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1. Introduction

1.1 Motivation and scope

Due to technological advances, nowadays data gets generated at an ever-

increasing pace and the size and dimensionality of data sets continue to

grow by the day. Therefore, it is important to develop efficient and effec-

tive machine learning methods, that can be used to analyze this data and

extract useful knowledge and insights from this wealth of information.

In recent years, Extreme Learning Machines (ELMs) have emerged as a

popular framework in machine learning. ELMs are a type of feed-forward

neural networks characterized by a random initialization of their hidden

layer weights, combined with a fast training algorithm. The effectiveness

of this random initialization and their fast training makes them very ap-

pealing for large data analysis.

Although in theory ELMs have been proven to be universal approxima-

tors and the random initialization of the hidden neurons should be suffi-

cient to solve any approximation problem, in practice it matters greatly

how many samples are available for training; whether there are any out-

liers in the data; and which variables are used as inputs. Therefore,

proper care needs to be taken to obtain a robust and accurate model, and

prevent overfitting. Furthermore, even though ELMs have efficient train-

ing algorithms, due to the size of modern data sets, ELMs can benefit from

strategies for accelerating their training.

The focus of this thesis therefore is on developing efficient, and effec-

tive ELM-based methods that are specifically suited for handling the chal-

lenges posed by modern data sets. The contributions of the dissertation

are along three directions, described in the following section.
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1.2 Contributions of the thesis

Firstly, ELM-based ensemble methods are developed, which adapt to

context and can scale to large data. The stochastic nature of ELMs makes

them particularly suited for ensembling, since each ELM tends to make

different errors when modeling data. By combining them in an ensemble

model, these errors are averaged out, resulting in a more accurate model.

In particular, Publication I introduces an adaptive ensemble of ELMs,

which allows for adapting to nonstationarities in the data by adjusting the

linear combination of the models based on their accuracy over time. Pub-

lication II on the other hand, is aimed at reducing the computational time

of the ensemble model, such that it may scale to larger data. Scalability is

achieved by exploiting the modularity of the ensemble model, and evalu-

ating its constituent models in parallel on multiple processor cores and by

accelerating their training by performing it on graphical processing units

(GPUs). Furthermore, an efficient method (based on PRESS-statistics) is

exploited for fast model selection.

Secondly, variable selection approaches based on ELM and Delta

Test are developed for reducing the dimensionality of the data by select-

ing only the relevant variables. This, in turn, results in more accurate and

efficient models. In particular, Publication III introduces a new variable

selection method based on ELM, which is shown to be a competitive al-

ternative to traditional variable selection methods. Publication IV focuses

on variable selection with a genetic algorithm using the Delta Test crite-

rion for estimating the accuracy a nonlinear model can achieve for a given

variable subset. The scalability of variable selection using Delta Test is

achieved by accelerating it on GPU, and by parallelizing the workload

over multiple cluster nodes. Finally, besides these explicit variable selec-

tion methods, Publication V develops a new weight initialization scheme

for ELM consisting of binary and ternary sparse weights. As a result, the

hidden neurons extract more diverse information from the data, which re-

sults in more accurate and effective models. This weight scheme is shown

to perform implicit variable selection. Since only the weight scheme is

adapted, the resulting increased robustness and accuracy come for free

and at no increase in computational cost.

Finally, training algorithms for ELM are developed that allow for a flex-

ible trade-off between accuracy and computational time. In partic-

ular, Publication VI introduces the Compressive ELM, which provides a
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way to reduce the computational time by performing the training of ELM

in a reduced feature space. This allows for a flexible time-accuracy trade-

off (and might provide a way to obtain more accurate models in less time).

Overall, the resulting collection of proposed methods provides an effi-

cient, accurate and flexible framework for solving large-scale supervised

learning problems. The developed methods are not limited to the particu-

lar types of ELMs and contexts in which they have been tested, and may

readily be adapted to new contexts and models.

1.3 Structure of the thesis

The remainder of this thesis gives an introduction to topics and theory rel-

evant to the thesis, and highlights results from the included publications.

In particular, chapter 2 discusses the general machine learning back-

ground relevant to the thesis. Chapter 3 introduces Extreme Learning

Machines and some of its variants. Chapter 4 discusses ensemble models

and contributions to ensembles of ELMs. Chapter 5 gives an overview

of feature selection and related contributions. Chapter 6 discusses the

compressive ELM and finally, Chapter 7 provides conclusions and future

work.
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2. Machine learning

“All models are wrong, but some are useful.”

– George Box

Machine learning is a challenging field, which is concerned with the

problem of building models that can extract useful information or insights

from given data. As mentioned in the introduction already, the size and

dimensionality of the data sets become larger by the day, and it is there-

fore important to develop efficient computational methods and algorithms

that are able to handle these large data sets, such that the machine learn-

ing tasks can still be performed in reasonable time.

This chapter gives an overview of the basic concepts of machine learning

relevant to this thesis, and on supervised learning in particular.

2.1 Unsupervised learning

In machine learning, at least two different types of learning can be distin-

guished: supervised learning and unsupervised learning (Bishop, 2006;

Murphy, 2012; Alpaydin, 2010). In unsupervised learning, no target vari-

ables are given, and the task is to extract useful patterns or information

from just (xi)
N
i=1, where xi refers to the ith sample in a data set of N sam-

ples (e.g. corresponding to images). Examples of unsupervised learning

include clustering and principal component analysis (PCA), where the al-

gorithm tries to discover latent structure in the data. Other uses of unsu-

pervised learning are visualization or exploration of the data.

5



Machine learning

2.2 Supervised learning

In supervised learning on the other hand, the goal is to model the rela-

tionship between a set of explanatory variables xi and the corresponding

target variable (or target variables) yi, where subscript i indicates the

sample. That is, given a set of data (xi, yi)
N
i=1, model the relationship be-

tween inputs xi and outputs yi as a function f , such that f(xi) matches yi
as closely as possible. This is often referred to as functional approxima-

tion.

In case the target variable yi ∈ R, this is known as regression. In case

yi corresponds to a category or class, this is known as classification.

2.2.1 Functional approximation

An example of a functional approximation problem is time series predic-

tion, where the task is to predict future values of a particular time series

based on its past values. One possibility for using past data to predict

the future would be to model the next value of the time series (at time

t + 1) as a function of the values in the previous d time steps. Having

recast the task of time series prediction as a functional approximation (or

regression) problem, the problem of one-step ahead time series prediction

can be described as follows

ŷi = f(xi,β) (2.1)

where xi is a 1× d vector [x(t− d+ 1), . . . , x(t)] with d the number of past

values that are used as input, and ŷi the approximation of x(t + 1). Note

the difference between xi and x(t).

Depending on what kind of relation is expected to exist between the in-

put variables and output variables of a given problem, the regression is

performed on either the input variables themselves or nonlinear trans-

formations of them, e.g. like in neural networks which perform linear

regression on nonlinear transformations of the input variables (i.e. the

outputs of the hidden layer) and the target variables.

2.2.1.1 Linear regression

In linear regression, as the name suggests, the function f becomes a linear

combination of the input variables, i.e.

f(xi,β) = β0 + β1xi1 + · · ·+ βdxid. (2.2)
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Given a number of training samples (xi, yi)
N
i=1, the inputs xi and targets

yi can be gathered in matrices, such that the linear system can be written

as

Xβ = Y (2.3)

where

X =


1 x11 x12 · · · x1d

1 x21 x22 · · · x2d
...

...
... . . . ...

1 xN1 xN2 · · · xNd

 , Y =


y1

y2
...

yN

 , (2.4)

d is the number of inputs and N the number of training samples. The

matrix X is also know as the regressor matrix and each row contains an

input and a column of ones corresponding to β0, while the corresponding

row in Y contains the target to approximate.

The weight vector β which results in the least mean square error (MSE)

approximation of the training targets Y given input X can now be com-

puted as follows (Bishop, 2006):

Xβ = Y

XTXβ = XTY

(XTX)−1(XTX)β = (XTX)−1XTY

β = (XTX)−1XT = X
†
Y

where X† is known as the pseudo-inverse or Moore-Penrose inverse (Rao

and Mitra, 1971).1

Furthermore, since the approximation of the output for given X and β

is defined as Ŷ = Xβ

Ŷ = Xβ

= X(XTX)−1XTY

= HAT ·Y

where the HAT-matrix is the matrix that transforms the output Y into

the approximated output Ŷ. It is defined as X(XTX)−1XT and plays an

important role in this thesis, as it provides an efficient way to estimate the

1The matrix XTX is invertible (non-singular) exactly when its rank equals di-
mension d, which is usually the case if N ≥ d. In case N < d, X† =XT (XXT )−1
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expected performance of a linear model, and therefore an efficient way to

perform model selection.

2.2.1.2 Linear basis function models

Instead of doing regression on the input variables, one can also perform

regression on non-linear transformations of the input variables. These

nonlinear transformations are often referred to as basis functions, and

the approach as a whole as basis function expansion. This approach is

more powerful than linear regression and can, given enough basis func-

tions, approximate any given function under the condition that these basis

functions are infinitely differentiable. In other words, they are universal

approximators (Hornik et al., 1989; Cybenko, 1989; Funahashi, 1989).

2.2.2 Model structure selection

In supervised learning, a model tries to learn the relationship between a

set of inputs and a set of outputs. This could for example be a set of images

that needs to be classified into a number of categories, or a time series

prediction problem, in which future values of that time series need to be

predicted given its past values and possibly other external information.

The model that is used to represent and learn this relationship has a cer-

tain structure determined by its parameters and a corresponding learn-

ing algorithm with its hyper-parameters. The class of possible models is

sometimes known as the hypothesis space (Alpaydin, 2010), and it is up to

the learning algorithm to find the best model from the hypothesis space

(in terms of some criterion like e.g. accuracy) that models the relation-

ship between input and output data best, and can consequently be used

to accurately predict the output for future unseen inputs.

In optimizing the structure of a model, many models with different

structure and parameters are evaluated according to some criteria. For

example, in case of neural networks the models could differ in terms of

the number or type of neurons in the hidden layer; how many and which

variables are taken as input; and the algorithm and parameters used to

train the neural network.

A commonly used criterion is the accuracy of the model. However, since

the future samples are not necessarily the same as the currently available

samples (e.g. due to noise or other changes in the environment), it is

important that the model generalizes to this new unseen data: i.e. it is

not enough to perfectly model the training data.
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2.2.2.1 Motivation

In selecting the right model structure, one of the aspects often optimized

is the model complexity (e.g. the number of hidden neurons in a neural

network). If the model is too complex, it will perfectly fit the training

data, but will have bad generalization on data other than the training

data. On the other hand, if the model is too simple, it will not be able to

approximate the training data at all. These cases are known as overfit-

ting and underfitting, respectively, and are illustrated in Figure 2.1. If

the model is too simple, it is not able to learn the functional mapping be-

tween the inputs and the outputs; if the model is too complex on the other

hand, it perfectly approximates the points it was trained on, but exhibits

poor generalization performance and does not approximate the underly-

ing function of the data very well.

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

X

Y

(a) underfitting

−1 −0.5 0 0.5 1
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(b) overfitting

−1 −0.5 0 0.5 1
−3
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−1
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1

2

X

Y

(c) good fit

Figure 2.1. Output of various models (red line), trained on a number of points (blue dots)
of the underlying function (green line) (van Heeswijk, 2009)

From these examples, it becomes clear that there is a trade-off between

accuracy of the model on the training set, and the generalization perfor-

mance of the model on the test set. Furthermore, there is an optimal

complexity of the model, for which the trained model generalizes well to

9
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the unseen test set.

In order to determine the optimal complexity, the expected generaliza-

tion error needs to be estimated, and it needs to be determined without

using the test set. Here, three approaches are discussed: validation, k-fold

cross-validation and leave-one-out cross-validation. See (Bishop, 2006)

and (Efron and Tibshirani, 1993) for more detailed information on model

(structure) selection methods.

2.2.3 Model selection methods

A good model performs well on the training set, and the input-output map-

ping that the model learned from the training set transfers well to the

test set. In other words, the model approximates the underlying function

of the data well and has good generalization.

How well a model generalizes can be measured in the form of the gener-

alization error. In case of a functional approximation problem, and using

an `2 loss function, the generalization error can be defined as

Egen(θ) = lim
N→∞

1

N

N∑
i=1

(yi − f(xi,θ))2 (2.5)

where N is the number of samples, xi is the d-dimensional input, θ con-

tains the model parameters, and yi is the output corresponding to input

vector xi.

Of course, in reality there is no infinite number of samples, but only

a limited amount of samples in the form of a training set and a test set,

consisting of samples that the model will be trained on and samples that

the model will be tested on, respectively. Therefore, the training set is to

be used to estimate the generalization performance, and thus the quality,

of a given model.

Below, three different methods are discussed that are often used in

model selection and the estimation of the generalization error of a model.

Validation In validation, part of the training set is set aside in order to

evaluate the generalization performance of the trained model. If the in-

dices of the samples in the validation set are denoted by val and the in-

dices of the samples in the full training set by train, then the estimation

of the generalization error is defined as

ÊVAL
gen (θ∗) =

1

|val|
∑
i∈val

(yi − f(xi,θ
∗
trainrval))

2 (2.6)

10



Machine learning

where θ∗trainrval denotes the model parameters trained on all samples that

are in the training set, but not in the validation set. Note that once

the validation procedure and model selection is completed, the model is

trained on the full training set.

The problem with this validation procedure is that it is not very reliable,

since a small part of the data is held out for validation, and it is unknown

how representative this sample is for the test set.

k-Fold cross-validation k-fold cross-validation is similar to validation,

except that the training set is divided into k parts (typically k = 10), each

of which is used as validation set once, while the rest of the samples are

used for training. The final estimation of the generalization error is the

mean of the generalization errors obtained in each of the k folds

ÊkCVgen (θ∗) =
1

k

k∑
s=1

 1

|vals|
∑
i∈vals

(yi − f(xi,θ
∗
trainrvals))

2

 (2.7)

where θ∗trainrvals denotes the model parameters trained on all samples

that are in the training set, but not in validation set vals.

Although k-fold cross-validation gives a better estimation of the gener-

alization error, it is computationally more intensive than validation, since

the validation is performed k times.

Leave-one-out cross-validation Finally, Leave-one-out (LOO)

cross-validation is a special case of k-fold cross-validation, namely the

case where k = N . The models are trained on N training sets, each of

which omits exactly one of the samples. The left-out sample is used for

validation, and the final estimation of the generalization error is the mean

of the N obtained errors

ÊLOOgen (θ∗) =
1

N

N∑
i=1

(f(xi,θ
∗
−i)− yi)2 (2.8)

where θ∗−i denotes the model parameters trained on all samples that are

in the training set except on sample i.

Due to the fact that better use is made of the training set, the LOO

cross-validation gives the more reliable estimate of the generalization er-

ror. Although the amount of computation for LOO cross-validation might

seem excessive, for linear models, a closed-form formula exists that can

compute all leave-one-out errors efficiently.

Leave-one-out computation using PRESS statistics Although it might seem

like a lot of work to compute the leave-one-out errors (i.e. N models would

11
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need to be trained), the leave-one-out errors of a linear model can be com-

puted efficiently from its residuals (i.e. the errors of the trained model

on the training set) through PRESS (Prediction Sum of Squares) statis-

tics (Allen, 1974; Myers, 1990)

PRESS =

N∑
i=1

(yi − xiβ−i)
2 =

N∑
i=1

(yi − ŷi,−i)2 =

N∑
i=1

(εi,−i)
2.

where εi,−i denotes the leave-one-out error when sample i is left out (also

known as the PRESS residual); yi denotes the target output specified by

sample i from the training set, and β−i denotes the weight vector obtained

when training the linear model on the training set with sample i left out.

The PRESS residuals εi,−i can be computed efficiently as follows

εi,−i =
εi

1− xi·(XTX)−1xTi·

=
yi − ŷi

1− xi·(XTX)−1xTi·

=
yi − xiβ

1− xi·(XTX)−1xTi·

=
yi − xiβ

1− hii
(2.9)

where xi· is the ith row of matrix X, hii is the ith element on the diago-

nal of the HAT matrix X(XTX)−1XT , which was already encountered in

Section 2.2.1.1. Therefore, the model only needs to be trained once on

the entire training set in order to obtain β, as well as the HAT matrix.

Once the model is trained, all the PRESS residuals can easily be derived

using Equation 2.9. Obviously, this involves a lot less computation than

training the model for all N possible training sets.

Although PRESS statistics define an efficient way to compute the leave-

one-out errors for linear models, this approach is not limited to models

that are linear in the input variables: e.g. it can also be used in models

that are linear in nonlinear transformations of the input variables, an

important class of which is Extreme Learning Machines.

12



3. Extreme Learning Machines

“Not all those who wander are lost.”

– J.R.R. Tolkien, Lord of the Rings

Extreme Learning Machines (ELMs) (Huang et al., 2004, 2006b) is the

name for a collection of neural network models, which employ randomiza-

tion of the hidden layer weights and a fast training algorithm. Typically,

instead of optimizing the hidden layer and output weights through an it-

erative algorithm like backpropagation (Rumelhart et al., 1986), ELMs

initialize the hidden layer randomly and training consists of solving the

linear system defined by the hidden layer outputs and the targets. Despite

the hidden layer weights being random, it has been proven that the ELM

is still capable of universal approximation of any non-constant piecewise

continuous function (Huang et al., 2006a; Huang and Chen, 2007, 2008).

Due to its speed and broad applicability, the ELM framework has become

very popular in the past decade.

The goal of this chapter is not to give an exhaustive overview of the en-

tire ELM literature, nor is the goal to include every single proposed ELM

variant. Rather, the goal is to give a birds-eye view of Extreme Learning

Machines; to put them in historical context; and to identify some of the

learning principles used. For example, an ELM variant might include L1

regularization, L2 regularization, or might be pre-trained in some way.

The amount of possible combinations of these learning principles (and

thus the number of ELM variants) increases rapidly, yet the number of

possible ways to optimize an ELM is relatively limited. The focus in this

chapter will be mainly on variants related to the models developed in this

thesis. For a more complete overview of ELM variants and applications,

the reader is referred to Huang et al. (2011, 2015).
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3.1 Historical context

The idea of randomization of the hidden layer of neural networks has

become very popular under the name Extreme Learning Machines and

the name has become associated with a vast assortment of different mod-

els and variants of neural networks with randomized weights, including

Single-Layer Feedforward Networks (SLFNs) (Huang et al., 2006b), ker-

nelized SLFNs (Frénay and Verleysen, 2010, 2011; Huang et al., 2010),

and deep architectures (Kasun et al., 2013).

The idea of randomization of the hidden layer in neural networks has

been proposed several times. For example, the Random Vector Functional

Link (RVFL) network (Pao and Takefuji, 1992; Pao et al., 1994; Igelnik

and Pao, 1995) incorporates random hidden layer weights and biases, and

direct connections between the input layer and output layer. Further-

more, several authors (Schmidt et al., 1992; te Braake and van Straten,

1995; te Braake et al., 1996; Chen, 1996; te Braake et al., 1997) intro-

duced neural networks with a randomly initialized hidden layer, trained

using the pseudo-inverse. This approach has also been used in the past

for initializing the weights of a neural network (Yam and Chow, 1995;

Yam et al., 1997; Yam and Chow, 2000) before training it with e.g. back-

propagation. Finally, more recently, (Widrow et al., 2013) proposed the

No-Prop algorithm, which has a random hidden layer and uses the LMS

algorithm for training the output weights, rather than the pseudo-inverse.

For an overview of how ELM compares to other methods incorporating

randomization, see (Wang and Wan, 2008; Huang, 2008, 2014).

Although the idea of randomization in neural networks appears else-

where, it cannot be denied that with the development of the Extreme

Learning Machine over the past decade, the idea and theory of using ran-

domization in neural networks has really come to fruition, and has been

developed into a framework (rather than a single method) covering many

machine learning methods, the uniting factor being the fact that some

sort of random basis expansion / randomized hidden layer is used. Along

with these methods, many theoretical and empirical results have been de-

veloped regarding the effectiveness of randomized features (Huang et al.,

2015).

14



Extreme Learning Machines

3.2 Standard ELM algorithm

The basic ELM algorithm for training Single-Layer Feedforward Neu-

ral Networks (SLFN) was first described in (Huang et al., 2006b). As

mentioned, the key idea of ELM is the random initialization of the hid-

den layer weights and the subsequent training consists of computing the

least-squares solution to the linear system defined by the hidden layer

outputs and targets. An overview of the structure of an ELM is given in

Figure 3.1 and the algorithm for training this network, as described in

(Huang et al., 2006b), can be summarized as follows.

input xj1

input xj2

input xj3

input xj4

output yj

Hidden

layer

Input

layer

Output

layer

Figure 3.1. A schematic overview of an ELM

Consider a set of N distinct samples (xi, yi) with xi ∈ Rd and yi ∈ R.

