . . . f(ωmxn + bm)

 (2)

β = (β1, ..., βm)T and y = (y1, ..., yn)T . The ELM approach is thus to initialize
randomly the ωi and bi and compute the output weights β = H†y by a Moore-
Penrose pseudo-inverse [19].

The significant advantages of ELM are its extreme fast learning speed, and
its good generalization performance while being a simple method [1]. There has
been recent advances based on the ELM algorithm, to improve its robustness
(OP-ELM [14], TROP-ELM [11], CS-ELM [20]), or make it a batch algorithm,
improving at each iteration (EM-ELM [21], EEM-ELM [22]).

Along with the increase of number of hidden nodes in ELM, the error usually
decreases. However, it also brings some corresponding difficulties: the complex-
ity of the model and the overfitting problem. That’s why Bayesian information
criterion (BIC) (and Delta Test after it) is used in the proposed DT-ELM.

3. Bayesian Information Criterion and Delta Test

In the methodology presented in this paper, the Bayesian Information Cri-
terion (BIC) and Delta Test (DT) are used as criteria in a ”cascade” manner so
as to select an appropriate number of neurons for the ELM structure and avoid
overfitting. The following subsection detail the two criterion separately.

3.1. Bayesian information criterion (BIC)

The Bayesian information criterion (BIC) is one of the most widely known
and pervasively used tools in statistical model selection, also known as Schwarzs
information criterion (SIC) [23, 24]. It is based, in part, on the likelihood
function, and it is closely related to Akaike information criterion (AIC)[25].

When fitting models, it is possible to increase the likelihood by adding pa-
rameters, but doing so may result in overfitting. The BIC resolves this problem
by introducing a penalty term for the number of parameters in the model.

In brief, BIC is defined as:

BIC = −2 · lnL+m ln(N) (3)

where,

• N–the number of observations, or equivalently, the sample size;

• m–the number of degrees of freedom remaining after fitting the model (free
parameters to be estimated), with smaller value representing the better
fits. If the estimated model is a linear regression, m is the number of
parameters;

4

• L–the maximized value of the likelihood function for the estimated model.

Under some assumptions of model errors, BIC becomes the following formula
for practical calculations [26]:

BIC = N · ln(σ̂2
e) +m · ln(N) (4)

where σ̂2
e is the error variance.

Because BIC includes an adjustment for sample size, the BIC often favors a
simpler model. In this paper, BIC is used to selected neurons incrementally in
ELM, which are randomly generated and tested cluster by cluster. Therefore,
BIC is calculated like:

BIC = N · ln(MSE) +m · ln(N) (5)

where N continues to be the number of samples, MSE represents the Mean
Square error for the regression problem, and m is the number of neurons used
in current model.

However, BIC is in theory designed only for data set of an infinite sample
size, and in practice, it is really difficult to find the balance point between
smaller error and not overfitting. Thus, using only BIC as a criterion to decide
on an optimal number of neurons proved insufficient, and sometimes unreliable
(especially in cases where the data set has very limited amounts of samples).
For this reason, the second part of the evaluation criteria, taken by the Delta
Test (DT) is used, as a means of restricting even further the amount of neurons
selected for the final model structure.

4. Nonparametric Noise Estimator (NNE): Delta Test

Delta Test (DT) is a non-parametric technique based on nearest neighbors
principle. It is a fast scalable algorithm for estimating the noise variance pre-
sented in a data set modulo the best smooth model for the data, regardless of
the fact that this model is unknown. A useful overview and general introduction
to the method and its various applications is given in [27]. The evaluation of
the NNE is done using the DT estimation introduced by Stefansson[28].

In the standard DT analysis, we consider vector-input/scalar-output data
sets of the form

(xi, yi|1 ≤ i ≤ N) (6)

with N the number of samples (observations), and where the input vector xi ∈
Rd is confined to some closed bounded set C ⊂ Rd. The relationship between
input and output is expressed by yi = f(xi) + ri, where f is the unknown
function and r is the noise. The Delta Test estimates the variance of the noise
r.