Then, the output of an SLFN with M hidden neurons can be written as

ŷj =

M∑
i=1

βif(wixj + bi), j ∈ [1, N ], (3.1)

where ŷj is its approximation to yj , f is the activation function, wi the

input weight vector, bi the hidden layer bias and βi the output weight

corresponding to the ith neuron in the hidden layer.

In case the SLFN would perfectly approximate the data (meaning the

error between the output ŷj and the actual value yj is zero), the relation

would be

M∑
i=1

βif(wixj + bi) = yj , j ∈ [1, N ], (3.2)

which can be written compactly as
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Hβ = Y, (3.3)

where H is the hidden layer output matrix defined as

H =


f(w1x1 + b1) · · · f(wMx1 + bM )

... . . . ...

f(w1xN + b1) · · · f(wMxN + bM )

 (3.4)

and β = (β1 . . . βM )T and Y = (y1 . . . yN )T . See Algorithm 1 for a summary

of the ELM algorithm.

Algorithm 1 Standard ELM
Given a training set (xi, yi),xi ∈ Rd, yi ∈ R, a probability distribution from

which to draw random weights, an activation function f : R 7→ R and M

the number of hidden nodes:

1: - Randomly assign input weights wi and biases bi, i ∈ [1,M ];

2: - Calculate the hidden layer output matrix H;

3: - Calculate output weights matrix β = H†Y.

The proposed solution to the equation Hβ = Y in the ELM algorithm,

as β = H†Y has three main properties making it an appealing solution:

1. It is one of the least-squares solutions to the mentioned equation, hence

the minimum training error can be reached with this solution;

2. It is the solution with the smallest norm among the least-squares solu-

tions;

3. The smallest norm solution among the least-squares solutions is unique

and is β = H†Y.

3.3 Theoretical foundations

The strength of the Extreme Learning Machine is the fact that there is

no need to iteratively tune of the randomly initialized network weights,

which makes it very fast. Yet, despite the hidden neurons not being tuned,

still an accurate network can be obtained.
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Interpolation theory In particular, with the notations from Section 3.2,

the Theorem presented in (Huang et al., 2006b) states that with randomly

initialized input weights and biases for the SLFN, and under the condition

that the activation function f is infinitely differentiable, then the hidden

layer output matrix can be determined and will provide an approximation

of the target values as good as wished (non-zero). Hence, the ELM can

interpolate any set of samples as good as wished.

Theorem 1. (Huang et al., 2006b). Given any small positive value ε > 0,

any activation function which is infinitely differentiable in any interval,

and N arbitrary distinct samples (xi,yi) ∈ Rd × Rm , there exists M < N

such that for any {wi,bi}Mi=1 randomly generated from any interval of Rd×
R, according to any continuous probability distribution, with probability

one, ‖Hβ −T‖ < ε . Furthermore, if M = N , then with probability one,

‖Hβ −T‖ = 0.

Universal approximation capability Besides being able to interpolate a fi-

nite set of samples, the ELM can also approximate any continuous target

function f as good as wished.

Theorem 2. (Huang et al., 2006a; Huang and Chen, 2007, 2008).

Given any nonconstant piecewise continuous function G : Rd → R, if

span
{
G(a, b,x) : (a, b) ∈ Rd×R

}
is dense in L2(Rd) (i.e. the space of func-

tions f on Rd which is a compact subset in the Euclidean space Rd such

that
´
Rd |f(x)|2dx <∞), then for any continuous target function f and any

function sequence {G(wi, bi,x)}Mi=1 randomly generated according to any

continuous sampling distribution, limM→∞ ‖f − fM‖ = 0 holds with prob-

ability one if the output weights βi are determined by ordinary least square

to minimize
∥∥∥f(x)−∑M

i=1 βiG(wi, bi,x)
∥∥∥.

3.4 Building a sound and robust architecture

Although the details of how an ELM is generated and trained differ be-

tween ELM schemes, most of these schemes can in some way be consid-

ered a variant of the following Algorithm 2, with the exact details of each

step varying between schemes. The goal of each of these schemes is opti-

mization of the hidden layer, such that as good as possible performance is

achieved in the context in which the ELM is applied.
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Algorithm 2 General structure of ELM schemes
Generate the ELM

• while not ready:

– Generate candidate neurons

– Select those candidate neurons that give the best value of some crite-

rion

Train the ELM

• determine optimal output weights training targets and outputs of the

hidden neurons from the generation step, using an optimization criteria

like least squares or a regularized version of it.

Three main approaches for optimizing the ELM structure can be iden-

tified: constructive approaches; pruning approaches; and regularization

approaches, as well as combinations of them.

The next subsections give an overview of these main approaches for

building a sound and robust architecture, as well as a method for pre-

training the ELM in order to optimize the amount of information the hid-

den layer neurons extract.

3.4.1 Incremental approaches

The incremental approach starts from a small network, and incrementally

grows the hidden layer by adding new neurons until a certain stopping

criterion is reached.

For example, the Incremental ELM (I-ELM) (Huang et al., 2006a) adds

neurons which reduce the residual error of the model so far obtained as

much as possible. While doing so, it only needs to train the weight for

the neuron added in the current step. The final network is the one which

achieves a certain target training error, or if it does not achieve that error

before reaching a specified network size, the network of that specified size.

The Convex Incremental ELM (CI-ELM) (Huang and Chen, 2007) im-

proves on the convergence speed of the I-ELM towards low-error models

through the use of a convex optimization method, and correcting (but not
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recomputing) the output weights with each incremental step.

As a final example, in the Error-Minimized ELM (EM-ELM) (Feng et al.,

2009), more than one neuron can be added at the same time to grow the

hidden layer. Additionally, the method has closed-form update rules for

the weights when adding the new neurons, making the growing step fast.

3.4.2 Pruning approaches

Contrary to incremental approaches, pruning approaches first generate a

larger than needed set of neurons. Given this set of candidate neurons,

what remains is picking the best subset ofM neurons for use in the SLFN.

In the Pruned ELM (Rong et al., 2008), a large set of candidate neu-

rons is generated and ranked according to statistical relevance, using the

χ2 criterion or the information-gain criterion. An optimal threshold for

this criterion is then determined using a separate validation set and the

Akaike Information Criterion (AIC) (Akaike, 1974), after which the net-

work is retrained on the entire training set.

The Optimally Pruned ELM (OP-ELM) (Miche et al., 2010) on the other

hand, exploits the fact that the ELM is linear in the output of the hidden

layer. This permits a fast and optimal ranking (in terms of training error)

of the candidate neurons, using Least Angle Regression (LARS) (Efron

et al., 2003), or Multiresponse Sparse Regression (MRSR) (Similä and

Tikka, 2005). Once ranked, the optimal prefix of the sorted list of neu-

rons is determined using the leave-one-out error, which can be efficiently

computed using PRESS statistics (Allen, 1974; Myers, 1990).

Although the term ’pruned’ suggest that the network architecture is be-

ing built starting from the largest network, and neurons are removed one-

by-one, in fact the above approaches are quite similar to the incremental

approach. The difference is that instead of randomly generating new neu-

rons at each step, the entire candidate list of neurons is generated and

ranked as a first step in the algorithm, and the neurons to be added are

taken from that ranked candidate list of neurons. Therefore, the differ-

ence between the incremental and pruning approach is not that clear-cut.

For example, a recently proposed variant of the OP-ELM (which adds a

number of regressors in each step of an MRSR-like algorithm, rather than

a single one) was called the Constructive Multi-output ELM (Wang et al.,

2014).
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3.4.3 Regularization approaches

As an alternative to selecting the subset of hidden neurons, it is also pos-

sible to generate a large enough set of hidden neurons, and prevent over-

fitting by properly regularizing the network.

The Regularized ELM (R-ELM) (Deng et al., 2009) for example, is an

approach in which the set of candidate neurons is fixed and taken large

enough, while L2 regularization is used to prevent overfitting.

Finally, the Tikhonov Regularized OP-ELM (TROP-ELM) (Miche et al.,

2011) is a variant of the OP-ELM, which efficiently incorporates the opti-

mization of an L2 regularization parameter in the OP-ELM by integrat-

ing it in the SVD approach to computing pseudo-inverse H†. This way,

besides the advantage of sparsity, the output weights remain small and

overfitting is prevented.

3.4.4 ELM pre-training

As it is extensively used in Publication V and Publication VI, in this sec-

tion reviews intrinsic plasticity, as well as its adaptation to ELM (BIP-

ELM) by (Neumann and Steil, 2011, 2013).

3.4.4.1 Motivation

Although ELMs are universal approximators, since often there are only

limited training samples available. Therefore, it is important that the

hidden layer neurons extract as much information as possible from the

inputs.

A recently proposed pre-training method that achieves this is Batch In-

trinsic Plasticity (BIP) (Neumann and Steil, 2011, 2013), which makes

the ELM more robust by adapting the randomly generated hidden layer

weights and biases such that each neuron achieves an exponential output

distribution with a specified mean, and the amount of information that

the hidden layer extracts from the limited amount of training samples is

optimized.

Furthermore, the mechanism of intrinsic plasticity is one that is orthog-

onal to all the above-mentioned approaches. Namely, it generally takes

place right after generating the random weights of the neurons, and its re-

sult is subsequently used in the further optimization, pruning and train-

ing of the ELM. As such, it can be used in combination with most other

ELM approaches.
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3.4.4.2 Intrinsic Plasticity

The concept of intrinsic plasticity has a biological background and refers

to the fact that neurons adapt in such a way that they maximize their

entropy (and thus the amount of information transmitted), while keeping

the mean firing rate low. Intrinsic plasticity has been first used in papers

regarding reservoir computing, recurrent neural networks, liquid state

machines and echo state networks as a learning rule which maximizes

information transmitted by the neurons (Triesch, 2005a,b; Verstraeten

et al., 2007).

The information transmission of neurons is maximized by having the

neuron outputs approximate an exponential distribution, which is the

maximum entropy distribution among all positive distributions with fixed

mean (Steil, 2007).

Furthermore, as (Verstraeten et al., 2007) notes in the context of reser-

voir computing, reservoirs are constructed in a stochastic manner, and

the search for a method to construct a priori suitable reservoirs that are

guaranteed or likely to offer a certain performance is an important line of

research. Intrinsic plasticity is such a method which aims at construct-

ing a network which is likely to give good performance. The recent study

(Neumann et al., 2012) provides an in-depth analysis of intrinsic plastic-

ity pre-training, and shows that it indeed results in well-performing net-

works with an impressive robustness against other network parameters

like network size and strength of the regularization.

3.4.4.3 (Batch) Intrinsic Plasticity: BIP-ELM

In (Neumann and Steil, 2011, 2013; Neumann, 2013) the principle of in-

trinsic plasticity is transferred to ELMs and introduced as an efficient

pre-training method, aimed at adapting the hidden layer weights and bi-

ases, such that the output distribution of the hidden layer is shaped like

an exponential distribution. The motivation for this is that the exponen-

tial distribution is the maximum-entropy distribution over all distribu-

tions with fixed mean, maximizing the information transmission through

the hidden layer. The only parameter of batch intrinsic plasticity is the

mean of exponential distribution. This parameter determines the exact

shape of the exponential distribution from which targets will be drawn,

and can be set in various ways, as explained below.

Following (Neumann and Steil, 2011), the algorithm can be summarized

as described as below.
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Given the inputs (x1, . . . ,xN ) ∈ RN×d and input matrix Win ∈ Rd×M

(with N the number of samples in the training set, d the dimensionality

of the data, and M the number of neurons), the synaptic input to neu-

ron i is given by si(k) = xkW
in
·i . Now, it is possible to adapt slope ai and

bias bi, such that the desired output distribution is achieved for neuron

output hi = f(aisi(k) + bi). To this end, for each neuron random targets

t = (t1, t2, . . . , tN ) are drawn from the exponential distribution with a par-

ticular mean, and sorted such that t1 < · · · < tN . The synaptic inputs to

the neuron are sorted as well into vector si = (si(1), si(2), . . . , si(N)), such

that si(1) < si(2) < · · · < si(N).

Given an invertible transfer function, the targets can now be propagated

back through the hidden layer, and a linear model can be defined that

maps the sorted si(k) as closely as possible to the sorted tk. To this end,

a model Φ(si) = (sTi , (1 . . . 1)T ) and parameter vector vi = (ai, bi)
T are

defined. Then, given the invertible transfer function f the optimal slope

ai and bias bi for which each si(k) is approximately mapped to tk can be

found by minimizing

||Φ(si) · vi − f−1(t)||

The optimal slope ai and bias bi can therefore, like in ELM, be determined

using the Moore-Penrose pseudo-inverse:

vi = (ai, bi)
T = Φ†(si) · f−1(t)

This procedure is performed for every neuron with an invertible transfer

function, and even though the target distribution can often not exactly be

matched (due to the limited degrees of freedom in the optimization prob-

lem) it has been shown in (Neumann and Steil, 2011, 2013; Neumann,

2013) that batch intrinsic plasticity is an effective and efficient scheme

for input-specific tuning of input weights and biases used in the non-linear

transfer functions.

The stability of BIP-ELM combined with ridge regression like in the R-

ELM (Deng et al., 2009) essentially removes the need to tune the amount

of hidden neurons, and the only parameter of batch intrinsic plasticity is

the mean of the exponential target distribution from which targets t are

drawn, which is either set to a fixed value c, or randomly in the interval

[0, 1] on a per-neuron basis (Neumann and Steil, 2011, 2013; Neumann,

2013). These variants will be referred to as BIP(c)-ELM and BIP(rand)-

ELM in this thesis.
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3.5 Other ELM approaches

Besides the above-mentioned approaches, several other approaches have

been developed over the past years, extending the ELM framework to dif-

ferent types of models, namely kernelized ELM (Frénay and Verleysen,

2010, 2011; Huang et al., 2010; Parviainen et al., 2010), multiple kernel

ELM (Liu et al., 2015), representation learning using ELM (Kasun et al.,

2013), ELMs with shaped input weights (Tapson et al., 2014; McDonnell

et al., 2014), and semi-supervised and unsupervised ELM (Huang et al.,

2014). More details on these methods can be found in the cited references,

or in (Huang et al., 2015).

Furthermore, randomization ideas akin to ELM are increasingly being

used in modern kernel methods, in order to let them scale to larger data,

namely Random Kitchen Sinks (Rahimi and Recht, 2007, 2008), and Fast-

food (Le et al., 2013).

3.6 ELM in practice

In theory, random initialization of the hidden layer and use of any non-

constant piecewise continuous transfer function is sufficient for approxi-

mating any function, given enough neurons. In practice, however, there

are a number of practical strategies that can be used for obtaining more

accurate and effective ELMs. This section lists some of those practical

tips for building a more effective ELM.

Normalization and pre-training As is well-known, data should be normal-

ized such that each variable is zero-mean and unit-variance (or scaled to

e.g. interval [−1, 1] . In practice, the former approach is more robust, since

it is not as sensitive to outliers.

The range and number of input variables, together with the random

weights of an ELM, will result in an expected activation at the input of

each neuron, and one should make sure that e.g. the sigmoid neuron is

not always operating in the saturated or linear region. For example, by

letting the parameters of the probability distribution from which the ran-

dom layer weights and biases are drawn depend on the number of inputs

and transfer function, or by cross-validating them to optimize accuracy.

Another fast option is to use the Batch-Intrinsic Plasticity pre-training

from Section 3.4.4, which automatically adapts the randomly drawn hid-

den layer weights and biases, such that each neuron operates in a useful
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regime.

Approximating the constant component In the non-kernel version of ELM,

it might be helpful to include a bias in the output layer (i.e. achieved by

concatenating the H matrix with a column of ones). Although this output

bias is often not included in the description of the ELM since theoretically

it is not needed, it allows the ELM to adapt to any non-zero mean in the

targets at the expense of only a single extra parameter, namely the extra

output weight.

Approximating the linear component Furthermore, in most problems, it

is helpful to include a linear neuron for each input variable. This way,

the rest of the nonlinear neurons can focus on fitting the nonlinear part

of the problem, while the linear neurons take care of the linear part of

the problem. Equivalently, an ELM could be trained on the residual of

a linear model. This approach of decomposing the problem into a linear

part and a nonlinear part has proven to be very effective in the context of

deep learning (Raiko and Valpola, 2012).
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4. Ensemble learning

“The only way of discovering the limits of the possible is to venture

a little way past them into the impossible.”

– Arthur C. Clarke

When discussing ensemble models it is helpful to look at a real-world

example first. At fairs and exhibitions, sometimes there are these contests

where the goal is to guess the number of marbles in a vase, and the person

who makes the best guess wins the price. It turns out that while each

individual guess is likely to be pretty far off, the average of all guesses is

often a relatively good estimate of the real number of marbles in the vase.

This phenomenon is often referred to as ’wisdom of the crowds’.

A similar strategy is employed in ensemble models: a number of individ-

ual models is built to solve a particular task, and these models are then

combined into an ensemble model. Although the individual models might

vary a lot in terms of accuracy, the combination gives a more accurate

result.

This chapter introduces ensemble models, and the ELM-based ensemble

models developed in this thesis, which make the ensemble adaptive to

changes in the environment (Publication I) and allow them to scale to

larger data (Publication II).

4.1 Ensemble Models

An ensemble model or committee (Bishop, 2006), combines multiple indi-

vidual models, with the goal of reducing the expected error of the model.

Commonly, this is done by taking the average or a weighted average of

the individual models (see Figure 4.1).

Ensemble methods rely on having multiple good models with sufficiently

uncorrelated errors. The simplest way to build an ensemble model is to
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model1x

· · ·x

modelmx

Σ ŷens(t)

models ensemble

w1ŷ1(t)

wmŷm(t)

Figure 4.1. A schematic overview of how models can be combined in an ensemble (van
Heeswijk, 2009)

take the average of the individual models (e.g. Figure 4.1, with w1 = · · · =
wm = 1

m ). In this case the output of the ensemble model becomes:

ŷens =
1

m

m∑
i=1

ŷi, (4.1)

where ŷens is the output of the ensemble model, ŷi are the outputs of the

individual models and m is the number of models.

Now, following (Bishop, 2006), and assuming that the models are unbi-

ased (i.e. absolute errors are zero-mean) and make independent errors, it

can be shown that the variance of the ensemble model is lower than the

average variance of all the individual models.

4.1.1 Error reduction by taking simple average of models

Suppose y denotes the true output to predict and ŷi is the estimation of

model i for this value. Then, the output ŷi of model i can be written as the

true value y plus some error term εi

ŷi = y + εi, (4.2)

and the expected error of the model is simply the mean square error

E[
{
ŷi − y

}2
] = E[ε2i ]. (4.3)

Now, define the average mean square error made by the models by

Eavg =
1

m

m∑
i=1

E[ε2i ]. (4.4)

Similarly, define the expected error of the ensemble as defined in Equa-

tion 4.1 by

Eens = E
[{ 1

m

m∑
i=1

(ŷ − y)
}2]

= E
[{ 1

m

m∑
i=1

εi

}2]
. (4.5)
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Then, assuming the errors εi are uncorrelated (i.e. E[εiεj ] = 0) and are

zero-mean (i.e. E[εi] = 0), the expected ensemble error can be written as

Eens =
1

m
Eavg =

1

m2

m∑
i=1

E[ε2i ], (4.6)

which suggests a great reduction of the error through ensembling. These

equations assume completely uncorrelated errors between the models,

while in practice errors tend to be highly correlated. Therefore, errors

are often not reduced as much as suggested by these equations. It can be

shown though that Eens < Eavg always holds (Bishop, 2006), so through

ensembling, the test error of the ensemble is expected to be smaller than

the average test error of the models.

Note however, that it is not a guarantee that the ensemble is more ac-

curate than the best model in the ensemble, but only as accurate as the

models, on average. Therefore, besides being as independent as possible,

it is important that the models used to build the ensemble are sufficiently

accurate.

4.1.2 Ensemble weight initialization

Besides taking a simple average of the models, it is also possible to take

a weighted linear combination based on some criterion that measures the

quality of the models.

Two different ensemble weight initializations are investigated in the

publications in this thesis: uniform weight initialization (Publication I)

and leave-one-out weight initialization (Publication II).

Uniform weight initialization For initialization of the ensemble model, each

of the individual models is trained on a given training set, and initially

each model contributes with the same weight to the output of the ensem-

ble. This will be referred to as uniform weight initialization.

Leave-one-out weight initialization As an alternative to uniform weight

initialization, the initial weights can be based on the leave-one-out output

of the models on the training set, like in Breiman (1996b). This will be

referred to as leave-one-out weight initialization.

Using Equation 2.9, for a any model that is linear in the parameters

(like ELM), the leave-one-out errors can be efficiently computed. There-

fore, the leave-one-out outputs (i.e. the estimations of the sample that is

left out in each of the N folds) can be obtained efficiently as well, given

the leave-one-out errors and the true targets.
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Finally, the initial ensemble weights are obtained by fitting a non-negative

linear combination of the leave-one-out outputs for allmmodels to the tar-

get outputs. Using this procedure, models that have bad generalization

performance get relatively low weight, while models with good general-

ization performance get higher weights.

4.1.3 Ensembling strategies

It was shown in (Hansen and Salamon, 1990), that through combining

multiple neural networks, accuracy can be improved as compared to the

individual neural networks. Since, several strategies have been proposed

for building ensembles. In mixture of experts (Jacobs et al., 1991), sev-

eral models are built, each of which specializes on part of the problem

domain. The weights of the ensemble model depend on the part of the

domain in which a prediction is required. In stacking (Wolpert, 1992) and

boosting (Freund and Schapire, 1996; Schapire et al., 1998), the models

are built in sequence, taking into account the performance of the earlier

built models, in order to improve on them. In bootstrap aggregating, or

bagging (Breiman, 1996a), on the other hand, diversity between the mod-

els is obtained by training them on re-sampled versions of the training

set, while in stacked regressions (Breiman, 1996b), leave-one-out cross-

validation is used to obtain the ensemble weights. Finally, in (Liu and Yao,

1999) accuracy of a neural network ensemble is enhanced through nega-

tive correlation learning, which promotes diversity between the neural

networks. For an overview of ensemble methods in general, see (Bishop,

2006; Murphy, 2012).

In the next section, adaptive ensemble models, and the contributions

made in this thesis are discussed.

4.2 Adaptive ensemble models

When solving a particular regression or classification problem, it is of-

ten unknown in advance what the optimal model class and structure is.

One alternative for selecting the optimal model class or structure would

be through validation, cross-validation or leave-one-out validation, as dis-

cussed in Section 2.2.2. However, it is not guaranteed that the model se-

lected based on a set of training samples will be the best model for newly
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obtained samples. For example, in a nonstationary context where the

i.i.d. assumption does not hold and the information gathered from past

samples can become inaccurate.

One strategy for handling nonstationarities would be to keep learning

as new samples become available. For example, by retraining the model

repeatedly on a finite window into the past such that it ’tracks’ the non-

stationarity.

Another strategy for adapting to nonstationarities is to use a strategy

similar to (Jacobs et al., 1991), but instead of letting the linear combi-

nation of models depend on the part of the input space, let the linear

combination directly depend on the accuracy of the models.

4.2.1 Adaptive ensemble model of ELMs

In Publication I, both strategies are investigated in one-step ahead predic-

tion on both stationary and nonstationary time series, in which the next

value of the time series is predicted, given all its past values.

Besides the already mentioned advantages of ensemble models over sin-

gle models, this allows for adaptivity of the ensemble model to environ-

mental changes.

Related Work The retraining of the ELMs in this ensemble is similar to

the Online Sequential ELM (OS-ELM) (Liang et al., 2006), the important

difference being that contrary to OS-ELMs, Publication I also provides

a way to incrementally remove samples from the trained model. Fur-

thermore, compared to the ensemble of OS-ELM (EOS-ELM) (Lan et al.,

2009), which was introduced around the same time as Publication I, the

adaptive ensemble adjusts the linear combination to optimize ensemble

accuracy.

Both the ability to train on sliding windows, and the adaptive ensemble

weights turn out to be an important contribution in the nonstationary

environments, in which online sequential learning is typically applied.

Initializing the adaptive ensemble model The adaptive ensemble model

consists of a number of randomly generated ELMs, which each have their

own parameters. Because of the stochastic nature of the ELM, they are

diverse in nature and will have different biases and input layer weights.

To further increase diversity between the models, each ELM is built us-

ing different regressor variables; different regressor size; and different

number of hidden neurons. Uniform weight initialization is used for the
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Algorithm 3 Adaptive Ensemble of ELMs (Publication I)
Given (x(t), y(t)), x(t) ∈ Rd, y(t) ∈ R, and m models:

1: Create and train m random ELMs: (ELM1 . . .ELMm)

2: Initialize each wi to 1
m

3: while t < tend do

4: generate predictions ŷi(t+ 1)

5: ŷens(t+ 1) =
∑

iwiŷi(t+ 1)

6: t = t + 1

7: compute all errors→ εi(t− 1) = ŷi(t− 1)− y(t− 1)

8: for i = 1 to #models do

9: ∆wi = −εi(t− 1)2 +mean(ε(t− 1)2)

10: ∆wi = ∆wi · α/(#models · var(y))

11: wi = max(0, wi + ∆wi)

12: Retrain ELMi

13: end for

14: renormalize weights→ w = w/ ||w||
15: end while

ensemble weights.

Adapting the linear combination of models On the one hand, a number of

different models are combined in a single ensemble model and the weights

with which these models contribute to the ensemble are adapted based on

their performance (see Algorithm 3 for details). The speed of the change

can be controlled by a learning rate α.

The idea behind the algorithm is that as the time series changes, a dif-

ferent model will be more optimal to use in prediction. By monitoring the

errors that the individual models in the ensemble make, a higher weight

can be given to the models that have good prediction performance for the

current part of the time series, and a lower weight can be given to the

models that have bad prediction performance for the current part of the

time series.

Figure 4.2 illustrates the resulting adaptation of the ensemble weights,

during the task of one-step ahead prediction on two different time series.

Retraining the models On the other hand, Publication I explores the ef-

fect of different ways of retraining the models as new data becomes avail-

able: before making a prediction for time step t, each model is either re-

trained on a past window of n values (xi, yi)
t−1
t−n (sliding window), or on

all values known so far (xi, yi)
t−1
1 (growing window), using the recursive
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Figure 4.2. Plots showing part of the ensemble weights wi adapting over time during
sequential prediction on (a) Laser time series and (b) Quebec Births time
series (learning rate=0.1, number of models=10) (Publication I)

least-squares algorithm as defined by (Bierman, 1977; Bontempi et al.,

1998).

Through this algorithm samples can be incrementally added to an al-

ready trained linear model, which will result in the linear model that

would have been obtained, had it been trained on the modified training

set. Since an ELM is essentially a linear model of the responses of the

hidden layer, it can be applied to (re)train the ELM quickly in an incre-

mental way on a sliding window or a growing window and it can adapt.

Adding a sample to a linear model Suppose a linear model is trained on

k samples of dimension d, with solution β(k), and have P(k) = (XTX)−1,

which is the d × d inverse of the covariance matrix based on k samples,

then the solution of the model with added sample (x(k + 1), y(k + 1)) can

be obtained by

P(k + 1) = P(k)− P(k)x(k+1)xT (k+1)P(k)
1+xT (k+1)P(k)x(k+1)

,

γ(k + 1) = P(k + 1)x(k + 1),

ε(k + 1) = y(k + 1)− xT (k + 1)β̂(k),

β̂(k + 1) = β̂(k) + γ(k + 1)ε(k + 1)

(4.7)

where x(k + 1) is a 1× d vector of input values, β(k + 1) is the solution to

the new model and P(k + 1) is the new inverse of the covariance matrix

on the k + 1 samples (Bierman, 1977; Bontempi et al., 1998).

Removing a sample from a linear model Similarly, a sample can be re-

moved from the training set of a linear model giving the linear model that

would have been obtained, had it been trained on the modified training

set. In this case, the new model with removed sample (x(k), y(k)) can be

obtained by
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γ(k − 1) = P(k)x(k),

ε(k − 1) = y(k)− x(k)β̂(k)
1−xT (k)P(k)x(k)

,

P(k − 1) = P(k)− P(k)x(k)xT (k)P(k)
1+xT (k)P(k)x(k)

,

β̂(k − 1) = β̂(k)− γ(k)ε(k)

(4.8)

where β(k − 1) is the solution to the new model and P(k − 1) is the new

inverse of the covariance matrix on the k − 1 samples (Bierman, 1977;

Bontempi et al., 1998; van Heeswijk, 2009).

4.2.2 Experiments

In the experiments of Publication I, the adaptive ensemble model of Ex-

treme Learning Machines (ELMs) is applied to the problem of one-step

ahead prediction on both stationary and nonstationary time series. It is

verified that the method works on stationary time series, and the adap-

tivity of the ensemble model is verified on nonstationary time series.

Data The stationary data used in the experiments is the Santa Fe Laser

Data time series (Weigend and Gershenfeld, 1993), which has been ob-

tained from a far-infrared-laser in a chaotic state. This time series has

become a well-known benchmark in time series prediction since the Santa

Fe competition in 1991. It consists of approximately 10000 points. The

non-stationary data used in the experiments is The Quebec Births time

series1, which records the number of daily births in Quebec over the pe-

riod of January 1, 1977 to December 31, 1990. It consists of approximately

5000 points, is nonstationary and more noisy than the Santa Fe Laser

Data.

Experimental parameters The adaptive ensemble model is trained on the

first 1000 values of the time series, after which sequential one-step ahead

prediction is performed on remaining values. This experiment is repeated

for various combinations of learning rate α and number of models in the

ensemble. Each ELM has a regressor size (of which a number of variables

are randomly selected) and between 150 and 200 hidden neurons with a

sigmoid transfer function. See Publication I for more details.

Effect of number of models and learning rate on accuracy

1http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/misc/qbirths.
dat
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Stationary data Figure 4.3 shows the effect of the number of models and

the learning rate, which controls how quickly the ensemble weights adapt,

on the prediction accuracy in the stationary case. It can be seen that the

number of models strongly influences the prediction accuracy and that at

least 40 models are needed to get good prediction accuracy. Furthermore,

despite the data being stationary, it can be seen that a non-zero learn-

ing rate helps in adapting the linear combination of the models for op-

timal performance, presumably because the uniform initialization of the

ensemble weights is sub-optimal.

Nonstationary data Figure 4.4 shows the effect of the number of mod-

els and the learning rate on the prediction accuracy in the nonstationary

case. Again, it can be seen that the number of models strongly influences

the prediction accuracy and that, compared to the stationary case, more

models are needed to get good prediction accuracy.

Effect of retraining strategy on accuracy The influence of the various

(re)training strategies can be found in Table 4.1.

As is to be expected, for the stationary data, optimal results are ob-

tained for retraining on a growing window. For the nonstationary data, as

expected, a sliding window is optimal.

Discussion In general, the results of Publication I suggest the following

strategy for obtaining robust models:

1. the more models are included in the ensemble, the more accurate it

generally is (although there are diminishing returns).

2. a small learning rate of around 0.1 is optimal.

3. individual models should be retrained according to expectations/expertise.

The retraining strategy of the individual models affects the accuracy and

often it is not known whether data is stationary or nonstationary, nor

is the optimal sliding window size known. Future work could therefore

include the investigation of ensembles consisting of models with varying

retraining strategies and window sizes. Furthermore, to save computa-

tional resources, models that contribute little to the accuracy of the en-

semble could be pruned. Vice versa, new models could be added to the

ensemble when needed.
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Figure 4.3. MSEtest of ensemble on Santa Fe Laser Data time series for varying num-
ber of models (no window retraining, learning rate 0.1), and as a function
of learning rate (no window retraining), for 10 models (dotted line) and 100
models (solid line)
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Figure 4.4. MSEtest of ensemble on Quebec births time series for varying number of
models (no window retraining, learning rate 0.1), and as a function of learn-
ing rate (no window retraining), for 10 models (dotted line) and 100 models
(solid line)

retraining

learning rate none sliding growing

laser 0.0 24.80 33.85 20.99

0.1 17.96 27.30 14.64

qbirths 0.0 585.53 461.44 469.79

0.1 567.62 461.04 468.51

Table 4.1. MSEtest of ensemble of 100 ELMs for laser (training window size 1000)
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4.3 GPU-accelerated and parallelized ELM ensembles

A big advantage of ensemble models is their modularity. Publication II ex-

ploits this modularity of ensembles and presents an ensemble of GPU-

accelerated ELMs, that is accelerated in three distinct ways:

1. multiple individual models are trained in parallel across multiple graph-

ics processor units (GPUs) and CPU cores.

2. the training and model structure selection procedures are accelerated

by using the GPU.

3. the model structure selection is performed in an efficient way by use

of PRESS statistics, while explicitly computing and reusing the pseudo-

inverse of H†, where His the hidden layer output matrix.

Experiments show that competitive performance is obtained on the re-

gression tasks, and that the GPU-accelerated and parallelized ELM en-

semble achieves attractive speedups over using a single CPU. Further-

more, the proposed approach is not limited to a specific type of ELM and

can be employed for a large variety of ELMs. The next sections will high-

light the contributions and experimental results of Publication II.

4.3.1 Parallelization across multiple cores

Σ

ELM1

ELM2

ELM100

X

X

X

α1 ≥ 0

α2 ≥ 0

α100 ≥ 0

yloo2

yloo100

Ŷ

yloo1

Figure 4.5. Block diagram showing the overall setup of the ensemble of ELMs. (Publica-
tion II)

Figure 4.5 illustrates the ELM ensemble of Publication II, and it can be

seen that the ELMs in the ensemble can be built independently. There-

fore, the running time of the ensemble can be optimized by dividing the
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ELMs across multiple CPUs and GPUs and preparing them in parallel.

This is achieved using MATLAB’s Parallel Computing Toolbox (Math-

Works, 2011), which allows the creation of a pool of so-called MATLAB

workers. Each of the workers runs its own thread for executing the pro-

gram, and gets its own dedicated GPU assigned to it, which is used to

accelerate the training and model structure selection that has to be per-

formed for each model. As an example, in case of an ensemble of 100

ELMs and 4 workers, each of the workers builds 25 ELMs.

Although in Publication II the parallelized ensemble model was not exe-

cuted across multiple computers, it can be executed on multiple computers

by using the MATLAB Distributed Computing Toolbox, for which at the

time of writing Publication II no license was available.

4.3.2 GPU-acceleration of required linear algebra operations

Since the running time of the ELM algorithm largely consists of a single

operation (solving the linear system), it is the prime target for optimizing

the running time of the ELM. If this operation can be accelerated, then

the running time of each ELM (and thus of the ensemble) can be greatly

reduced. In this work, this operation is performed on the GPU.

Available libraries There exist several software libraries aimed at speed-

ing up a subset of the linear algebra functions found in LAPACK (Ander-

son et al., 1999):

• CULA Tools (Humphrey et al., 2010): a library introduced in October

2009, implementing a subset of LAPACK functions. It was the first

widely available GPU-accelerated linear algebra package, and devel-

oped in cooperation with NVidia. Because of NVidia’s investment in

general-purpose GPU computing, this library is likely to remain well-

supported. The free variant of this package contains functions for solv-

ing a linear system (culaGesv), and for computing the least-squares so-

lution to a linear system (culaGels).

• MAGMA (Agullo et al., 2009): a linear algebra package, developed by

the creators of the widely used LAPACK, aiming at running linear al-

gebra operations on heterogeneous architectures (i.e. using both multi-

core CPU and multiple GPUs present on the system, in order to solve a

single problem).
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function name description runs on

mldivide solve linear system (MATLAB) CPU

gesv solve linear system (LAPACK) CPU

gels least-square solve (LAPACK) CPU

culaGesv solve linear system (CULA) GPU

culaGels least-square solve (CULA) GPU

Table 4.2. An overview of the various functions used. (Publication II)

Solving linear systems on CPU vs GPU In Publication II, CULA Tools

is used for accelerating the linear algebra operations. Specifically, the

(culaGesv) and (culaGels) functions are used, and wrappers around these

functions were written, such that they can be used from MATLAB in the

training and model structure selection of the ELM. Similar functions are

offered by MATLAB and its underlying LAPACK library.

Relevant functions An overview of all the functions used in Publication

II can be found in Table 4.2. Since in Publication II all linear systems are

fully determined, and involve square regressor matrices, the functions

give exactly the same result and only vary in running time.

Single vs. double-precision Even though double-precision calculations

are possible on GPU, they are faster at performing single-precision cal-

culations. In particular, for the NVidia GTX295 cards that were used

in Publication II, the single-precision performance is 8 times higher than

the double-precision performance. In NVidia’s latest generation of video

cards, this gap in performance is smaller, but still existent. Therefore,

it is beneficial to use single-precision calculations wherever numerically

possible.

Performance comparison In order to get an idea of the running time of

the function culaGels, it is compared with MATLAB’s commonly used

mldivide (also known as \), as well as with the gels function from MAT-

LAB’s underlying highly optimized multi-threaded LAPACK library2. For

a fair comparison, and since on the CPU the performance in single-precision

is about twice the double-precision performance, the functions are com-

pared in both single-precision and double-precision.

Figure 4.6a and Figure 4.6b summarize the results. As expected, it can

be seen that the precision greatly affects the performance. Also, MAT-

2MATLAB r2009b was used, which utilizes the highly optimized MKL library by
Intel on the Core i7 920 used for the experiments.
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(a) Time (s) needed to solve linear system in double-precision (solid

lines) and single-precision (dashed lines).
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(b) Speedup of culaGels over other functions in double-precision (solid

lines) and single-precision (dashed lines).

Figure 4.6. Performance comparison of functions for solving a linear system of 5000 sam-
ples and one target variable: mldivide (light-gray lines), gels (gray lines),
culaGels (black line) (Publication II).

LAB’s underlying LAPACK function gels perform much better than the

commonly used mldivide. Finally, the GPU-accelerated function culaGels

offers the fastest performance of all.

Finally, for square matrices, culaGesv and gesv (not pictured) are slightly

faster than gels and culaGels and are therefore used in Publication II for

slightly higher performance.

4.3.3 Efficient leave-one-out computation

Model structure selection allows for determining the optimal structure

for the ELM model, where by optimal structure often the number of hid-

den neurons is meant. Besides the number of hidden neurons, also other

parameters of the ELM and the used training algorithm can be cross-

validated this way. This is done using a criterion which estimates the
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model generalization capabilities for the varying numbers of neurons in

the hidden layer and the different other possible values for model param-

eters considered.

Minimal overhead in LOO computation by re-using pseudo-inverse Recall

from Equation 2.9, that the HAT matrix needed in the computation of the

leave-one-out error largely consists of the Moore-Penrose generalized in-

verse of the regressor matrix. Using the notations of ELM, HAT = HH†.

Therefore, instead of just computing the solution to the linear system

while training the ELM, combined training and leave-one-out computa-

tion can be optimized by using a method that explicitly computes H†. The

H† computed during training can then be reused in the computation of

the leave-one-out error.

Furthermore, since only the diagonal of the HAT-matrix is needed, it is

sufficient to compute only the diagonal by taking the row-wise dot-product

between H and H†T , and it is not needed to compute HH† in full. There-

fore, the computation of the leave-one-out error then comes at a very low

overhead once the pseudo-inverse is already computed.

Figure 4.7 illustrates this by comparing the running times for train-

ing and combined training and leave-one-out computation. It can be seen

that although by explicitly computing H†, the training procedure becomes

somewhat slower, due to the re-use of H† in the leave-one-out-computation,

combined training and leave-one-out computation can be done about as

fast as just training the model.

Incidentally, because leave-one-out cross-validation virtually comes for

free after training, it is a great alternative to using information criteria

like AIC (Akaike, 1974) and BIC (Schwarz, 1978), which are often used in

situations where cross-validation would be prohibitively slow.

The algorithm for fast training and leave-one-out-based model structure

selection of ELM can then be summarized as in Algorithm 4. Although

this particular example is for cross-validating the number of hidden neu-

rons, the same approach can be used when cross-validating for other com-

binations of model parameters. Also, in case the neurons would be sorted

by relevance first, the algorithm corresponds to OP-ELM (Miche et al.,

2010). In case also an L2-regularization parameter is optimized at each

number of neurons considered, this corresponds to TROP-ELM (Miche

et al., 2011).
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Figure 4.7. Comparison of running times of ELM training (solid lines) and ELM train-
ing + leave-one-out-computation (dotted lines), with (black lines) and without
(gray lines) explicitly computing and reusing H† (Publication II)

Algorithm 4 Efficient LOO cross-validation of the number of neurons for

an ELM (Publication II)
Given a training set (xi, yi),xi ∈ Rd, yi ∈ R, an activation function f : R 7→
R and ℵ = {n1, n2, . . . , nmax} defining set of possible numbers of hidden

neurons.