The Delta test works by exploiting the hypothesized continuity of the un-
known function f . If two points x and x′ are close together in input space, the
continuity of f implies that the points f(x) and f(x′) will be close together in

5

output space. Alternatively, if the corresponding output values y and y′ are not
close together in output space, this can only be due to the influence of noise on
f(x) and f(x).

Let us denote the first nearest neighbor of the point xi in the set {x1, . . . , xN}
by xf(i). Then the delta test, δ is defined as:

δ =
1

2N

N∑
i=1

∣∣yf(i) − yi∣∣2 (7)

where yf(i) is the output of xf(i). For the proof of the convergence of the
Delta Test, see [27].

In a word, the Delta test is useful for evaluating relationship between two
random variables, namely, input and output pairs. The DT has been introduced
for model selection but also for variable (feature) selection: the set of inputs
that minimizes the DT is the one that is selected. Indeed, according to the DT,
the selected set of variables (features) is the one that represents the relationship
between variables and output in the most deterministic way.

In this paper, Delta test is used between the output of the hidden layer and
the real output, following the BIC criterion, to further validate the selection of
the ELM neurons.

5. DT-ELM

In this section, the general methodology is presented as well as the details
of the implementation steps.

5.1. Algorithm

Fig 1 illustrates the main procedures of DT-ELM, and how they interact. In
general, DT-ELM is a robust method with one parameter to be tuned. Unlike
most of other ELM related methods, DT-ELM has the ability to run without
setting expected training error or the maximum number of neurons beforehand,
and will automatically stop once the criteria are met. The algorithm of DT-ELM
can be summarized as follow:

Given a training set (xi, yi)|xi ∈ Rd, yi ∈ R, i = 1, 2, ..., d, activation function
f(x). H represents the output matrix of the hidden layer. Each trial cluster
contains n neurons.

Initialization step: Let the number of hidden neurons to be zero at the very
beginning, then the neurons could be chosen progressively later on by DT-ELM.
Set the initial BIC and DT value to be infinite, so that the following steps are
always trying to add neurons to DT-ELM to minimize BIC and DT results.

Learning step:

• Randomly generate a cluster of n neurons. n is optional that can be
configured according to the different computer power or different data
sets. It saves computational time to test neurons cluster by cluster, than
one by one. The reason is that along with the selection of the final neurons,

6

ELM with existing neurons A
BIC=BIC_old; DT=DT_old

Generating a cluster
of n random neurons

if DT_new < DT_old

neuron b is selected,
set A is updated

neuron b is not selected

neuron b is not selected

No

YES

YES

No

Select the best neuron
'b' from the cluster

testing the BIC value
of ELM with neurons A U {b}

if BIC_new < BIC_old

testing the DT value
of ELM with neurons A U {b}

Figure 1: The framework of the proposed DT-ELM

it’s more and more difficult to find a neuron that can reduce both BIC
and DT value. So it would waste more time to build the ELM one by one.

• Construct ELM using the combination of each of the n neurons and the
existing selected neuron set A.(For the first round, it means to construct
ELM with each neuron separately as A is null at the begining). Test the
BIC value for each new ELM, find the neuron that gives the smallest BIC.

• Check whether the smallest BIC is smaller than the previous BIC value.

7

If so, continue to next step; otherwise, stop current trial and repeat the
learning step. In practice, the value of BIC decreases easily and fast at
the beginning, but becomes more and more difficult with the increasing
number of neurons.

• Calculate the DT value between the hidden layer and the output for the
ELM with the existing neuron and the neuron found in previous step. If
the DT results get decreased, this new neuron is added; otherwise stop the
current round and repeat the learning step. It is similar with BIC value
at the beginning, DT decreased quite fast, but with the increase number
of neurons, it becomes extremely difficult to find a new satisfying neuron.

Stop criterion
One advantage of DT-ELM is that only one parameter (number of clusters)

needs to be set beforehand, the number of neurons is chosen automatically ac-
cording to the algorithm. Therefore, when to stop finding new neurons becomes
an issue for this method. In this paper, the default setting is 200 extra clusters.
The setting of this number is not sensitive to the final performance. As we
mentioned that the neurons are tested cluster by cluster, instead of one by one
in other incremental learning algorithm. Therefore, this means DT-ELM stop
training if DT values doesn’t decrease for continuous 4000 new neurons (here
each cluster contains n = 20 neurons).