1: Generate the weights for the largest ELM:

2: - Randomly generate input weights wi and biases bi, i ∈ [1, nmax];

3: for all nj ∈ ℵ do

4: Train the ELM:

5: - Given the input weights and biases for the first nj neurons;

6: - Calculate the hidden layer output matrix H;

7: - Calculate H† by solving it from (HTH)H† = HT ;

8: - Calculate output weights matrix β = H†Y;

9: Compute Eloo:

10: - Compute diag(HAT) (row-wise dot-product of H and H†T );

11: - Eloo,j =
1

M

∑M
i=1

yi − ŷi
1− hatii

;

12: end for

13: As model structure, select the ELM with that number of hidden neu-

rons nj ∈ ℵ, which minimizes Eloo,j ;

4.3.4 Experiments

In Publication II, an ensemble model of ELMs is built for solving two

relatively large regression problems based on one-step-ahead time series

prediction. The model structure selection and training of the ELMs is ac-

celerated using GPU, and the construction of the ensemble is parallelized
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by distributing the work over multiple CPUs and GPUs. The influence of

the GPU-acceleration and parallelization is measured, and scalability of

the approach is verified on two data sets.

Data The first data set is again the Santa Fe Laser Data time series

(Weigend and Gershenfeld, 1993), which consists of approximately 10000

samples.

The second data set is the ESTSP’08 Competition data set number 33,

which consists of approximately 30000 samples, and is computationally

also more challenging due to the size of the regressor needed (Olteanu,

2008; Kourentzes and Crone, 2008).

Experimental parameters The samples from the time series are obtained

using respectively 12, and 168 time steps for the Santa Fe Laser data and

ESTSP’08 Competition data, after which the data is randomly divided

into 85% for training and 15% for testing.

The ELMs have their number of neurons optimized using efficient leave-

one-out cross-validation and for diversity, each ELM uses random vari-

ables from the regressor. The ensemble weights are determined through

leave-one-out initialization and remain fixed.

The effect of GPU-acceleration and parallelization on the performance

is consequently measured by varying the function used in model structure

selection and training, as well as varying the number of MATLAB workers

(i.e. threads). See Publication II for more details.

Effect of GPU-acceleration and used function Table 4.3 summarizes the

results of the experiments performed in Publication II, and clearly shows

the effect of the GPU-acceleration and the used function.

It can be seen that generally mldiv and gesv achieve similar perfor-

mances, while both the use of single-precision and the use of GPU sig-

nificantly speed up the ensemble.

Effect of number of workers on computational time Table 4.3 and Fig-

ure 4.8 summarize the influence of the number of MATLAB workers on

the ensemble performance.

When not using any explicit parallelization through MATLAB workers

(i.e. the line N = 0 in Table 4.3), the differences between using CPU

and GPU are relatively modest. This is due to the fact that for mldiv

and gesv, MATLAB automatically parallelizes the computation over the

3available from http://research.ics.aalto.fi/eiml/datasets.shtml
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multiple CPU cores of the Intel Core i7 920, and can therefore keep up

quite well with the single GPU being used for culaGesv.

However, when explicitly parallelizing the computation over N cores

and GPUs, the difference between CPU and GPU significantly increases.

Overall, the experiments show a 3.3 times speedup over the typical

double-precision implementation of an ensemble of ELMs, by using the

GPU to speed up the slowest part of the algorithm, and parallelizing

across multiple CPU cores and GPUs (i.e. t(mldivdp) / t(culaGesvsp)).

Effect of number of models on accuracy Finally, Figure 4.9 shows the

influence of the number of models in the ensemble on the accuracy of

the ensemble. Similarly to Publication I, the results show that the more

models are added to the ensemble, the more accurate it gets.

Discussion This fact alone (that more models is generally better in en-

semble models), is additional justification for the approach proposed in Pub-

lication II. By parallelization and GPU-acceleration of the ensemble, it is

possible to train more models and to train them faster, which results in a

more accurate model that can be obtained in less time.

Some interesting questions to explore therefore would be: how fast can

an ensemble model of a particular accuracy be obtained? Of course the

easiest way to speed up the ensemble would be to evaluate each model

on its own dedicated node, but even then, would it be possible to further

speed up the ensemble model while retaining or improving accuracy?

One possibility would be to parallelize other parts of the ELM, like the

multiplication of the hidden layer weights and the inputs, as has been

done in (He et al., 2011) and (He et al., 2013).

Another interesting direction to explore would be to make the ELMs

more effective and accurate by an altered weight scheme (which is ex-

plored in Publication V), or by trading off speed for accuracy in the indi-

vidual ELMs (which is explored in Publication VI) and ensembling more

of them.

Before giving an overview of those publications though, the next chapter

will highlight some contributions of the thesis to variable selection.
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N t(mldivdp) t(gesvdp) t(mldivsp) t(gesvsp) t(culaGesvsp)

SantaFe 0 674.0 s 672.3 s 515.8 s 418.4 s 401.0 s

1 1781.6 s 1782.4 s 1089.3 s 1088.8 s 702.9 s

2 917.5 s 911.5 s 567.5 s 554.7 s 365.3 s

3 636.1 s 639.0 s 392.2 s 389.3 s 258.7 s

4 495.7 s 495.7 s 337.3 s 304.0 s 207.8 s

ESTSP 0 2145.8 s 2127.6 s 1425.8 s 1414.3 s 1304.6 s

1 5636.9 s 5648.9 s 3488.6 s 3479.8 s 2299.8 s

2 2917.3 s 2929.6 s 1801.9 s 1806.4 s 1189.2 s

3 2069.4 s 2065.4 s 1255.9 s 1248.6 s 841.9 s

4 1590.7 s 1596.8 s 961.7 s 961.5 s 639.8 s

Table 4.3. Results for both data sets: Running times (in seconds) for running the en-
tire ensemble in parallel on N workers, using the various functions in single-
precision (sp) and double-precision (dp) (Publication II).
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Figure 4.8. Running times (in seconds) for running the entire ensemble in parallel on
(a) Santa Fe, (b) ESTSP’08, for varying numbers of workers, using mldivide
(light-gray lines), gesv (gray lines), culaGesv (black line) for double-precision
(solid lines) and single-precision (dashed lines) (Publication II).

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

Number of models in ensemble

N
M

S
E

 e
n

se
m

b
le

(a)

0 20 40 60 80 100

0.0152

0.0154

0.0156

0.0158

0.016

Number of models in ensemble

N
M

S
E

 e
n
se

m
b
le

(b)

Figure 4.9. NMSE of an ensemble model with varying number of models, on (a) Santa
Fe, (b) ESTSP’08 (Publication II).
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5. Variable Selection

“And what is good, Phaedrus,

And what is not good–

Need we ask anyone to tell us these things?”

– Robert M. Pirsig,

Zen and the Art of Motorcycle Maintenance

Variable selection is a central issue in machine learning. The higher

the dimensionality of the data, the more samples are needed to reliably

train a model. This is sometimes referred to as the curse of dimension-

ality. Therefore, given the often limited number of training samples, it is

important that the dimensionality is sufficiently reduced (without losing

too much information) such that a reliable model can be trained.

This chapter introduces the basic concepts of variable selection, and

highlights the related contributions of this thesis: an ELM-based method

for variable selection (Publication III); a (multi-)GPU-accelerated Delta

Test criterion used as criterion in a parallelized genetic algorithm for vari-

able selection (Publication IV); and finally, a new weight scheme for ELM

that results in more effective and efficient neural networks, and makes

the ELM more robust to irrelevant and noisy variables (Publication V).

5.1 Variable selection

5.1.1 Motivation

Due to the technological developments of the past decades, it is easier

than ever to gather large amounts of data. The grand challenge, then,

is to extract relevant information from this data in order to gain useful

knowledge.
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Part of that challenge is being able to scale the methods to the size of

modern data sets (which was partly the focus of Chapter 4). However,

besides challenges in scaling due to the large amount of samples in mod-

ern data sets, another challenge is posed by their high dimensionality.

Namely, the high dimensionality of modern data sets poses a problem

when trying to train reliable and accurate models due to the curse of di-

mensionality (Bellman, 1961; Verleysen et al., 2003): the number of sam-

ples required to be able to train an accurate model scales exponentially

with the dimensionality of the input space (i.e. the dimensionality of the

data). Therefore, it is important to reduce the dimensionality as much as

possible, so that more accurate models may be trained.

5.1.2 Dimensionality reduction

Feature extraction Although the data is high-dimensional, it is often not

evenly spread throughout the input space. Instead, the samples will lie

on some lower-dimensional manifold embedded in that high-dimensional

space. Therefore, one strategy for handling high-dimensional data is by

dimensionality reduction through feature extraction. Here, the goal is to

find an alternate representation of the data by extracting its latent fea-

tures, and representing the data in terms of these features. For example,

if the data lies linear in some linear subspace, then Principal Component

Analysis (PCA) can be used to obtain a more compact representation (Jol-

liffe, 2002). Note however, that this by itself does not take into account

the relevance of a latent feature for predicting the output, as it is unsu-

pervised.

Variable selection Contrary to unsupervised feature extraction, variable

selection (Guyon and Elisseeff, 2003) is supervised and does take into ac-

count the relevance of a variable for predicting the output1. Through a

search algorithm, the variable subset is optimized according to a statisti-

cal criterion measuring the quality of the variable subset.

Besides improving model accuracy, another motivation for performing

variable selection may be interpretability of the models and gaining a

better understanding about the problem at hand. For example, in gene

1Of course, feature extraction and variable selection can be combined, and ex-
tracted features can become input variables to some model. In this work, it is
assumed that feature extraction has already taken place, and the focus is on se-
lecting the best variable subset, given a set of input variables. The terms variable
selection and feature selection will be used interchangeably.
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expression analysis, variable selection can help identifying those genes

that are relevant for predicting whether a patient is sick, and are there-

fore likely to play a role in the disease itself (Guyon and Elisseeff, 2003).

Finally, sometimes it is very expensive to obtain new samples and mea-

sure particular variables. Therefore, through variable selection, money

and effort can be saved by only measuring and collecting the most rele-

vant variables.

5.1.3 Variable selection methods

Approaches Several main approaches for variable selection are distin-

guished in (Guyon and Elisseeff, 2003): wrapper methods, filter methods,

and embedded methods, which will be described shortly below.

Filter approach In filter approaches, as the name suggests, the variable

subset is filtered before being passed on to a model for learning, and some

criterion is used to evaluate the quality of a particular subset of variables.

For example, as a criterion, mutual information (MacKay, 2003; Kraskov

et al., 2004) can be used to estimate how much information a particular

variable subset contains about the targets (Rossi et al., 2006; François

et al., 2007; Verleysen et al., 2009). The mutual information criterion was

used in the baseline variable selection experiments of Publication III.

Another criterion that can be used for variable selection is the Delta Test

(Eirola et al., 2008; Eirola, 2014; Sovilj, 2014). The Delta Test is a noise

variance estimator, which indicates the performance a non-linear model

can possibly attain, given particular data. The Delta Test criterion was

used in Publication IV.

As a final example, a filter method based on Least Angle Regression

(LARS) (Efron et al., 2003) could rank the variables according to rele-

vance, and return a subset of the most relevant variables. This approach

is included in the baseline experiments of Publication III.

Wrapper approach Whereas filter strategies use some statistical crite-

rion for variable selection, in the wrapper strategy, the model is used di-

rectly for evaluating the quality of a variable subset. For example, an

Extreme Learning Machine could be built with many different variable

subsets, and have its generalization performance estimated using fast

leave-one-out cross-validation. The variable subset that achieves mini-

mum leave-one-out error will then be used for building the final ELM.

Therefore, it can be seen as some sort of model structure selection. The
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advantage of wrapper strategies is that, since the actual model is used,

the feature subset is likely to be better-optimized for that model. How-

ever, since the actual model needs to be trained, depending on the model,

and the fact that there might not be a way to efficiently estimate the gen-

eralization performance, wrapper strategies can be computationally very

expensive. Furthermore, care should be taken not to overfit during the

feature selection process (Reunanen, 2003).

Embedded approach In the embedded approach, the learning machine

itself incorporates variable selection as part of its training, and selection

is not performed explicitly using a wrapper or filter approach. Although it

could be argued that explicit variable selection in the training algorithm is

actually model structure selection using a wrapper approach (rather than

training and an embedded approach), it is useful to distinguish the em-

bedded variable selection approach from filter and wrapper approaches,

as the learning method might implicitly perform variable selection as a

result of its structure (for example, like in the Binary ELM and Ternary

ELM proposed in Publication V).

Search methods Besides a statistical criterion like mutual information,

or an estimated performance of a model, a method is needed to explore

the solution space of all possible variable selections in a systematic way,

especially considering that the number of possible variable subsets is ex-

ponential in the number of variables.

One possibility is to use a local search method and, starting from a par-

ticular solution in the solution space, optimize the solution by repeatedly

evaluating and jumping to neighboring candidate solutions, until an opti-

mum is found. For example, Forward selection (Hastie et al., 2001) starts

from an empty variable subset, and repeatedly adds the variable that

improves the criterion the most. Similarly, Backward selection (Hastie

et al., 2001) starts from the full variable subset, and repeatedly removes

the variable that deteriorates the criterion the least. Finally, Forward-

Backward selection allows both adding and removing variables at each

step (Hastie et al., 2001). These local search methods are used in the

baseline experiments of Publication III, in combination with the mutual

information criterion.

Another possibility, which is explored in Publication IV, is to use a ge-

netic algorithm to explore the space of possible solutions. Here, the candi-

date solutions are encoded in a population of individuals and consequently

optimized through an evolution-like algorithm.
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The remaining part of this chapter will give an overview of the contri-

butions to variable selection methods that are made as part of this thesis.

5.2 ELM-FS: ELM-based feature selection

Publication III explores a feature selection method based on Extreme

Learning Machine, which returns a complete feature selection path, rep-

resenting the trade-off between the best feature subset for each subset

size and the corresponding estimated generalization error. This allows

the practitioner to make an informed decision about the feature subset

that is best for the current context. For example, if sparsity is most im-

portant due to the difficulty of obtaining new samples, the smallest subset

giving reasonable performance could be identified and selected. If, on the

other hand, accuracy is more important, that feature subset giving best

accuracy can be selected. The method is shown to be competitive with tra-

ditional feature selection methods, and can be used for ELM (as a wrapper

method), or as an efficient filter method for more complicated non-linear

machine learning methods.

5.2.1 Feature selection using the ELM

Introducing a scaling layer In order to use the Extreme Learning Ma-

chine for feature selection, it is first augmented with a scaling layer such

that each input variable is multiplied with its own particular scale (i.e. for

sample xi, xi1 → s1xi1, . . . , xid → sdxid). Then, for regression, the feature

selection problem for obtaining the feature subset that obtains minimum

training error, can be written as

min
s,θ

1

n

n∑
i=1

[yi − f (s1xi1, . . . , sdxid|θ)]2 s.t. ‖s‖0 ≤ d (5.1)

where f (s1xi1, . . . , sdxid|θ) stands for the ELM with parameters θ, and

inputs s1xi1, . . . , sdxid. Here, the scaling vector s is a vector of binary vari-

ables such that si ∈ {0, 1}, and ‖s‖0 is the L0-norm of s (i.e. the number of

non-zero scaling factors and therefore the number of selected variables).

Now, Equation 5.1 can be rewritten as a regularization, i.e.

min
s,θ

1

n

n∑
i=1

[yi − f (s1xi1, . . . , sdxid|θ)]2 + C0 ‖s‖0 , (5.2)

for some regularization constant C0, that can be used to control the size
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of the feature subset.

Relaxing the feature selection problem However, even though solving this

optimization problem while gradually increasing C0 would result in in-

creasingly sparse optimal variable subsets, there are too many subsets to

exhaustively evaluate all of them. Therefore, a common strategy in op-

timizing combinatorial problems is used. Namely, the feature selection

problem is made easier through a technique known as relaxation (Burke

and Kendall, 2005) and a regularization scheme is used to enforce spar-

sity: the binary scalings si ∈ {0, 1} are replaced by real s̃i ∈ [0, 1], and the

L1-norm is used instead of the L0-norm, which results in

min
s̃,θ

1

n

n∑
i=1

[ti − f (s̃1xi1, . . . , s̃dxid|θ)]2 + C1 ‖s̃‖1 . (5.3)

This relaxed form of the optimization problem is easier to solve, since it is

differentiable.

Solving the relaxed feature selection problem Since it is possible to obtain

the gradient of the training error with respect to the scaling vector s̃, the

algorithm can repeatedly take a small gradient descent step, updating

s̃ such that the objective value of the optimization problem is improved.

Therefore, for a given regularization parameter C1, the problem can be

efficiently solved.

However, there is the potential problem of plateaus where too small a

step size would result in slow convergence towards the (local) optimum.

Therefore, the scaling parameter s̃ is discretized and optimization of s̃ is

performed on a hyper-grid instead. This guarantees termination of the

algorithm, and limits the amount of steps the algorithm takes.

Now, optimal feature scalings of varying sparsity can be obtained by

starting from a random initial s̃ and C1 = 0, and repeatedly jumping to

the neighbor pointed to by the gradient, until stuck in a local minimum.

At this point, the generalization error of that feature selection (each

non-zero scaling indicating a feature being selected) can be estimated

through fast leave-one-out error computation.

Obtaining a feature selection path and corresponding error estimates Af-

ter getting stuck in a local optima, the regularization factor can be in-

creased until the local minimum disappears, and minimization continues

towards sparser scalings and eventually empty scalings.2 Finally, by re-
2This sounds complicated, but it can be intuitively understood by seeing it as
dropping a ball on a hilly landscape mountain, and letting it roll down. Whenever
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peating this procedure many times and recording the optimal feature se-

lections found for every feature subset size, a feature selection path, along

with corresponding estimates of the generalization error is obtained. Al-

gorithm 5 summarizes the full algorithm.

Algorithm 5 Local search algorithm for the relaxed feature selection

problem (adapted from Publication III)
1: for all restarts do

2: - C1 = 0

3: - initialize s̃ randomly

4: while s̃ 6= 0 do

5: - estimate generalization error and update SET/FSP

6: - compute gradient of training error w.r.t. s̃

7: - evaluate direct neighbor pointed to by gradient and compute its

training error

8: - if training error has decreased, jump to neighbor

9: - if training error has not decreased, increase C1 until gradient

points to neighbor with smaller L1-norm and smaller training er-

ror, and jump to that neighbor

10: end while

11: end for

5.2.2 Feature selection path

During its execution, the ELM-FS algorithm (as described before and in

detail in Publication III), keeps track of the optimal feature subsets it

encounters for each feature subset size. Once finished, these results can

be summarized in a plot depicting the Feature Selection Path (FSP). Apart

from the optimal feature subset for each size, also the evolution of the

feature subset can be seen, potentially giving insight into the problem at

hand.

5.2.3 Sparsity-error trade-off curve

Besides the optimal feature selections encountered, the ELM-FS algo-

rithm also keeps track of the corresponding estimated generalization er-

ror. These results can be summarized in the Sparsity-error trade-off curve

(see Figure 5.1e for an example).

it gets stuck, increase the slope until it starts rolling again.
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(a) FSP: LARS (b) FSP: MI-FW (c) FSP: MI-FWBW

(d) FSP: ELM-FS (e) SET curve: ELM-FS (f) test errors

Figure 5.1. Results on Santa Fe Laser Data set

Together, these plots can be used by the practitioner to make an in-

formed decision about the optimal feature subset for the context.

5.2.4 Experiments

To evaluate the effectiveness of the ELM-FS algorithm, and to verify the

soundness of the obtained variable selections, the ELM-FS algorithm is

compared against several other methods for performing variable selec-

tion: (1) Least Angle Regression (LARS); (2) Forward Selection with Mu-

tual Information criterion (MI-FW); (3) Forward-Backward Selection with

Mutual Information criterion (MI-FWBW).

Once the feature selection paths for all methods are obtained, the test

error is evaluated using an Optimally Pruned ELM (OP-ELM). This al-

lows for verification that the SET curve indeed gives an indication of the

optimal feature subset, and for comparison between the obtained variable

selections of each method.

Data The data set used is again the Santa Fe Laser Data time series

(Weigend and Gershenfeld, 1993), which consists of approximately 10000

samples, from which samples are obtained using a regressor size of 12.

Experimental parameters ELM-FS is performed using 100 repetitions.

The 100 corresponding ELMs have between 1 and 100 randomly chosen

neurons, drawn from a fixed set of 100 neurons. For more details see Pub-

lication III.
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Comparison of feature selections The results of the experiment are sum-

marized in Figure 5.1. It can be seen that in this experiment, especially

for the smaller feature subsets, the ELM-FS is able to find better feature

selections than the other methods. Presumably, this is due to its more

thorough exploration of the sparser subsets, and the fact that ELM-FS

allows for discontinuities in its feature selection path.

Comparison of computational times The computational efficiency of ELM-

FS is comparable to MI-FW and MI-FWBW (see Table 2 of Publication

III), and selected feature subsets are comparable or better in quality.

Therefore, the ELM-FS provides an attractive alternative to existing fea-

ture selection methods.

5.3 Fast feature selection using a GPU-accelerated Delta Test

In Publication IV, a GPU-accelerated Delta Test criterion used as crite-

rion in a parallelized genetic algorithm for variable selection. By using

the GPU to accelerate the computation of the Delta Test, the main com-

putational bottleneck of the algorithm is alleviated, and through GPU ac-

celeration and parallelization variable selection with the Delta Test can

efficiently be performed on large data sets, for which it would otherwise

be prohibitively slow.

5.3.1 Parallelization of the Delta Test

Delta Test The Delta Test is a noise variance estimator which can be used

to estimate, for a given data set (xi, yi)
N
i=1, the accuracy a non-linear model

can possibly attain. Therefore, it can be used a criterion for evaluating

the quality of different variable subsets for function approximation, and

together with a search algorithm, be used for variable selection (Eirola,

2014; Sovilj, 2014). The Delta Test is defined as

δ =
1

2N

N∑
i=1

(yi − yNN(i))
2 (5.4)

where yi is the ith sample in the output space, and yNN(i) is sample corre-

sponding to the nearest neighbor of xi.

Computing the Delta Test From Equation 5.4, it can be seen that in order

to compute the value of the Delta Test, for each sample xi, the nearest

neighbor needs to be computed.
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Figure 5.2. Division of nearest-neighbor computations in Multi-GPU-accelerated Delta
Test

The approach used in Publication IV is the brute-force method for com-

puting the nearest neighbors, which involves computing anN×N distance

matrix. Once computed, for each xi, the index of the nearest neighbor can

be determined from the distance matrix, and the Delta Test criterion can

be computed. Since the approach involves computing an N × N distance

matrix, for modern data sets this can be quite challenging, and strategies

are desired for making the computation feasible.

Delta Test at scale The Delta Test is implemented on GPU using the ex-

cellent GPU-accelerated nearest-neighbor library by (Garcia et al., 2008,

2010), and for e.g. 17000 samples and with a 1000 variables, a 40-50×
speedup can be obtained over using the CPU.

Although not exploited in Publication IV, the nearest-neighbor problem

is embarrassingly parallel (i.e. the nearest neighbor for each point can be

determined independently). Therefore, the Delta Test computation can be

further accelerated by dividing the nearest-neighbor computations over

multiple GPUs, and let each GPU determine the nearest neighbor for

part of the data set (see Figure 5.2). Experiments show that for a vari-

able selection problem with 100k samples and 274 dimensions, on a sin-

gle machine with 5 GPUs, an additional speedup of roughly ~4× can be

achieved.

Discussion The (multi-)GPU-acceleration of the Delta Test makes it a

very attractive criterion to use as a filter approach for ELM, either in

combination with a local search method like Forward-Backward search as

encountered in Publication III, or in combination with genetic algorithm

like in Publication IV.
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5.4 Binary/Ternary ELM

Although in theory, ELM is a universal approximator, in practice, there

are a limited number of samples available, and there is a risk of overfit-

ting. Therefore, the functional approximation should use as limited num-

ber of neurons as possible, and the hidden layer should extract and retain

as much information as possible from the input samples. The question

then becomes, which neurons work well together to extract as much use-

ful information as possible?

Publication V proposes two new ELM variants: Binary ELM, with a

weight initialization scheme based on {0,1}-weights; and Ternary ELM,

with a weight initialization scheme based on {-1,0,1}-weights. This weight

initialization scheme results in features from very different subspaces

and therefore, each neuron extracts more diverse information from the

inputs than neurons with completely random features traditionally used

in ELM. Experiments show that indeed ELMs with ternary weights gen-

erally achieve lower test error, and additionally are more robust to irrel-

evant and noisy variables. Since only the weight generation scheme is

adapted, the computational time of the ELM is unaffected, and the im-

proved accuracy, added robustness and the implicit variable selection of

Binary ELM and Ternary ELM come for free.

5.4.1 Improved hidden layer weights

Traditionally, the hidden layer weights of the ELM are initialized ran-

domly, with weights and biases drawn from a continuous probability dis-

tribution. For example, a uniform distribution on interval [-3, 3], or a

Gaussian distribution with certain variance σ. These hidden layer weights,

together with the transfer function and the data, result in particular ac-

tivations of the hidden layer.

A typical transfer function (like sigmoid) takes the inner product of the

weight and a sample, adds a bias, and transforms the result in a nonlinear

way, i.e. it looks like f (〈wi,x〉+ bi) ,where 〈wi,x〉 is the inner product of

weight wi and x is the input vector. Since〈wi,x〉 = |wi||x| cos θ, it can be

seen that the typical activation of f depends on:

1. the expected length of wi

2. the expected length of x

3. the angles θ between the weights and the samples
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5.4.1.1 Orthogonal weights?

An important factor affecting the diversity of the hidden neuron activa-

tions consists of the angles between the hidden layer weights and the sam-

ples. Therefore, the primary strategy that comes to mind for improving

the diversity of the hidden neuron activations is to improve the diversity

by taking weights that are mutually orthogonal (e.g. M d-dimensional ba-

sis vectors, randomly rotated in the d-dimensional space, where d is the

dimension of the input space).

However, experiments suggested that this strategy does not significantly

improve accuracy. Presumably, for the tested cases, the random weight

scheme of ELM already covers the possible weight space pretty well (fur-

thermore, randomly drawn zero-mean vectors are close to orthogonal in

the first place).

5.4.1.2 Binary weight scheme

Another way to improve the diversity of the weights is by having each

of them work in a different subspace (e.g. each weight vector has differ-

ent subset of variables as input). This strategy turns out to significantly

improve accuracy, at no extra computational cost.

In the binary weight scheme (see Algorithm 6, Figure 5.3 and Figure

5.4), binary weights are generated and added, starting from the spars-

est subspace, until the desired amount of weights is reached. Weights

within a subspace are added in random order to avoid bias towards par-

ticular variables. Once generated, the weights are normalized or adapted

through Batch-Intrinsic Plasticity (BIP) pre-training (see Section 3.4.4

and Section 5.4.2) to ensure the neurons are activated in the right region

(neither completely in the linear part, nor in the saturated part).

5.4.1.3 Ternary weight scheme

The ternary weight scheme (see Figure 5.3 and 5.4) is identical to the

binary weight scheme, except that due to the sign of the weights there

are more possible weights for each possible subspace, rather than a single

one, allowing for richer weights.

5.4.2 Motivation for BIP pre-training

Since for given weight w and input x, the expected value of |w||x| deter-

mines which part of the transfer function is activated most, the norm of

the weights is important and affects the performance of ELM. Of course,
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Algorithm 6 Binary weight scheme, with M the desired number of hid-

den neurons, n the dimension of the subspaces in which to generate

weights, and d the number of inputs
1: Generate ELM:

2: n = 1;

3: while number of neurons ≤M and n ≤ d do

4: - Generate the
(
d
n

)
possible assignments of n ones to d positions

5: - Shuffle the order of the generated weights to avoid bias to certain

inputs due to the scheme used to generate the
(
d
n

)
assignments

6: - Add the generated weights (up to a maximum of M neurons)

7: - n = n+ 1;

8: end while

9: - Normalize the norm of the weights, such that they are unit length.

1 var

2 vars

3 vars



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1
...

...
...

...
...

0 0 0 1 1

etc.


(a) binary weight scheme

1 var

2 vars

3 vars



+1 0 0 0

−1 0 0 0

0 +1 0 0

0 −1 0 0
...

...
...

...

+1 +1 0 0

+1 −1 0 0

−1 +1 0 0

−1 −1 0 0
...

...
...

...

0 0 −1 −1


(b) ternary weight scheme

Figure 5.3. Illustration of the binary and ternary weight schemes. Note that weights are
added starting from the sparsest subspace, and from each subspace they are
added in random order to avoid bias towards particular variables.
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(a) possible binary weights (b) possible ternary weights

Figure 5.4. Illustration of possible weights (arrows) for binary (a) and ternary (b) weight
scheme, in a 2D subspace of normalized Abalone data (blue dots)

the weights could be normalized to be e.g. unit length, but the question

remains what is the optimal length for the given data. Therefore, to en-

sure that the weights are properly scaled, the ELMs are pre-trained using

Batch Intrinsic Plasticity (BIP) pre-training. In particular, the BIP(rand)

variant (Neumann and Steil, 2011, 2013) is used, since it offers an attrac-

tive balance between computational time and accuracy.

An added advantage of using BIP pre-training is that when comparing

ELMs with varying weight schemes, any differences in performance must

come from the differences in the direction of the weights and are not a

result of the different scaling of the weights.

Furthermore, since BIP pre-training adapts the neurons to operate in

their non-linear regime, as many linear neurons are included as there are

input variables. This ensures good performance of the ELM, even if the

problem is completely linear.

5.4.3 Fast L2 regularization through SVD

With limited data, the capability of ELM to overfit the data increases with

increasing number of neurons, especially if those neurons are optimized to

be well-suited for the function approximation problem. Therefore, to avoid

overfitting, Tikhonov regularization with an efficiently cross-validated reg-

ularization parameter is used.

Using the SVD decomposition of H = UDVT , it is possible to obtain all

needed information for computing the PRESS statistic without recomput-

ing the pseudo-inverse for every λ:
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Ŷ = Hβ

= H(HTH + λI)−1HTY

= HV(D2 + λI)−1DUTY

= UDVTV(D2 + λI)−1DUTY

= UD(D2 + λI)−1DUTY

= HAT ·Y

where D(D2 + λI)−1D is a diagonal matrix with d2ii
d2ii+λ

as the ith diagonal

entry. Now

MSETR-PRESS =
1

N

N∑
i=1

(
yi − ŷi

1− hatii

)2

=
1

N

N∑
i=1

(
yi − ŷi

1− hi·(HTH + λI)−1hTi·

)2

=
1

N

N∑
i=1

 yi − ŷi
1− ui·

(
d2ii

d2ii+λ

)
uTi·

2

where hi· and ui· are the ith row vectors of H and U, respectively. Now, the

Tikhonov-regularized PRESS and corresponding λ can be computed using

Algorithm 7, where A◦B refers to the element-wise product of matrices A

and B (Schur product). Due to the convex nature of criterion MSETR-PRESS

with respect to regularization parameter λ, the Nelder-Mead procedure

used for optimizing λ converges quickly in practice (Nelder and Mead,

1965; Lagarias et al., 1998). This efficient optimization of the regulariza-

tion parameter for ELM, by incorporating it in the SVD decomposition

first appeared (in slightly different form) in (Miche et al., 2011).

5.4.4 Experiments

In Publication V, for evaluating the performance of the gaussian, binary

and ternary weight schemes, their resulting performance in terms of accu-

racy is compared on various regression tasks. Since the weight range de-

termines the typical activation of the transfer function (remember 〈wi,x〉 =

|wi||x| cos θ), the ELMs are pre-trained using Batch Intrinsic Plasticity

pre-training. Any performance difference between weight schemes will be

a result of the different directions of the weights. Furthermore, since BIP

pre-training adapts the neurons to operate in their non-linear regime, as

many linear neurons are included as there are input variables. This en-

sures good performance of the ELM, even if the problem is completely
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Algorithm 7 Tikhonov-regularized PRESS. In practice, the while part

of this algorithm (convergence for λ) is solved using by a Nelder-Mead

approach (Nelder and Mead, 1965) (Publication V)).

1: Decompose H by SVD: H = UDVT

2: Precompute B = UTy

3: while no convergence on λ achieved do

4: - Precompute C = U ◦


d211

d211+λ
· · · d211

d211+λ
... . . . ...

d2NN

d2NN+λ
· · · d2NN

d2NN+λ


5: - Compute ŷ = CB, the vector containing all ŷi
6: - Compute d = diag

(
CUT

)
, the diagonal of the HAT matrix, by

taking the row-wise dot-product of C and U

7: - Compute ε = y−ŷ
1−d , the leave-one-out errors

8: - Compute MSETR-PRESS = 1
N

∑N
i=1 ε

2
i

9: end while

10: Keep the best MSETR-PRESS and the associated λ value

linear. Finally, to prevent overfitting, the models incorporate L2 regular-

ization with efficiently optimized regularization parameter (as described

in Section 5.4.3). Therefore, in summary, the models that are compared

are the BIP(rand)-TR-ELM; the BIP(rand)-TR-2-ELM and the BIP(rand)-

TR-3-ELM.

Data The data sets used for the experiments are the Abalone (8 input

variables, 4177 samples) and ComputerActivity (12 input variables, 8192

samples) data sets from the UCI repository (Asuncion and Newman, 2007).

Roughly half of the samples is used for training, and the remaining half

is used for testing.

Relative performance of weight schemes In this experiment, the relative

performance of the weight schemes is compared for varying number of

hidden neurons. As mentioned, the ELMs are pre-trained through BIP,

and use L2 regularization with efficiently optimized regularization pa-

rameter. As further baseline, a standard ELM and an ELM which has

its number of neurons cross-validated are included as well. The results of

this experiment are summarized in Figure 5.5.

There, it can be seen that for increasing number of neurons, the stan-

dard ELM starts to overfit at some point, resulting in an increase in the

RMSE on the test set. Performing leave-one-out cross-validation to limit

the number of used hidden neurons prevents this overfitting. Finally, the
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proposed methods generally achieve much better RMSE than the basic

ELM variants and generally, ternary weights outperform weights drawn

from a Gaussian distribution, while binary weights perform worse than

ternary and Gaussian weights for large number of neurons.
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Figure 5.5. number of neurons vs. average achieved test RMSE for ELM (black, dashed),
LOO(CV)-ELM (purple), BIP(rand)-TR-ELM with Gaussian (black), binary
(blue), ternary (green) weight scheme (Publication V).

Robustness against irrelevant variables In this experiment, the robust-

ness of the different weight schemes against irrelevant variables is inves-

tigated by measuring the effect of up to 30 added noise variables on the

RMSE. The results are summarized in Figure 5.5 and Table 5.1, where

it can be seen that the proposed weight schemes are more robust against

irrelevant variables. The difference is especially large for the Computer-

Activity Data set.
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Figure 5.6. Effect of adding irrelevant extra variables on RMSE for BIP(rand)-TR-ELM
with 1000 hidden neurons and with Gaussian (black), binary (blue), ternary
(green) weight scheme (Publication V).
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Ab Co

gaussian binary ternary gaussian binary ternary

RMSE with original variables 0.6497 0.6544 0.6438 0.1746 0.1785 0.1639

RMSE with 30 added irr. vars 0.6982 0.6932 0.6788 0.3221 0.2106 0.1904

RMSE loss 0.0486 0.0388 0.0339 0.1475 0.0321 0.0265

Table 5.1. Effect of adding irrelevant extra variables on RMSE for BIP(rand)-TR-ELM
with 1000 hidden neurons and with gaussian, binary, and ternary weight
scheme (Publication V).

Implicit variable selection Finally, to get more insight into why the weight

schemes perform the way they do, the BIP(rand)-TR-ELM, BIP(rand)-TR-

2-ELM and the BIP(rand)-TR-3-ELM are trained on the ComputerActiv-

ity data set, where 5 irrelevant variables (taken from the DeltaElevators

UCI data) and 5 noise variables have been added.

After training, the relevance of each input variable is quantified as

relevance =
M∑
i=1

|βi ×wi|,

where M is the number of hidden neurons; βi is the output weight; wi

is the input weight corresponding to neuron i, and relevance is the d-

dimensional vector containing a measure of relevance for each of the d

input variables. If a variable j has a large value of relevancej , compared

to other variables, this can be interpreted as that variable being implicitly

selected by the ELM (i.e. the ELM favors neurons that extract informa-

tion from that variable).

The results are summarized in Figure 5.7, and suggest qualitatively dif-

ferent behaviour of the ELMs with the different weight schemes. While

the BIP(rand)-TR-ELM does not favor any neurons that employ a partic-

ular input variable, the BIP(rand)-TR-3-ELM favors neurons that employ

a specific input variable. Similar results hold for BIP(rand)-TR-2-ELM.

These results suggests that the improved performance and robustness of

the binary and ternary weight scheme might come from implicit variable

selection, and that through the modified weight schemes, they are able to

focus on those variables that are important to the problem, while ignoring

the variables that are not.

62



Variable Selection

D
1

D
2

D
3

D
4

D
5

R
1

R
2

R
3

R
4

R
5

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

variables
va

ri
ab

le
re

le
va

nc
e

gaussian

(a) Gaussian weight scheme

D
1

D
2

D
3

D
4

D
5

R
1

R
2

R
3

R
4

R
5

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

variables

va
ri

ab
le

re
le

va
nc

e

ternary

(b) Ternary weight scheme

Figure 5.7. Relevance assigned by the weight schemes to different input variables, as
measured by

∑M
i=1 |βi ×wi| (Publication V).

Discussion Two new weight initialization schemes have been proposed

and robust ELM variants using these weight schemes are introduced and

evaluated: the BIP(rand)-TR-2-ELM and BIP(rand)-TR-3-ELM.

The motivation behind these schemes is that weights picked in this way

will be from very different subspaces, and therefore improve the diversity

of the neurons in the hidden layer.

Experiments show that Ternary ELM generally achieves lower test er-

ror and that both the binary and ternary weight schemes improve robust-

ness of the ELM against irrelevant and noisy variables, which might be

due to the schemes being able to perform implicit variable selection. Since

only the weight generation scheme is changed, the computational time

of ELM remains unchanged compared to ELMs with traditional random

weights. Therefore, the better performance, added robustness and im-

plicit variable selection in Binary ELM and Ternary ELM come for free.

Although this work only investigates the robustness of the weight

schemes, an additional advantage of the proposed weight schemes is that

they result in sparse weight matrices. Especially for large ELMs, this can

result in significantly reduced memory requirements, since the weight

matrices can be saved as sparse matrices with binary or ternary entries3.

Furthermore, algorithms designed for sparse matrix multiplication might

be used to speed up the multiplication of the inputs and the hidden layer

weights. This could potentially provide a further way to speed up exist-

ing MapReduce schemes for accelerating the hidden layer computations

(Catanzaro et al., 2008; He et al., 2011, 2013).

3Although the weights of each neuron are normalized, all weights of a neuron
are scaled with the same scalar, which can be incorporated in e.g. the slope of
the sigmoid transfer function.
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6. Trade-offs in Extreme Learning
Machines

“There are all kinds of interesting questions that come from a

knowledge of science, which only adds to the excitement and mys-

tery and awe of a flower. It only adds. I don’t understand how it

subtracts.”

– Richard P. Feynman

In the training of neural networks, there often exists a trade-off between

the time spent optimizing the model under investigation, and its final

performance. Ideally, an optimization algorithm finds the model that has

best test accuracy from the hypothesis space as fast as possible, and this

model is efficient to evaluate at test time as well. However, in practice,

there exists a trade-off between training time, testing time and testing

accuracy, and the optimal trade-off depends on the user’s requirements.

This chapter gives an overview of some of those trade-offs within the

context of ELMs and highlights the results from Publication VI, which

introduces the Compressive ELM and forms an initial investigation into

these trade-offs within Extreme Learning Machines.

Whereas the other contributions are mostly aimed at directly improving

the accuracy of the ELM-based methods, either by ensembling them (Pub-

lication I, Publication II), by obtaining better variable selections (Publi-

cation III, Publication IV), or by improved weight initialization schemes

(Publication V), the Compressive ELM takes a contrary approach.

Instead of directly improving the accuracy, the Compressive ELM fo-

cuses on improving the computational time by providing a time-accuracy

trade-off and training the model in a reduced space, while trying to retain

accuracy as much as possible. Experiments indicate that potentially more

time can be saved than accuracy lost and therefore the compressive train-

ing mechanism may provide an avenue towards obtaining more accurate

models in less time.
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6.1 Trade-offs between computational time and accuracy

When choosing a model for solving a machine learning problem, which

model is most suitable depends a lot on the context and the requirements

of the application. For example, it might be the case that the model is

trained on a continuous stream of data, and therefore has some restric-

tions on the training time. On the other hand, the computational time in

the testing phase might be restricted, like in a setting where the model is

used as the controller for an aircraft or a similar setting that requires fast

predictions. Alternatively, the context in which the model is applied might

not have any strong constraints on the computational time and, above all,

accuracy or interpretability could be considered most important regard-

less of the computational time.