5.2. Example

Take data set Bank (more details in Experiment Section) for example, Bank
has 8 attributions (variables) and 4499 samples, from which 2999 samples are
randomly selected for training and the rest 1500 for test.

Fig 2 illustrates the results of training and testing on bank data using DT-
ELM. For this trial, 369 clusters are generate and tested for selection, and 23
neurons are selected eventually.

6. Ensemble modeling

No guideline is always correct. No single method is always the best. This
has lead to the idea of trying to combine models into an ensemble rather than
selecting among them [29]. The idea seems to work well as demonstrated by
many practical applications [30, 31, 32, 33].

6.1. Combining different models into ensembles

It is stated [30] that a particular method for creating an ensemble can be
better than the best single model. Therefore, how to combine the models be-
comes an issue. There are several ways to achieve this. One example is using
Non-Negative constrained Least-Squares (NNLS) algorithm [32, 34]. In this pa-
per, we use the equalized weights for all the ensemble models and it works well
as shown in the Experiments.

8

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

The number of neurons selected

M
ea

n
S

qu
ar

e
E

rr
or

Bank

Training error

Test error

Figure 2: Mean Square Error for Bank, versus the number of Neurons

The ensemble error can be calculated between yEnsemble and y, where yEnsemble =∑k
i=1 ωiŷi is the weighted sum of the output of each i individual models, ωi is

the weighted assigned to the output of the ith model; these weights satisfy∑
i ωi = 1; y is the real output of the data and ŷi is ensemble target. In this

paper, we want to build k models and more particularly, ωi = 1
k . Thus, the

final output we obtain is yEnsemble =
∑k

i=1
1
k ŷi.

Fig 3 shows more details on how the ensemble DT-ELM works in this paper.
The output of DT-ELM varies, even when using the same training samples,
as the hidden layer weights and biases are generated randomly. Therefore, for
each training set, 50 models (DT-ELM) are constructed. Then the ensemble
step assigns the same weights ω = 1

50 to each output of the model yi. So the

training result of the Ensemble DT-ELM is ytrain = 1
50

∑50
i=1 yi.

6.2. Estimating the performance of the ensemble

Typically, the way to estimate the performance of a method is to divide the
data set into training, validation and testing sets. The model is built in the
training phase based on the information that the training set contains. The
results are validated and the best model is chosen using validation set. Finally,
the model is tested in a test set that is not used for building the model.

A validation dataset is not required as DT-ELM can determine the required
hidden neurons. Therefore, in this paper, the data set is only divided into

9

Two thirds of
N for training

Data set with N samples

DT-ELM model 1

Equalized Ensemble
One third of
N for testing

DT-ELM model 2 DT-ELM model k ...

randomly split

 To test

�i���k��i������k

Figure 3: The framework of the proposed Ensemble DT-ELM

training and test set. More particularly, the data set is split randomly ten times
with the same proportion to train and test Ensemble DT-ELM, and the final
MSE is the average of the 10 repetitions. In this way, we are able to obtain more
general performance of the method, the computational time and the standard
deviation is reported in next Section.

7. Experiments

In order to compare the proposed Ensemble DT-ELM with other machine
learning algorithms, six data sets from UCI machine learning repository [35] are
used. They are chosen for their heterogeneity in terms of problem, number of
variables, and sizes. Table 1 shows the specification of the 6 selected data sets.

Datasets # Attributes # Training data # Testing data

Ailerons 5 4752 2377
Elevators 6 6344 3173
Servo 4 111 56
Bank 8 2999 1500
Stocks 9 633 317

Boston Housing 13 337 169

Table 1: Specification of the 6 tested regression data sets

10

The data sets have all been processed in the same way: for each data set,
10 different random permutations are taken without replacement; for each per-
mutation, two thirds are taken for the training set, and the remaining third for
the test set (see Table 1). Training sets are then normalized (zero-mean and
unit variance) and test sets are also normalized using the same normalization
factors. The results presented in the following are hence the average of the 10
repetitions for each data set.