6.1.1 Time-accuracy curves

This chapter focuses on time-accuracy trade-offs in Extreme Learning Ma-

chines, and on trade-offs between training time and accuracy in particu-

lar, which can be affected in two ways:

• by improving the accuracy through spending more time optimizing

the model,

• or vice-versa, by reducing the computational time of the model,

without sacrificing accuracy too much.

Each type of model has its own ways of balancing computational time

and accuracy, and has an associated training time-accuracy curve that

expresses the efficiency of the model in achieving a certain accuracy (the

closer the curve is to the bottom left, the better). Thus, given a collection

of models, the question becomes: which model produces the best accuracy

the fastest?

6.1.2 Examples from Extreme Learning Machines

In order to illustrate what time-accuracy trade-offs exist within Extreme

Learning Machines, this section presents time-accuracy trade-offs of sev-

eral Extreme Learning Machine variants.
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Figure 6.1. Results for various ELM variants on Abalone UCI data set (Publication V).

Extreme Learning Machine variants The following variants of Extreme

Learning Machine are compared in terms of their training time, testing

time, and obtained accuracy on the Abalone UCI data set (Asuncion and

Newman, 2007). For all of the variants, the ternary weight scheme is

used, because of the benefits shown in Publication V, and Section 5.4. The

Tikhonov-regularized variants all use efficient optimization of regulariza-

tion parameter λ, using the SVD approach to computing H† (see Section

5.4.3).

OP-ELM The Optimally Pruned ELM (Miche et al., 2010), with neurons

ranked by relevance, and then pruned based on the leave-one-out error.

TROP-ELM The Tikhonov-regularized OP-ELM (Miche et al., 2011).

TR-ELM The Tikhonov-regularized ELM (Deng et al., 2009).

BIP(CV)/BIP(0.2)/BIP(rand) TR-ELM The Tikhonov-regularized ELM

pre-trained using Batch Intrinsic Plasticity mechanism (Neumann and

Steil, 2011, 2013; Neumann, 2013), adapting the hidden layer weights and

biases, such that they retain as much information as possible. The BIP

parameter is either fixed, randomized, or cross-validated over 20 possible

values.
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Most desirable model depends on requirements The results are summa-

rized in Figure 6.1, and show that it depends on the user’s criteria which

model is most suitable for that context.

Training time most important If it is most important that the model can

be trained fast, then it can be argued that the BIP(rand)-TR-3-ELM offers

the best trade-off. It does take slightly longer to train than the TR-3-

ELM, however, for that modest overhead the test accuracy is generally

improved.

Test error most important If accuracy is all that matters, then the re-

sults suggest it might be worth it to cross-validate the BIP parameter,

instead of setting it randomly per-neuron. Although the training time for

BIP(CV)-TR-3-ELM is many times higher due to the cross-validation of

the BIP parameter, it generally results in the most accurate model.

Testing time most important If the speed of the model at test time is most

important, then, surprisingly, the results suggest that the BIP(rand)-TR-

3-ELM is the most suitable model. This result is unexpected, since a

model that has its irrelevant neurons pruned (like OP-ELM and TROP-

ELM) is generally faster at test time. However, for this context, the re-

sults reveal that, even though the OP-ELM and TROP-ELM are faster,

they tend to slightly overfit while pruning the neurons, resulting in slightly

worse test accuracy.

From Figure 6.1, it can be seen that because of this, the TR-3-ELM vari-

ants are more attractive when it comes to testing time (i.e. for a given

testing time, they are always able to provide the better accuracy).

This surprising result shows the importance of analyzing ELM algo-

rithms in terms of their time-accuracy trade-off. Furthermore, this time-

accuracy trade-off analysis suggests further research directions into the

prevention of overfitting in model structure selection (Reunanen, 2003).

An initial work along these lines is (Wang et al., 2014), which provides

a variant of OP-ELM that computes an approximate ranking of the neu-

rons, rather than an exact ranking, and is shown to achieve better accu-

racy. Presumably, this is because the approximate ranking prevents the

model structure selection from overfitting.

Since TR-3-ELM offers attractive trade-offs between speed and accu-

racy, this model is used for the Compressive Extreme Learning Machine,

which will be discussed next.
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6.2 Compressive ELM

In the previous section on time-accuracy trade-offs, two possible strate-

gies have been discussed that can affect this trade-off: (1) improving the

accuracy of the models, and (2) reducing the computational time of the

model. In terms of training time-accuracy plots, this would be “pushing

the curve down” and “pushing the curve to the left”, respectively.

Whereas the other contributions discussed in this thesis mainly focus

on improving the accuracy of the models by ensembling them (Publica-

tion I, Publication II), by obtaining better variable selections (Publication

III, Publication IV), or by improved weight initialization schemes (Publi-

cation V), the Compressive ELM focuses on reducing computational time

by performing the training in a reduced space, while retaining accuracy

as much as possible.

6.2.1 Low-distortion embeddings

To achieve this, the dimensionality of the hidden layer output matrix is re-

duced by creating a low-distortion embedding of it in a lower-dimensional

space through Johnson-Lindenstrauss-like embeddings (Johnson and Lin-

denstrauss, 1984; Achlioptas, 2003; Matoušek, 2008), which approximately

preserve the distances between the points and retain the relevant struc-

ture as much as possible. These embeddings occur in approximate distance-

based machine learning algorithms like approximate nearest-neighbors

(Indyk and Motwani, 1998), and are extensively used in the field of Ran-

domized numerical linear algebra (Martinsson, 2009).

6.2.2 Randomized numerical linear algebra

Part of many algorithms in randomized numerical linear algebra is the

embedding (or sketching) of the data into a lower dimension. In compari-

son to distance-based methods though, in linear algebra, the requirement

for preserving the distances is not as strict, and as long as the distances

are roughly preserved (within some factor) it is useful (Martinsson, 2009).

One aspect of linear algebra in which low-distortion embeddings can be

used is in approximate matrix decomposition. Given a matrix, an approx-

imate matrix decomposition can be achieved by first embedding the rows

of the matrix into a lower-dimensional space (through one of many avail-

able low-distortion Johnson-Lindenstrauss-like embeddings), solving the
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decomposition, and then projecting back to the full space. If such an em-

bedding (or sketch) is accurate, then this allows for solving the problem

with high accuracy in reduced time. An example of such an algorithm is

the approximate SVD.

Approximate SVD The algorithm for approximate SVD is summarized in

Algorithm 8. More background on the algorithm can be found in (Halko

et al., 2011).

Algorithm 8 Approximate SVD (Halko et al., 2011) (Publication V).
Given an m × n matrix A, compute k-term approximate SVD A ≈
UDVTas follows:

1: - Form the n×(k+p) random matrix Ω. (where p is small oversampling

parameter)

2: - Form the m × (k + p) sampling matrix Y = AΩ. ("sketch" it by

applying Ω)

3: - Form the m × (k + p) orthonormal matrix Q, such that range(Q) =

range(Y).

4: - Compute B = Q∗A.

5: - Form the SVD of B so that B = ÛDVT

6: - Compute the matrix U = QÛ

Application to ELM Through the approximate SVD, the time it takes to

train the ELM can be reduced. Furthermore, the efficient L2 regulariza-

tion from Section 5.4.3 can be easily integrated in it as well. The main

question now is, whether it is actually possible to obtain more accurate

models in less time.

Before giving an overview of the experiments investigating this, the next

section gives a short overview of fast sketching algorithms that can be

used as part of the approximate SVD algorithm.

6.2.3 Faster Sketching

Typically, the bottleneck in Algorithm 8 is the time it takes to sketch the

matrix. Rather than using a class of random matrices of Gaussian vari-

ables for sketching A, one can also use random matrices that are sparse or

structured in some way (Achlioptas, 2003; Matoušek, 2008), and for which

the matrix-vector product can be computed more efficiently. Furthermore,

(Ailon and Chazelle, 2006) introduced the Fast Johnson-Lindenstrauss

Transform (FJLT), which uses a class of random matrices that permit ap-
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plication to vectors from an n× n matrix to a vector in O(n log(n)), rather

than the usual O(n2). Besides this obvious speedup, this class of matri-

ces is also more successful in creating a low-distortion embedding when

applied to a sparse matrix. These transforms consist of the application of

three easy-to-compute matrices

(
P
)
k×n

(
W

)
n×n

(
D
)
n×n

where P, W, and D vary depending on the exact scheme. Generally, D

is a diagonal matrix with random Rademacher variables {−1,+1} on the

diagonal. In this work, the following transforms are considered for faster

sketching:

• Fast Johnson Lindenstrauss Transform (FJLT), introduced in

(Ailon and Chazelle, 2006) for which P is a sparse matrix of random

Gaussian variables, and W encodes the Discrete Walsh-Hadamard Trans-

form.

• Subsampled Randomized Hadamard Transform (SRHT), for which

P is a matrix selecting k random columns from W, and W encodes the

Discrete Walsh-Hadamard Transform.

Both sketching methods were implemented for the Compressive ELM by

adapting the excellent Blendenpik library (Avron et al., 2010).

6.2.4 Experiments

The experiments of Publication V investigate the trade-off between com-

putational time (both training and test), and the accuracy of the Com-

pressive ELM in relation to the dimensionality of the space into which

the problem is reduced, using the sketch. For sketching, Compressive

TR-3-ELMs with a Gaussian, FJLT, and SRHT sketching scheme are con-

sidered, and compared with the standard TR-3-ELM.

Data The experiments are performed using the CaliforniaHousing data

set (Asuncion and Newman, 2007), and the data is divided randomly into

8000 random samples for training and the remaining 12640 samples for

testing.

Experimental parameters The number of hidden neurons in each model

is varied between 2 and 1000, and parameter k = [50, 100, 200, 400, 600].
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Figure 6.2. Results for Compressive ELMs using FJLT sketching with varying k on Cal-
iforniaHousing UCI data set (Publication V).

Experiments are repeated with 200 random realizations of the training

and test set, and average results over those 200 runs are reported.

Effect of embedding dimension Figure 6.2 shows the time-accuracy trade-

offs achieved by the various methods, and shows the effect of the embed-

ding dimension. Although only the results of FJLT sketching are pre-

sented here, similar results hold for the other sketching methods. It can

be seen that

• setting k lower than the number of neurons results in faster training

times (which makes sense since the problem solved is smaller).

• as long as parameter k is chosen large enough, the method is not losing

efficiency (i.e. there is no model that achieves better error in the same

computational time), and it is potentially gaining efficiency (as shown

by the bottom-left plot of Figure 6.2.

Effect of embedding scheme Finally, the experiments showed that

sketches with Gaussian matrices are generally the fastest, and for the

tested problem sizes, the SRHT is slightly faster than the FJLT.
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Discussion Surprisingly, the experiments did not show substantial dif-

ferences in terms of computational time for the different embedding

schemes. Therefore, for the datasets tested, it seems that although FJLT

permits faster matrix multiplications, no advantage could be taken of it

in the tested problems. More research is required to gain more insight

into this behaviour, and to understand in what contexts the FJLT can

effectively be exploited.

Furthermore, the results indicate that although the Compressive ELM

provides an effective trade-off between time and accuracy, in this case,

little compression could be obtained for the information in the hidden

layer: as soon as k is set lower than the number of neurons, the accu-

racy decreases accordingly. This challenge to significantly compress the

information in the hidden layer might be due to the quality of the fea-

tures used in the Tikhonov-regularized Ternary Compressive ELM: they

might result in a full-rank matrix that has no redundancies. However,

more research is needed to better understand in what architectures and

applications the Compressive ELM can effectively compress the randomly

extracted features.

In summary, the Compressive ELM provides a way for trading off com-

putational time and accuracy, by performing the training in a reduced

space, using low-distortion embeddings and approximate matrix decom-

positions based on them. Experiments indicate that through this mecha-

nism, potentially more time can be saved than accuracy lost and therefore

the compressive training mechanism may provide a way to obtain more

accurate models in less time.

Finally, developing low-distortion embeddings and related theoretical

results is currently a very active field of research, and new developments

in this area can be readily integrated to improve the performance of Com-

pressive ELM.
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7. Conclusions and Discussion

7.1 Contributions

The thesis develops several ensembling strategies based on ELM that

can be applied in nonstationary environments and to large-scale learn-

ing problems. Due to the fine-grained structure of the ensemble models,

they are very flexible, and can be evaluated in a parallel fashion. The

individual models can be built and evaluated efficiently by performing

the training and model structure selection on GPUs. Finally, the (adap-

tive) combination of diverse individual models results in a more accurate

model. The models themselves can be relatively simple, while due to en-

sembling the overall model is still accurate. The results suggest this to

be an accurate, yet flexible approach that can be used for analyzing large-

scale potentially nonstationary streams of data.

Furthermore, several very different variable selection strategies have

been explored. Firstly, in the ELM-FS, the use of the ELM architecture

for variable selection, through relaxation of the variable selection prob-

lem is investigated. Besides providing a good subset of variables, the pre-

sented approach determines for each subset size, which variable subset

would be best, and how the generalization error is expected to change de-

pending on the number of variables selected. This provides insight into

the problem, and allows for an informed decision on the variable subset

that is best for the current context. Secondly, a filter method is presented

for variable selection, which allows for variable selection in large-scale

problems through the use of (multi-)GPU-acceleration of the Delta Test

criterion, used in a parallelized genetic algorithm. Finally, new binary

and ternary random weight schemes for ELM are developed, which re-

sult in more accurate and compact models. Experiments suggest that the
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changed weight schemes make the ELM more robust to noisy and irrele-

vant variables, and are therefore a promising target for future research.

Finally, an approach was presented for reducing the computational time

needed for training the ELM by embedding the random feature expan-

sions in a lower-dimensional space. This allows for a flexible trade-off

between accuracy and speed of the ELM, and could potentially reduce

redundancy in the hidden neurons, resulting in more effective models.

Experiments suggest that this approach may provide a path towards ob-

taining more accurate models in less time.

Overall, the collection of proposed methods provides an efficient, accu-

rate and flexible framework for solving large-scale supervised learning

problems. Several distinct strategies are explored for obtaining faster and

more accurate models that are particularly suited for handling modern

large-scale data sets. The developed methods are not limited to the par-

ticular types of ELMs and contexts in which they have been tested, and

they may be readily combined, adapted and integrated for application in

different contexts and models.

7.2 Future directions

Of course research is a continuing process, and every new development

and result brings new questions. To conclude, this section gives a short

overview of some of those possible future research directions.

Better training and regularization strategies Several results from the the-

sis suggest the importance of proper regularization for obtaining an ac-

curate model and preventing overfitting. Furthermore, recent results in

deep learning (Ba and Caruana, 2014), suggest that the success of deep

neural networks may be due to the way they are trained, rather than just

their architecture: i.e. it is possible to train a shallow mimic network

based on an already trained deep network, which attains better accuracy

than when a shallow network is trained directly. Perhaps what is missing

for shallow networks, in order to obtain as good or similar performance as

deep networks, is the right algorithm?

Therefore, an important line of research is exploring alternative train-

ing and regularization strategies in ELM-based architectures. What is the

best strategy in training and performing model structure selection, such

that the model obtains high accuracy and does not suffer from overfitting?
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Improved data-agnostic random features The results from the Binary and

Ternary ELM suggest that improved data-agnostic random features can

be obtained by using weight initialization schemes other than the ones

typically used in hidden layer initialization. Why exactly does one weight

scheme work better than another, and can insights into this inform on

even better weight schemes?

Overall then, aside from the question “what is the best accuracy a model

can achieve?”, in my opinion the more interesting question is “what is the

most effective way to achieve this accuracy?”. What routes exist towards

obtaining optimal performance, and what effective shortcuts exist along

the way for getting there faster?
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Abstract. In this paper, we investigate the application of adaptive en-
semble models of Extreme Learning Machines (ELMs) to the problem of
one-step ahead prediction in (non)stationary time series. We verify that
the method works on stationary time series and test the adaptivity of
the ensemble model on a nonstationary time series. In the experiments,
we show that the adaptive ensemble model achieves a test error compa-
rable to the best methods, while keeping adaptivity. Moreover, it has low
computational cost.

Keywords: time series prediction, sliding window, extreme learning ma-
chine, ensemble models, nonstationarity, adaptivity.

1 Introduction

Time series prediction is a challenge in many fields. In finance, experts predict
stock exchange courses or stock market indices; data processing specialists pre-
dict the flow of information on their networks; producers of electricity predict
the load of the following day [1,2]. The common question in these problems is
how one can analyze and use the past to predict the future.

A common assumption in the field of time series prediction is that the un-
derlying process generating the data is stationary and that the data points are
independent and identically distributed (IID). Under this assumption, the train-
ing data is generally a good indication for what data to expect in the test phase.

However, a large number of application areas of prediction involve nonstation-
ary phenomena. In these systems, the IID assumption does not hold since the
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system generating the time series changes over time. Therefore, contrary to the
stationary case, one cannot assume that one can use what has been learned from
past data and one has to keep learning and adapting the model as new samples
arrive. Possible ways of doing this include: 1) retraining the model repeatedly
on a finite window of past values and 2) using a combination of different models,
each of which is specialized on part of the state space.

Besides the need to deal with nonstationarity, another motivation for such an
approach is that one can drop stationarity requirements on the time series. This
is very useful, since often we cannot assume anything about whether or not a
time series is stationary.

To construct the ensemble model presented in this paper, a number of Extreme
Learning Machines (ELMs) [3] of varying complexity are generated, each of which
is individually trained on the data. After training, these individual models are
combined in an ensemble model. The output of the ensemble model is a weighted
linear combination of the outputs of the individual models. During the test
phase, the ensemble model adapts this linear combination over time with the
goal of minimizing the prediction error: whenever a particular model has bad
prediction performance (relative to the other models) its weight in the ensemble
is decreased, and vice versa. A detailed description can be found in Section 2.3.

In the first experiment, we test the performance of this adaptive ensemble
model in repeated one-step ahead prediction on a time series that is known to
be stationary (the Santa Fe A Laser series [4]). The main goal of this experiment
is to test the robustness of the model and to investigate the different parameters
influencing the performance of the model. In the second experiment, the model
is applied to another time series (Quebec Births [5]) which is nonstationary and
more noisy than the Santa Fe time series.

Ensemble methods have been applied in various forms (and under various
names) to time series prediction, regression and classification. A non-exhaustive
list of literature that discusses the combination of different models into a single
model includes bagging [6], boosting [7], committees [8], mixture of experts [9],
multi-agent systems for prediction [10], classifier ensembles [11], among others.
Out of these examples, our work is most closely related to [10], which describes
a multi-agent system prediction of financial time series and recasts prediction
as a classification problem. Other related work includes [11], which deals with
classification under concept drift (nonstationarity of classes). The difference is
that both papers deal with classification under nonstationarity, while we deal
with regression under nonstationarity.

In Section 2, the theory of ensemble models and the ELM are presented, as
well as how we combine both of them in the adaptive ensemble method. Section
3 describes the experiments, the datasets used and discusses the results.

2 Methodology

2.1 Ensemble Models

In ensemble methods, several individual models are combined to form a single
new model. Commonly, this is done by taking the average or a weighted average
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of the individual models, but other combination schemes are also possible [11].
For example, one could take the best n models and take a linear combination of
those. For an overview of ensemble methods, see [8].

Ensemble methods rely on having multiple good models with sufficiently un-
correlated error. The individual models are typically combined into a single
ensemble model as follows:

ŷens(t) =
1

m

m∑

i=1

ŷi(t)), (1)

where ŷens(t) is the output of the ensemble model, ŷi(t) are the outputs of the
individual models and m is the number of models.

Following [8], it can be shown that the variance of the ensemble model is lower
than the average variance of all the individual models:

Let y(t) denote the true output that we are trying to predict and ŷi(t) the
estimation for this value of model i. Then, we can write the output ŷi(t) of model
i as the true value y(t) plus some error term εi(t):

ŷi(t) = y(t) + εi(t). (2)

Then the expected square error of a model becomes

E[
{
ŷi(t) − y(t)

}2
] = E[εi(t)

2]. (3)

The average error made by a number of models is given by

Eavg =
1

m

m∑

i=1

E[εi(t)
2]. (4)

Similarly, the expected error of the ensemble as defined in Equation 1 is given
by

Eens = E
[{ 1

m

m∑

i=1

ŷi(t) − y(t)
}2]

= E
[{ 1

m

m∑

i=1

εi(t)
}2]

. (5)

Assuming the errors εi(t) are uncorrelated (i.e. E[εi(t)εj(t)] = 0) and have zero
mean (E[εi(t)] = 0), we get

Eens =
1

m
Eavg. (6)

Note that these equations assume completely uncorrelated errors between the
models, while in practice errors tend to be highly correlated. Therefore, errors are
often not reduced as much as suggested by these equations, but can be improved
by using ensemble models. It can be shown that Eens < Eavg always holds. Note
that this only tells us that the test error of the ensemble is smaller than the
average test error of the models, and that it is not necessarily better than the
best model in the ensemble. Therefore, the models used in the ensemble should
be sufficiently accurate.
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2.2 ELM

The ELM algorithm is proposed by Guang-Bin Huang et al. in [3] and makes
use of Single-Layer Feedforward Neural Networks (SLFN). The main concept
behind ELM lies in the random initialization of the SLFN weights and biases.
Under the condition that the transfer functions in the hidden layer are infinitely
differentiable, the optimal output weights for a given training set can be deter-
mined analytically. The obtained output weights minimize the square training
error. The trained network is thus obtained in very few steps and is very fast to
train, which is why we use them in the adaptive ensemble model.

Below, we review the main concepts of ELM as presented in [3]. Consider a
set of M distinct samples (xi, yi) with xi ∈ Rd and yi ∈ R; then, a SLFN with
N hidden neurons is modeled as the following sum

N∑

i=1

βif(wixj + bi), j ∈ [1, M ], (7)

with f being the activation function, wi the input weights to the ith neuron in
the hidden layer, bi the biases and βi the output weights.

In the case where the SLFN would perfectly approximate the data (meaning
the error between the output ŷi and the actual value yi is zero), the relation is

N∑

i=1

βif(wixj + bi) = yj, j ∈ [1, M ], (8)

which can be written compactly as

Hβ = Y, (9)

where H is the hidden layer output matrix defined as

H =

⎛
⎜⎝

f(w1x1 + b1) · · · f(wNx1 + bN )
...

. . .
...

f(w1xM + b1) · · · f(wNxM + bN )

⎞
⎟⎠ , (10)

and β = (β1 . . . βN )T and Y = (y1 . . . yN )T .
Given the randomly initialized first layer of the ELM and the training inputs

xi ∈ Rd, the hidden layer output matrix H can be computed. Now, given H and
the target outputs yi ∈ R (i.e. Y), the output weights β can be solved from the
linear system defined by Equation 9. This solution is given by β = H†Y, where
H† is the Moore-Penrose generalized inverse of the matrix H [12]. This solution
for β is the unique least-squares solution to the equation Hβ = Y. Overall, the
ELM algorithm then is:
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Algorithm 1. ELM

Given a training set (xi, yi),xi ∈ Rd, yi ∈ R, an activation function f : R �→ R and N
the number of hidden nodes,

1: - Randomly assign input weights wi and biases bi, i ∈ [1, N ];
2: - Calculate the hidden layer output matrix H;
3: - Calculate output weights matrix β = H†Y.

Theoretical proofs and a more thorough presentation of the ELM algorithm
are detailed in the original paper [3].

2.3 Adaptive Ensemble Model of ELMs

When creating a model to solve a certain regression or classification problem,
it is unknown in advance what the optimal model complexity and architecture
is. Also, we cannot always assume stationarity of the process generating the
data (i.e. in cases where the IID assumption does not hold). Therefore, since the
information that has been gathered from past samples can become inaccurate,
it is needed to keep learning and keep adapting the model once new samples
become available. Possible ways of doing this include: 1) retraining the model
repeatedly on a finite window into the past and 2) use a combination of different
models, each of which is specialized on part of the state space. In this paper, we
employ both strategies in repeated one-step ahead prediction on (non)stationary
time series. On the one hand, we use diverse models and adapt the weights with
which these models contribute to the ensemble. On the other hand, we retrain
the individual models on a limited number of past values (sliding window) or on
all known values (growing window).

Adaptation of the Ensemble. The ensemble model consists of a number of
randomly initialized ELMs, which each have their own parameters (details are
discussed in the next subsection). The model ELMi has an associated weight wi

which determines its contribution to the prediction of the ensemble. Each ELM is
individually trained on the training data and the outputs of the ELMs contribute
to the output ŷens of the ensemble as follows: ŷens(t + 1) =

∑
i wiŷi(t + 1).

Once initial training of the models on the training set is done, repeated one-
step ahead prediction on the ’test’ set starts. After each time step, the previous
predictions ŷi(t−1) are compared with the real value y(t−1). If the square error
εi(t − 1)2 of ELMi is larger than the average square error of all models at time
step t − 1, then the associated ensemble weight wi is decreased, and vice versa.
The rate of change can be scaled with a parameter α, called the learning rate.
Furthermore, the rate of change is normalized by the number of models and the
variance of the time series, such that we can expect similar behaviour on time
series with different variance and ensembles with a different number of models.
The full algorithm can be found in Algorithm 2.
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Adaptation of the Models. As described above, ELMs are used in the ensem-
ble model. Each ELM has a random number of input neurons, random number
of hidden neurons, and random variables of the regressor as input.

Besides changing the ensemble weights wi as a function of the errors of the
individual models at every time step, the models themselves are also retrained.
Before making a prediction at time step t, each model is either retrained on a
past window of n values (xi, yi)

t−1
t−n (sliding window), or on all values known so

far (xi, yi)
t−1
1 (growing window). Details on how this retraining fits in with the

rest of the ensemble can be found in Algorithm 2.
As mentioned in Section 2.2, ELMs are very fast to train. In order to further

speed up the retraining of the ELMs, we make use of PRESS statistics, which
allow you to add and remove samples from the training set of a linear model
and give you the linear model that you would have obtained, had you trained
it on the modified training set. Since an ELM is essentially a linear model of
the responses of the hidden layer, PRESS statistics can be applied to (re)train
the ELM in an incremental way. A detailed discussion of incremental training
of ELMs with PRESS statistics falls outside the scope of this paper, but details
on PRESS statistics can be found in [13].

Algorithm 2. Adaptive Ensemble of ELMs

Given a set (x(t), y(t)),x(t) ∈ Rd, y(t) ∈ R, and m models,

1: Create m random ELMs: (ELM1 . . . ELMm)
2: Train each of the ELMs individually on the training data
3: Initialize each wi to 1

m

4: while t < tend do
5: generate predictions ŷi(t + 1)
6: ŷens(t + 1) =

∑
i wiŷi(t + 1)

7: t = t + 1
8: compute all errors → εi(t − 1) = ŷi(t − 1) − y(t − 1)
9: for i = 1 to #models do

10: Δwi = −εi(t − 1)2 + mean(ε(t − 1)2)
11: Δwi = Δwi · α/(#models · var(y))
12: wi = max(0, wi + Δwi)
13: Retrain ELMi

14: end for
15: renormalize weights → w = w/ ||w||
16: end while

3 Experiments

3.1 Experiment 1: Stationary Time Series

The Santa Fe Laser Data time series [4] has been obtained from a far-infrared-
laser in a chaotic state. This time series has become a well-known benchmark
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Fig. 1. MSEtest of ensemble on laser
time series for varying number of models
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Fig. 2. MSEtest of ensemble on laser
time series as a function of learning rate
(no window retraining), for 10 models
(dotted line) and 100 models (solid line)

in time series prediction since the Santa Fe competition in 1991. It consists of
approximately 10000 points and the time series is known to be stationary.

The adaptive ensemble model is trained on the first 1000 values of the time
series, after which sequential one-step ahead prediction is performed on the fol-
lowing 9000 values. This experiment is repeated for various combinations of
learning rate α and number of models in the ensemble. Each ELM has a regres-
sor size of 8 (of which 5 to 8 variables are randomly selected) and between 150
and 200 hidden neurons with a sigmoid transfer function.

Figure 1 shows the effect of the number of models on the prediction accuracy.
It can be seen that the number of models strongly influences the prediction
accuracy and that at least 60 models are needed to get good prediction accuracy.
Figure 2 shows the effect of the learning rate on the prediction accuracy. The
influence of the various (re)training strategies can be found in Table 1. This table
also shows that the method is able to achieve a prediction accuracy comparable
to the best methods [14].

Table 1. MSEtest of ensemble for laser (training window size 1000)

retraining

learning rate #models none sliding growing

0.0 10 39.39 58.56 34.16
0.1 10 28.70 37.93 18.42

0.0 100 24.80 33.85 20.99
0.1 100 17.96 27.30 14.64

Figures 3 and 4 show the adaptation of some of the ensemble weights over the
length of the entire prediction task.
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Fig. 5. The Quebec Births time series

3.2 Experiment 2: Nonstationary Time Series

The Quebec Births time series [5] consists of the number of daily births in
Quebec over the period of January 1, 1977 to December 31, 1990. It consists of
approximately 5000 points, is nonstationary and more noisy than the Santa Fe
Laser Data.

The adaptive ensemble model is trained on the first 1000 values of the time
series, after which sequential one-step ahead prediction is performed on the fol-
lowing 5000 values. This experiment is repeated for varying learning rates α and
numbers of models. Each ELM has a regressor size of 14 (of which 12 to 14
variables are randomly selected) and between 150 and 200 hidden neurons.

Figure 6 shows the effect of the number of models on the prediction accuracy.
It can be seen that the number of models strongly influences the prediction
accuracy, as was the case with the Santa Fe time series. However, we need more
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Births time series as a function of lear-
ning rate (retraining with sliding window
of size 1000), for 10 models (dotted line)
and 100 models (solid line)

Table 2. MSEtest of ensemble for Quebec Births (training windows size 1000)

retraining

learning rate #models none sliding growing

0.0 10 594.04 479.84 480.97
0.1 10 582.09 479.58 476.87

0.0 100 585.53 461.44 469.79
0.1 100 567.62 461.04 468.51

models in order to get a good prediction accuracy. Figure 7 shows the effect
of the learning rate on the prediction accuracy. The influence of the various
(re)training strategies can be found in Table 2.

3.3 Discussion

The experiments clearly show that it is important to have a sufficient number
of models (more is generally better). Furthermore, the shape of the learning
rate graph is independent of the number of models, which means that these
parameters can probably be optimized independently from each other. We are
currently performing a more thorough statistical analysis for determining the
best strategy for optimizing the parameters. However, the results suggest that
choosing the number of models high and choosing a sufficiently large learning
rate (i.e. α = 0.1) is a good and robust strategy.

The results also show that the proposed adaptive ensemble method is able to
achieve a prediction accuracy comparable to the best methods [14], and is able
to do so for both stationary and nonstationary series. An added advantage of
the method is that it is adaptive and has low computational cost.
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4 Conclusions

We have presented an adaptive ensemble model of Extreme Learning Machines
(ELMs) for use in repeated one-step ahead prediction. The model has been
tested on both stationary and nonstationary time series, and these experiments
show that in both cases the adaptive ensemble method is able to achieve a
prediction accuracy comparable to the best methods. An added advantage of the
method is that it is adaptive and has low computational cost. Furthermore, the
results suggest that we can make good guesses for the parameters of the method
(i.e. choose number of models sufficiently large and choose learning parameter
α = 0.1). We are currently performing more thorough statistical analysis of the
model, in order to determine the best strategy for optimizing the parameters.
In addition, we would like to extend the model to include other models like OP-
ELM [15] and investigate how we can guide adding new models to the ensemble
in an online fashion, in order to introduce an extra degrees of adaptivity.
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a b s t r a c t

The paper presents an approach for performing regression on large data sets in reasonable time, using

an ensemble of extreme learning machines (ELMs). The main purpose and contribution of this paper are

to explore how the evaluation of this ensemble of ELMs can be accelerated in three distinct ways:

(1) training and model structure selection of the individual ELMs are accelerated by performing these

steps on the graphics processing unit (GPU), instead of the processor (CPU); (2) the training of ELM is

performed in such a way that computed results can be reused in the model structure selection, making

training plus model structure selection more efficient; (3) the modularity of the ensemble model is

exploited and the process of model training and model structure selection is parallelized across

multiple GPU and CPU cores, such that multiple models can be built at the same time. The experiments

show that competitive performance is obtained on the regression tasks, and that the GPU-accelerated

and parallelized ELM ensemble achieves attractive speedups over using a single CPU. Furthermore, the

proposed approach is not limited to a specific type of ELM and can be employed for a large variety

of ELMs.

& 2011 Published by Elsevier B.V.

1. Introduction

Due to advances in technology, the size and dimensionality of
data sets used in machine learning tasks have grown very large
and continue to grow by the day. For this reason, it is important to
have efficient computational methods and algorithms that can be
applied on very large data sets, such that it is still possible to
complete the machine learning tasks in reasonable time.

Meanwhile, video cards’ performances have been increasing
more rapidly than typical desktop processors and they now
provide large amounts of computational power—compared again
with typical desktop processors [1].

With the introduction of NVidia CUDA [2] in 2007, it has
become easier to use the GPU for general-purpose computation,
since CUDA provides programming primitives that allow you to
run your code on highly parallel GPUs without needing to
explicitly rewrite the algorithm in terms of video card operations.
Examples of successful applications of CUDA include examples
from biotechnology, linear algebra [3], molecular dynamics simu-
lations and machine learning [4]. Depending on the application,
speedups of up to 300 times are possible by executing code on a
single GPU instead of a typical CPU, and by using multiple GPUs it
is possible to obtain even higher speedups. The introduction of

CUDA has lead to the development of numerous libraries that use
the GPU in order to accelerate their execution by several orders of
magnitude. An overview of software and libraries using CUDA can
be found on the CUDA zone web site [2].

In this work, one of these libraries is used, namely CULA [5],
which was introduced in October 2009 and provides GPU-accel-
erated LAPACK functions (see [6] for the original LAPACK). Using
this library the training and model structure selection of the
models can be accelerated. The particular models used in this
work are a type of feedforward neural network, called extreme
learning machine (ELM) [7–10] (see [11–14] for recent develop-
ments based on ELM).

The ELM is well-suited for regression on large data sets, since
it is relatively fast compared with other methods [11,15] and it
has been shown to be a good approximator when it is trained
with a large number of samples [16]. Even though ELMs are fast,
there are several reasons to implement them on GPU and reduce
their running time. First of all, because the ELMs are applied to
large data sets the running time is still significant. Second, large
numbers of neurons are often needed in large-scale regression
problems. Finally, model structure selection needs to be per-
formed (and thus multiple models with different structures need
to be executed) in order to avoid under- or overfitting the data.

By combining multiple ELMs in an ensemble model, the test
error can be greatly reduced [10,17,18]. In order to make it
feasible to apply an ensemble of ELMs to regression on large data
sets, in this paper various strategies are explored for reducing the
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computational time. First, the training and model structure
selection of the ELMs is accelerated by performing these steps
largely on GPU. Second, the training of the ELM is performed in
such a way that values computed during training can be reused
for very efficient model structure selection through leave-one-out
cross-validation. Finally, the process of building the models is
parallelized across multiple GPUs and CPU cores in order to
further speed up the method.

Experiments are performed on two large regression data sets:
the first one is the well-known Santa Fe Laser data set [19] for
which the regression problem is based on a time series; the
second one is the data set 3 from the ESTSP’08 competition [19],
which is also a time series, but consists of a particularly large
number of samples, and needs a large regressor [20,21].

Results of the experiments show competitive performance on
the regression task, and validate our approach of using a GPU-
accelerated and parallelized ensemble model of multiple ELMs:
by adding more ELM models to the ensemble, the accuracy of the
model can be improved; model training and structure selection
of the individual ELM models can be effectively accelerated; and
due to the modularity of the ensemble model, the process of
building all models can be parallelized across multiple GPUs and
CPU-cores. Therefore, the proposed approach is very suitable for
application in large-scale regression tasks.

Although a particular type of ELM is used in this paper (i.e. an ELM
with conventional additive nodes), the proposed approach is not
limited to this specific type of ELM. Indeed, the proposed approach
can be employed for ELMs with a much wider type of hidden nodes,
which need not necessarily be ‘neuron-alike’ [22,16,12].

The organization of this paper is as follows. Section 2 discusses the
models used in this work and how to select an appropriate model
structure. Section 3 gives an overview of the whole algorithm.
Specifically, how multiple individual models are combined into an
ensemble model and what parts are currently accelerated using GPU.
Section 4 shows the results of using this approach on the two
mentioned large data sets. Finally, the results are discussed and an
overview of the work in progress is given.

2. Extreme learning machine for large-scale regression

The problem of regression is about establishing a relationship
between a set of output variables (continuous) yiAR,1r irM

(single-output here) and another set of input variables
xi ¼ ðx

1
i , . . . ,xd

i ÞARd. In the regression cases studied in the experi-
ments, the number of samples M is large: 10 000 for one case and
30 000 for the other.

2.1. Extreme learning machine (ELM)

The ELM algorithm is proposed by Huang et al. in [8] and uses
single-layer feedforward neural networks (SLFN). The key idea of
ELM is the random initialization of a SLFN weights. Below, the
main concepts of ELM as presented in [8] are reviewed.

Consider a set of M distinct samples ðxi,yiÞ with xiARd and
yiAR. Then, a SLFN with N hidden neurons is modeled as the
following sum:

XN

i ¼ 1

bif ðwixjþbiÞ, jA ½1,M�, ð1Þ

with f being the activation function, wi the input weights to the
ith neuron in the hidden layer, bi the hidden layer biases and bi

the output weights.
In the case where the SLFN would perfectly approximate the

data (meaning the error between the output ŷi and the actual

value yi is zero), the relation is

XN

i ¼ 1

bif ðwixjþbiÞ ¼ yj,jA ½1,M�, ð2Þ

which can be written compactly as

Hb¼ Y, ð3Þ

where H is the hidden layer output matrix defined as

H¼

f ðw1x1þb1Þ � � � f ðwNx1þbNÞ

^ & ^

f ðw1xMþb1Þ � � � f ðwNxMþbNÞ

0
B@

1
CA ð4Þ

and b¼ ðb1 . . .bNÞ
T and Y¼ ðy1 . . . yMÞ

T .
With these notations, the theorem presented in [8] states that

with randomly initialized input weights and biases for the SLFN,
and under the condition that the activation function f is infinitely
differentiable, the hidden layer output matrix can be determined
and will provide an approximation of the target values as good as
wished (non-zero) [8,16].

The output weights b can be computed from the hidden layer
output matrix H and target values Y by using a Moore–Penrose
generalized inverse of H, denoted as Hy [23]. Overall, the ELM
algorithm is then:

Algorithm 1. ELM

Given a training set ðxi,yiÞ,xiARd,yiAR, an activation

function f : R/R and N the number of hidden nodes,

1: - Randomly assign input weights wi and biases bi, iA ½1,N�;
2: - Calculate the hidden layer output matrix H;

3: - Calculate output weights matrix b¼HyY.

The proposed solution to the equation Hb¼ Y in the ELM
algorithm, as b¼HyY has three main properties making it a rather
appealing solution:

1. It is one of the least-squares solutions to the mentioned
equation, hence the minimum training error can be reached
with this solution;

2. It is the solution with the smallest norm among the least-
squares solutions;

3. The smallest norm solution among the least-squares solutions
is unique and is b¼HyY.

Theoretical proofs and a more thorough presentation of the
ELM algorithm are detailed in the original paper in which Huang
et al. present the algorithm and its justifications [8]. Furthermore,
as described in [22,16,12], the hidden nodes need not be ‘neuron-
alike’.

The only parameter of the ELM algorithm is the number of
neurons N to use in the SLFN. The optimal value for N can be
determined by performing model structure selection, using an
information criterion like BIC, or through a cross-validation
procedure.

2.2. Model structure selection by efficient LOO computation

Model structure selection enables one to determine an optimal
number of neurons for the ELM model. This is done using some
criterion which estimates the model generalization capabilities
for varying numbers of neurons in the hidden layer. One such
possibility is the classical Bayesian information criterion (BIC)
[24,25], which is used in [17].
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In this paper a different method of performing the model
structure selection is used. Namely, leave-one-out (LOO) cross-
validation, which is a special case of k-fold cross-validation,
where k is equal to the number of samples in the training set
(i.e. k¼M). In LOO cross-validation, the models are trained on M

training sets, in each of which exactly one of the samples has been
left out. The left-out sample is used for testing, and the final
estimation of the generalization error is the mean of the M

obtained errors. Due to the fact that maximum use is made of
the training set, the LOO cross-validation gives a reliable estimate
of the generalization error, which is important for performing
good model structure selection.

The amount of computation for LOO cross-validation might
seem excessive, but for linear models one can compute the LOO
error Eloo without retraining the model M times by using PRESS
statistics [26]. Since ELMs are essentially linear models of the
outputs of the hidden layer, the PRESS approach can be applied
here as well:

Eloo ¼
1

M

XM

i ¼ 1

yi�ŷi

1�hatii
, ð5Þ

where yi and ŷi are respectively the ith training sample, and its
approximation by the trained model, and hatii is the ith value on
the diagonal of the HAT-matrix, which is the matrix which
transforms Y into Ŷ:

Ŷ ¼Hb¼HHyY¼HðHT HÞ�1HT Y¼HAT � Y: ð6Þ

From the above equation, it can be seen that a large part of the
HAT-matrix consists of Hy, the Moore–Penrose generalized
inverse of the matrix H. Therefore, combined training and model
structure selection of the ELM can be optimized by using a
method that explicitly computes Hy. The Hy computed during
training can then be reused in the computation of the LOO error.