The regression performance of the Ensemble DT-ELM is compared with
OP-ELM, ELM and other well-known machine learning methods like Support
Vector Machine (SVM), Multilayer Perception (MLP), and Gaussian process
for Machine Learning (GPML). The SVM toolbox from [36] is used for the
experiments, while the MLP [37] is using the neural network toolbox, part of
the Matlab software from the MathWorks, Inc; the GPML toolbox for Matlab
from Rasmussen and Williams [38] is used for the GP; and finally, the OP-ELM
is performed with the online version of the OP-ELM toolbox and was using a
maximum number of 100 neurons.

First are reported in Table 2 the mean square error for the seven algorithms
tested. Table 3 and Table 4 illustrate the computational time and the number
of neurons selected, respectively. As seen from these tables, the test results
of Ensemble DT-ELM are at least as good as that of OP-ELM, with similar
computational time, but much simpler model structure (number of neurons)
eventually. The number of neurons E.DT-ELM selected is about half of the
number with OP-ELM; for some cases, like Ailerons and Elevators, E.DT-ELM
uses around 4 neurons instead of about 70 neurons of OP-ELM.

Ailerons Elevators Servo Bank Stocks Boston
E. DT-ELM 3.2e-8 2.1e-6 5.3e-1 1.4e-3 6.6e-1 1.6e+1

(1.0e-7) (5.0e-6) (1.9) (3.2e-3) (1.1) (49)
DT-ELM 8.3e-8 2.5e-6 6.2e-1 1.7e-3 8.5e-1 1.9e+1

(6.0e-7) (7.1e-6) (1.1) (7.6e-3) (1.7) (47)
OP-ELM 2.8e-7 2.0e-6 8.0e-1 1.1e-3 9.8e-1 1.9e+1

(1.5e-9) (5.4e-8) (3.3e-1) (1.0e-6) (9.35) (2.9)
ELM 3.3e-8 2.2e-6 7.1 6.7e-3 3.4e+1 1.2e+2

(2.5e-9) (7.0e-8) (5.5) (7.0e-4) (9.35) (2.1e+1)
GP 2.7e-8 2.0e-6 4.8e-1 8.7e-4 4.4e-1 1.1e+1

(1.9e-9) (5.0e-8) (3.5e-1) (5.1e-5) (5.0e-2) (3.5)
MLP 2.7e-7 2.6e-6 2.2e-1 9.1e-4 8.8e-1 2.2e+1

(4.4e-9) (9.0e-8) (8.1e-2) (4.2e-5) (2.1e-1) (8.8)
SVM 1.3e-7 6.2e-6 6.9e-1 2.7e-2 5.1e-1 3.4e+1

(2.6e-8) (6.8e-7) (3.3e-1) (8.0e-4) (9.0e-2) (3.1e+1)

Table 2: Mean Square Error results for comparison. Standard deviations in brackets

8. Conclusions

This paper proposed a method called Ensemble DT-ELM. It ensembles from
a number of DT-ELM models trained with the same training set. BIC and DT is
applied into the algorithm with the penalty of the number of the neuron and the
estimated variance of the noise between hidden layer and the output. So that

11

Ailerons Elevators Servo Bank Stocks Boston
E. DT-ELM 5.9 8.7 6.4e-1 3.1e+1 2.1e+1 1.0e+1
DT-ELM 3.2 5.1 2.0e-1 8.3 3.7 2.2
OP-ELM 16.8 29.8 2.1e-1 8.03 1.54 7.0e-1
ELM 9.0e-1 1.6 3.9e-2 4.7e-1 1.1e-1 7.4e-2
GP 2.9e+3 6.5e+3 2.2 1.7e+3 4.1e+1 8.5
MLP 3.5e+3 3.5e+3 5.2e+2 2.7e+3 1.2e+3 8.2e+2
SVM 4.2e+2 5.8e+2 1.3e+2 1.6e+3 2.3e+3 8.5e+2

Table 3: Computational times (in seconds) for comparison

Ailerons Elevators Servo Bank Stocks Boston
E. DT-ELM 3.3 3.7 9.6 19.4 43 33.8
DT-ELM 4.1 4.3 10.2 21.6 51 38.9
OP-ELM 75 74 36 98 100 66

Table 4: Average (over the ten repetitions) of the number of neurons selected for the final
model for OP-ELM, DT-ELM and Ensemble DT-ELM

DT-ELM method adds neurons incrementally and stops when couldn’t decrease
both BIC and DT values.

The significant advantages of this method are its robustness and the sparsity
of the model. There is only one parameter need to be tuned and it constructs
much more sparse model. As we know that the less hidden nodes used, the more
interpretable of the model. On the other hand, ensemble DT-ELM maintains
the fast speed even it stops after 4000 unsuccessful test of neurons. These are
also proved by the experiments. In the experiments section, six real regression
data sets have been tested. The results show that DT-ELM maintains the fast
computational time, the good performance, and constructs relatively sparse
models.(The number of hidden nodes selected is much less than OP-ELM).

[1] G. B. Huang, Q. Zhu, and C. K. Siew, “Extreme learning machine: Theory
and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501, 2006.

[2] W. Zong and G.-B. Huang, “Face recognition based on extreme learning
machine,” Neurocomputing, vol. 74, no. 16, pp. 2541–2551, 2011.

[3] N. Liu, Z. Lin, Z. Koh, G.-B. Huang, W. Ser, and M. E. H. Ong, “Pa-
tient outcome prediction with heart rate variability and vital signs,” Signal
Processing Systems, vol. 64, no. 2, pp. 265–278, 2011.

[4] Y. Lan, Y. C. Soh, and G.-B. Huang, “Extreme learning machine based
bacterial protein subcellular localization prediction,” IJCNN, pp. 1859–
1863, 2008.

[5] Y. Lan, Y. C. Soh, and G.-B. Huang, “Ensemble of online sequential ex-
treme learning machine,” Neurocomputing, vol. 72, pp. 3391–3395, 2009.

[6] G.-B. Huang, D. H. Wang, and Y. Lan, “Extreme learning machines: A
survey,” International Journal of Machine Leaning and Cybernetics, vol. 2,
no. 2, pp. 2107–2122, 2011.

12

[7] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine
for regression and multi-class classification,” IEEE Transactions on Sys-
tems, Man, and Cybernetics - Part B: Cybernetics, vol. 42, no. 2, pp. 513–
529, 2011.

[8] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: A
new learning scheme of feedforward neural networks,” in Proceedings of
International Joint Conference on Neural Networks (IJCNN2004), vol. 2,
(Budapest, Hungary), pp. 985–990, 25-29 July, 2004.

[9] G.-B. Huang and C.-K. Siew, “Extreme learning machine: RBF network
case,” in Proceedings of the Eighth International Conference on Control,
Automation, Robotics and Vision (ICARCV 2004), vol. 2, (Kunming,
China), pp. 1029–1036, 6-9 Dec, 2004.

[10] G.-B. Huang and C.-K. Siew, “Extreme learning machine with randomly
assigned RBF kernels,” International Journal of Information Technology,
vol. 11, no. 1, pp. 16–24, 2005.

[11] Y. Miche, M. van Heeswijk, P. Bas, O. Simula, and A. Lendasse, “Trop-elm:
a double-regularized elm using lars and tikhonov regularization,” Neuro-
computing, vol. 74, no. 16, pp. 2413–2421, 2011.

[12] M. van Heeswijk, Y. Miche, E. Oja, and A. Lendasse, “Gpu-accelerated
and parallelized elm ensembles for large-scale regression,” Neurocomputing,
vol. 74, no. 16, pp. 2430–2437, 2011.

[13] H. J. Rong, Y. S. Ong, A. H. Tan, and Z. Zhu, “A fast pruned-extreme
learning machine for classification problem,” Neurocomputing, vol. 72,
pp. 359–366, 2008.

[14] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse,
“Op-elm: Optimally-pruned extreme learning machine,” In IEEE Trans-
actions on Neural Networks, vol. 21, pp. 158–162, 2010.

[15] G.-B. Huang and L. Chen, “Convex incremental extreme learning ma-
chine,” Neurocomputing, vol. 70, pp. 3056–3062, 2007.

[16] G.-B. Huang and L. Chen, “Enhanced random search based incremental
extreme learning machine,” Neurocomputing, vol. 71, pp. 3460–3468, 2008.

[17] G. Feng, G.-B. Huang, Q. Lin, and R. Gay, “Error minimized extreme
learning machine with growth of hidden nodes and incremental learning,”
IEEE Transactions on Neural Networks, vol. 20, no. 8, pp. 1352–1357, 2009.

[18] G.-B. Huang, M.-B. Li, L. Chen, and C.-K. Siew, “Incremental extreme
learning machine with fully complex hidden nodes,” Neurocomputing,
vol. 71, pp. 576–583, 2008.

13

[19] C. R. Rao and S. K. Mitra, “Generalized inverse of matrices and its appli-
cations,” New York: John Wiley & Sons, p. 240, 1971.

[20] Y. Lan, Y. Soh, and G. B. Huang, “Constructive hidden nodes selection of
extreme learning machine for regression,” Neurocomputing, vol. 73, no. 16-
18, pp. 3191–3199, 2010.

[21] G. Feng, G. B. Huang, Q. Lin, and R. Gay, “Error minimized extreme
learning machine with growth of hidden nodes and incremental learning,”
IEEE Transactions on Neural Networks, vol. 20, no. 8, pp. 1352–1357, 2009.

[22] L. Yuan, S. Y.Chai, and G. B. Huang, “Random search enhancement of
error minimized extreme learning machine,” in European Symposium on
Artificial Neural Networks (ESANN) 2010, (Bruges, Belgium), pp. 327–
332, 2010.

[23] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statis-
tics, vol. 6, no. 2, pp. 461–464, 1978.

[24] P. Zhang, “On the convergence rate of model selection criteria,” On the
convergence rate of model selection criteria, vol. 22, pp. 2765–2775, 1993.

[25] H. Akaike, “Information theory and an extension of the maximum likeli-
hood principle,” in Second International Symposium on Information The-
ory, (Budapest), pp. 267–281, 1973.

[26] M. B. Priestley, Spectral analysis and time series. Academic Press London
; New York, 1981.

[27] A. J. Jones, “New tools in non-linear modeling and prediction,” Computa-
tional Management Science, vol. 1, no. 2, pp. 109–149, 2004.

[28] A. Stefánsson, N. Koncar, and A. J. Jones, “A note on the gamma test,”
Neural Computing and Applications, vol. 5, no. 3, pp. 131–133, 1997.

[29] J. Cao, Z. Lin, G.-B. Huang, and N. Liu, “Voting based extreme learning
machine,” Information Sciences, vol. 185, no. 1, pp. 66–77, 2012.

[30] S. V. Barai and Y. Reich, “Ensemble modelling or selecting the best model:
Many could be better than one,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, pp. 377–386, 1999.

[31] Y. Miche, E. Eirola, P. Bas, O. Simula, C. Jutten, A. Lendasse, and M. Ver-
leysen, “Ensemble modeling with a constrained linear system of leave-one-
out outputs,” in In proceedings of 18th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning, (Bel-
gium), pp. 19–24, 19-24 Apr, 2010.

[32] Q. Yu, A. Lendasse, and E. Séverin, “Ensemble knns for bankruptcy pre-
diction,” in in CEF 09, 15th International Conference: Computing in Eco-
nomics and Finance, (Sydney, Austrilia), June 2009.

14

[33] L. Kainulainen, Y. Miche, E. Eirola, Q. Yu, B. F. E. Séverin, and
A. Lendasse, “Ensembles of local linear models for bankruptcy analysis and
prediction,” Case Studies in Business, Industry and Government Statistics
(CSBIGS), vol. 4, 2011.

[34] C. L. Lawson and R. J. Hanson, “Solving least squares problems,” CLassics
in Applied Mathematics, pp. 245–286, 1995.

[35] A. Frank and A. Asuncion, “Uci machine learning repository,” in
http://archive.ics.uci.edu/ml, 2004.

[36] C. C. Chang and C. J. Lin, “Libsvm: a library for support vector ma-
chines,” in Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm,
2001.

[37] C. Bishop, “Neural networks for pattern recognition,” in Oxford University
Press, (USA), 1996.

[38] C. E. Rasmussen and C. K. I. Williams, “Gaussian processes for machine
learning,” in The MIT Press, 2006.

15