Furthermore, since only the diagonal of the HAT-matrix is
needed, it suffices to compute the row-wise dot-product between
H and HyT , and it is not needed to compute HHy in full.

In summary, the algorithm for efficient training and LOO-
based model structure selection of ELM then becomes:

Algorithm 2. Efficient ELM training and model structure
selection.

Given a training set ðxi,yiÞ,xiARd,yiAR, an activation

function f : R/R and @¼ fn1,n2, . . . ,nmaxg defining set of
possible numbers of hidden neurons.
1: Generate the weights for the largest ELM:
2: – Randomly generate input weights wi and biases bi,

iA ½1,nmax�;

3: for all njA@ do

4: Train the ELM:
5: – Take the input weights and biases for the first nj neurons;
6: – Calculate the hidden layer output matrix H;

7: – Calculate Hy by solving it from ðHT HÞHy ¼HT ;

8: – Calculate output weights matrix b¼HyY;
9: Compute Eloo:

10: – Compute diagðHATÞ (row-wise dot-product of H and HyT Þ;

11: – Eloo,j ¼
1
M

PM
i ¼ 1

yi�ŷ i

1�hatii
;

12: end for
13: As model structure, select the ELM with that number of

hidden neurons njA@, which minimizes Eloo,j;

In Fig. 1, the running times for training and combined training
and model structure selection are compared. It can be seen that
by explicitly computing Hy, the training procedure becomes

somewhat slower, but due to the re-use of Hy in the model
structure selection, combined training and model structure selec-
tion became a lot faster. In practice, one can of course use the
fastest function, depending on whether the model just needs to be
trained or the model structure also needs to be selected.

3. Ensemble model of ELM

A common way to achieve reduced error in a certain task is by
building multiple models and average (or take a linear combina-
tion of) of their outputs. This is what is called an ensemble model.
The idea behind it is that the individual models make different
errors (in different directions), and that these errors tend to
cancel each other out, resulting in a reduced error.

In order to determine the optimal combination of the models,
the individual models have to be evaluated on a subset of the data
(say, a calibration set) for which the target values are known.
After evaluation, each model’s predictions of the target values in
the calibration are known. Now, using these predictions, the
linear combination of these predictions that best fits the true
target values can be determined. Computing this linear combina-
tion is done with positivity constraints on the weights.

Alternatively, instead of the outputs of the models, their leave-
one-out outputs can be used for determining the optimal linear
combination of the models. This way, a separate calibration set is
not needed, and the ensemble method can be build using just the
training set. Also, using leave-one-out output prevents overfitting
the linear combination to the data on which it is optimized. For
more information on this particular method of creating ensemble
models, see [18].

Since ELMs are partially random non-linear models, they
provide a set of quasi-independent models. For that reason, it is
possible to use an ensemble methodology in order to achieve
better generalization performance. The independence between
the ELMs is increased by using a random subset of variables for
the training of each ELM. A total of 100 ELM models are build,
and for each ELM individually, the number of hidden neurons is
tuned by performing the LOO cross-validation as described in
Section 2.2.

After model structure selection, the ELMs can be combined
into an ensemble model. In a previous work [17], a calibration set
(separate from the training set) was used to determine the
ensemble weights (i.e. the linear combination of the ELMs).
However, since in this paper during the model structure selection,
the leave-one-out error is computed on the training set, the leave-
one-out output on the training set is already computed, and can
be used to determine the optimal linear combination of models.
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Fig. 1. Comparison of running times of ELM training (solid lines) and ELM training

þ model structure selection (dotted lines), with (black lines) and without

(gray lines) explicitly computing and reusing Hy .
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Added advantage of this approach is that there is no need to
sacrifice part of the training set for the calibration of the
ensemble, and the models can thus be trained more effectively.

Once the ensemble weights are calibrated using the LOO
output of the ELMs, the calibrated ensemble is evaluated on a
test set. The output of the ensemble is computed as the linear
combination of the outputs of the individual models. Fig. 2
summarizes the overall implementation.

Further parallelization possibilities can clearly be seen from
Fig. 2: every ELM can be constructed independently from the
other ELMs and therefore the creation of the ELMs is parallelized
over multiple GPUs and CPUs. Also, the ELMs themselves can be
accelerated. These optimizations will be discussed in detail in the
next section.

4. GPU-acceleration of ELMs and parallelization

4.1. Motivation

Many techniques have been developed in the field of machine
learning to analyze data, and to extract useful information from it,
which can be used to gain insight in the data or perform a task like
prediction. However, due to advances in technology, the size and
dimensionality of the data sets used in machine learning continue to
grow by the day. Therefore, it is important to have efficient
computational methods and algorithms that are able to handle these
large data sets, such that the model selection and learning can still be
performed in reasonable time.

The ELM is well-suited for application on large data sets, since it is
relatively fast compared with other methods and it has been shown
to be a good approximator when it is trained with a large number of
samples [16]. Even though ELMs are fast, there are several reasons to
reduce their running time. First of all, because the ELMs are applied to
large data sets, the running time is still significant. Second, on large
data sets, typically large numbers of neurons are needed, which
increases the running time of ELM. Third, in order to avoid under- and
overfitting the data, one has to perform model structure selection,
and thus compute multiple models with different structure.

In the next subsections, the methods used to reduce the
running time of the ensemble of ELMs are discussed.

4.2. GPU-acceleration of ELM

Since the running time of the ELM algorithm largely consists of
a single operation (solving the linear system), it is the prime
target for optimizing the running time of the ELM. If this
operation can be accelerated, then the running time of each
ELM (and thus of the ensemble) can be greatly reduced. In this
work, this operation is performed on the GPU.

Currently, there are several libraries in development aimed at
speeding up a subset of the linear algebra functions found in
LAPACK [6]:

� CULA tools [5]: A library introduced in October 2009, implement-
ing a subset of LAPACK functions. The free variant of this package
contains functions for solving a linear system (culaGesv), and
performing a least-squares solve (culaGels).
� MAGMA [27]: A recently introduced linear algebra package aiming

at running linear algebra operations on heterogeneous architec-
tures (i.e. using both multi-core CPU and multiple GPUs present
on the system, in order to solve a single problem).1

In this work, CULA Tools is used, which was the first widely
available GPU-accelerated linear algebra package, and was devel-
oped in cooperation with NVidia. Therefore, it is likely to be
well-supported. Specifically, the (culaGesv) and (culaGels)
functions were used, and wrappers around these functions were
written, such that they can be used from MATLAB in the training
and model structure selection of the ELM.

Similar functions are offered by MATLAB and its underlying
LAPACK library. An overview of all functions used in this paper
can be found in Table 1. Since in our application of these functions
all linear systems are fully determined, they give exactly the same
result and only vary in running time.

Something worth noting about computations on GPU, is that
even though double precision calculations are possible, GPUs
perform much better in single precision [1]. In the NVidia
GTX295 cards that were used in this work, the single precision
performance is eight times higher than the double precision
performance.2 Therefore, one should use single precision calcula-
tions wherever possible.

A second reason for using single precision calculations wher-
ever possible is that the way only half as much memory is needed,
and the amount of needed memory determines how far the
method will scale. In our experiments, each GPU has 896 MiB of
video card memory at its disposal. This means that the part of our
algorithm that is executed on GPU (i.e. line 7 in Algorithm 2) can
use at most this amount of memory. For a training problem of
25 000 samples, approximately 100 MiB is needed, and the
amount of memory needed scales linearly with the number of
samples. Therefore, on the used hardware, the approach scales to
approximately 200 000 samples. If one would use the NVidia
Tesla C2070, which has 6 GiB of memory, the approach would
scale to approximately 1.5 M samples.

In order to get an idea of the running time of the function
culaGels, it is compared with MATLAB’s commonly used mldi-

vide (also known as \), as well as with the gels function from
MATLAB’s underlying highly optimized multi-threaded LAPACK
library.3

Since on the CPU the performance in single precision is about
twice the double precision performance, the functions are com-
pared in both single precision and double precision.4

Σ

ELM1

ELM2

ELM100

X

X

X

α1 ≥ 0

α2 ≥ 0

α100 ≥ 0

yloo2

yloo100

Ŷ

yloo1

Fig. 2. Block diagram showing the overall setup of the ensemble of ELMs.

1 It should be noted that this library is being developed by the creators of the

widely used LAPACK.
2 In NVidia’s latest generation of video cards, the double precision perfor-

mance has been greatly increased and operates at half the speed of single

precision.
3 Used MATLAB is version R2009b, which on our Intel i7 920 machine uses the

highly optimized MKL library by Intel.
4 The functions compared here are the functions typically used in the general

case of training an ELM (i.e. the case with non-square HÞ. In our optimized

implementation as explained in Algorithm 2, we are dealing with a square matrix

on the left-hand side of the equation (line 7). Therefore, we actually use the

culaGesv and gesv functions for slightly higher performance.
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In Fig. 3, the running times of the various functions for solving
a linear system are shown. In Fig. 4, the speedup by using
culaGels over the other algorithms can be seen (i.e. the lines
from Fig. 3, divided by the black line from Fig. 3).

From these figures, it can be seen that the precision greatly
affects the performance. Also, MATLAB’s underlying LAPACK
function gels perform much better than the commonly used
mldivide. Finally, culaGels offers the fastest performance
of all.

4.3. Parallellization across CPUs/GPUs

Looking at Fig. 2, one can see that the ELMs that are part of the
ensemble model can be prepared and trained in a completely
independent way. Therefore, running time can be optimized by
dividing the preparation of all models across multiple CPU cores,
and multiple GPUs.

This is achieved using MATLAB’s parallel computing toolbox
[28], which allows to create a pool of so-called MATLAB workers.

Each of the workers runs its own thread for executing the
program, and gets its own dedicated GPU assigned to it, which
is used to accelerate the training and model structure selection
that has to be performed for each model. As an example, consider
the case of an ensemble of 100 ELMs, and four workers. In this
case, each of the workers builds 25 ELMs.

Although in this paper, the parallelized ensemble model was
not executed across multiple computers, the current code could
be executed on multiple computers by using the MATLAB dis-
tributed computing toolbox.

5. Experiments and results

Experiments are performed on two relatively large regression
data sets. The first one is the full Santa Fe Laser data set [19] for
which the regression problem is based on a time series. The
second data set is the ESTSP’08 competition data set number 3
[19] which is also a regression problem based on a time series
computationally more challenging due to the size of the regressor
used [20,21]. Sizes of the data sets are given in Table 2: 85% of the
data is used for training, and the remaining 15% for test.

The ensemble model built in the experiments consists of 100
ELMs. In order to increase diversity between the ELMs, we
randomly select which input variables from the regressor it uses.
The ELMs have between 100 and 1000 neurons with sigmoid
(tanh) transfer functions, and contain a linear neuron for every
input they have,5 such that they perform well on linear problems.
Furthermore, in our implementation of ELM, an output bias is
trained in addition to the output weights. Adding this feature has
minimal overhead, and cross-validation experiments show this
has no negative impact. However, it allows the ELM to adapt to
changing properties of the data on retraining like, for example, a
shift in the mean of the target data.

The ELMs are trained on 85% of the data and have their
structure selected through the earlier discussed efficient LOO
cross-validation on the training set.

Once the ELMs have been build, the ensemble weights are
computed based on the LOO output of the ELMs on the training
set. Finally, the ensemble is tested on the test set. See Table 3 for a
summary of the parameters.

The used hardware consists of a desktop computer with Intel
Core i7 920 CPU and NVidia GTX295 GPUs.

The experiments have been repeated several times for both data
sets. Table 4 gives the total running times of the ensemble for the
various functions used to build the ELMs (see Table 1 for a description
of the functions). The functions are both evaluated in single precision

and double precision (indicated by subscript sp and dp respectively).
Table 4 and Fig. 5 also show how the running time scales with

the number of MATLAB workers.
The ensembles are also evaluated by their normalized mean

square error (NMSE), where NMSE is defined as

NMSE¼
MSE

varðYÞ
¼

1=M
PM

i ¼ 1ðyi�ŷiÞ
2

varðYÞ
, ð7Þ

where M is the number of samples. Table 5 gives the NMSE of the
ensembles on the test set.

Fig. 6 shows how the number of ELMs in the ensemble affects
the NMSE of the ensemble. It can be seen that the more models
are added to the ensemble, the lower the NMSE of the ensemble
becomes.

Table 1
An overview of the various functions used.

Function name Description Runs on

mldivide, \ Solve linear system (MATLAB) CPU

gesv Solve linear system (LAPACK) CPU

gels Least-square solve (LAPACK) CPU

culaGesv Solve linear system (CULA) GPU

culaGels Least-square solve (CULA) GPU
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Fig. 3. Time (s) needed to solve a linear system of 5000 variables and one target

variable, using mldivide (light-gray lines), gels (gray lines), culaGels (dashed

black line) for double precision (solid lines) and single precision (dashed lines).
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Fig. 4. Speedup achieved in solving system of 5000 variables and one target

variable, by using culaGels instead of mldivide, (light-gray lines), gels (gray

lines) for double precision (solid lines) and single precision (dashed lines).

5 The neurons in the hidden layer are ordered such that the linear ones come

first. Therefore, the linear neurons are always selected by the model structure

selection procedure.
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6. Discussion

The experiments show a 3.3 times speedup over the typical
double precision implementation of an ensemble of ELMs, by
using the GPU to speed up the slowest part of the algorithm, and
parallelizing across multiple CPU cores and GPUs (i.e. t(mldivdp)/
t(culaGesvsp)).

Even if the parallelized GPU implementation is compared with
the fastest parallelized CPU implementation, still a significant
speedup is observed.

An unexpected result is the fact that the gesv functions have
approximately the same running time as the mldivide functions,
contrary to the observations in the earlier benchmarks in Section
4.2. We expect this to be the case, because the functions are
applied in a different situation (i.e. in the case with multiple
columns on the right-hand side). However, the result of the GPU
variants of the functions being faster than the CPU variants of the
functions always holds.

Another unexpected result was the fact that running a job in
the MATLAB parallel toolbox with 1 worker (i.e. not parallelized),
is much slower than running the job without the Parallel Toolbox.
It turns out this is due to the fact that every worker limits its
execution to a single thread. Therefore, the code running within
that worker runs on a single core, and no speedups are achieved
by MATLAB’s multi-threaded LAPACK (which normally uses
multiple cores). Therefore, one has to take care to load the
machine with enough workers, such that all CPU cores can be
effectively used.

Table 4
Results for both data sets: running times (in seconds) for running the entire ensemble in parallel on N workers, using the various functions in single precision (sp) and

double precision (dp).

N t (mldivdp) (s) t (gesvdp) (s) t (mldivsp) (s) t (gesvsp) (s) t (culaGesvsp) (s)

Santa Fe 0 674.0 672.3 515.8 418.4 401.0

1 1781.6 1782.4 1089.3 1088.8 702.9

2 917.5 911.5 567.5 554.7 365.3

3 636.1 639.0 392.2 389.3 258.7

4 495.7 495.7 337.3 304.0 207.8

ESTSP 0 2145.8 2127.6 1425.8 1414.3 1304.6

1 5636.9 5648.9 3488.6 3479.8 2299.8

2 2917.3 2929.6 1801.9 1806.4 1189.2

3 2069.4 2065.4 1255.9 1248.6 841.9

4 1590.7 1596.8 961.7 961.5 639.8

Table 2
Sizes of the used data sets. First column gives original total size of the data, while

the other columns only mention the number of samples used in each type of set

(training, test).

Total size

(samples� variables)

Training Test

Santa Fe 10 081�12 8569 1512

ESTSP’08 31 446�168 26729 4717

Table 3
Parameters used in the experiments.

Parameter Santa Fe ESTSP’08

Regressor size 12 168

# Randomly selected variables 2–12 2–168

#Hidden neurons 100:100:1000

Crit. for model struct. selection LOO error on training set

Trained on Random 85% of the data

Tested Remaining 15% of the data

Ensemble weights Based on LOO output of ELMs
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Fig. 5. Running times (in seconds) for running the entire ensemble in parallel on (a) Santa Fe and (b) ESTSP’08, for varying numbers of workers, using mldivide (light-gray

lines), gesv (gray lines), culaGesv (black line) for double precision (solid lines) and single precision (dashed lines).

Table 5
Results for both data sets: normalized mean square test error and standard

deviation (in parenthesis).

Santa Fe ESTSP’08

NMSE (std.) 1.87e�3 (4.61e�4) 1.55e�2 (6.57e�4)

M. van Heeswijk et al. / Neurocomputing 74 (2011) 2430–2437 2435



Finally, Fig. 6 clearly shows how the number of ELMs in the
ensemble affects the NMSE of the ensemble, and it can be seen
that the more models are added to the ensemble, the lower the
NMSE of the ensemble generally becomes.

Although results on the errors of the individual models
compared with the errors of the ensemble model are not exten-
sively reported here, it is important to mention that the test error
achieved by the ensemble model is almost always lower than the
test error of the best model in that ensemble, which provides a
convincing argument for using an ensemble model.

7. Conclusion and future work

Results of the experiments show competitive performance on
the regression task, and validate our approach of using a GPU-
accelerated and parallelized ensemble model of multiple ELMs:
by adding more ELM models to the ensemble, the accuracy of the
model can be improved; model training and structure selection of
the individual ELM models can be effectively accelerated; and due
to the modularity of the ensemble model, the process of building
all models can effectively be parallelized across multiple GPUs
and CPU-cores. Furthermore, the proposed approach is not lim-
ited to a specific type of ELM and can be employed for a large
variety of ELMs.

Finally, in the future we would like to investigate the effect of
running the ELM entirely on GPU, as well as explore the use of
other types of ELMs, as well as other models such as reservoir
computing methods [29], in the ensemble model.
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a b s t r a c t

In the context of feature selection, there is a trade-off between the number of selected features and the

generalisation error. Two plots may help to summarise feature selection: the feature selection path and

the sparsity-error trade-off curve. The feature selection path shows the best feature subset for each

subset size, whereas the sparsity-error trade-off curve shows the corresponding generalisation errors.

These graphical tools may help experts to choose suitable feature subsets and extract useful domain

knowledge. In order to obtain these tools, extreme learning machines are used here, since they are fast

to train and an estimate of their generalisation error can easily be obtained using the PRESS statistics.

An algorithm is introduced, which adds an additional layer to standard extreme learning machines in

order to optimise the subset of selected features. Experimental results illustrate the quality of the

presented method.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Feature selection is an important issue in machine learning. On
the one hand, if not enough features are selected, prediction may
be impossible. On the other hand, using all features may reveal
impossible since the amount of available training data is usually
small with respect to dimensionality. Aside from generalisation
concerns, feature selection may also help experts to understand
which features are relevant in a particular application. For
example, in cancer diagnosis, feature selection may help to
understand which genes are oncogenic. In industry, it is interest-
ing to know which measures are actually useful to assess the
quality of a product, since it allows reducing the measurement
costs.

Usually there exists a trade-off between the number of selected
features and the generalisation error [1]. Indeed, more features
means more information, so an ideal model should perform better.
However, the curse of dimensionality and the finite number of
samples available for learning may harm this ideal view when too
many features are considered. Another issue is that the best
generalisation error is often not the only objective; interpret-
ability of the selected features may also be a major requirement.

Therefore there is often a need for the user to select the number of
features by hand, with the help of appropriate tools.

For each fixed number of selected features, one may find (at
least in principle) the optimal subset of features, giving the best
generalisation error. However choosing between the subsets
created in this way for various sizes might be difficult. Two plots
may help to summarise feature selection: the feature selection
path and the sparsity-error trade-off curve. The feature selection
path shows the best feature subset for each subset size, whereas
the sparsity-error trade-off curve shows the corresponding
generalisation errors. From these plots, experts can choose
suitable feature subsets and extract useful domain knowledge.
Notice that the feature selection path and the sparsity-error
trade-off curve are strongly related, for the latter allows choosing
a feature subset in the former.

In real learning situations, the feature selection path and the
sparsity-error trade-off curve can only be estimated, since both
the target function and the data distribution are unknown. For
linear regression problems, the LARS algorithm [2] is an efficient
tool for finding the best features for linear models. However, the
problem remains open for nonlinear regression problems and
models.

For nonlinear problems, ranking methods can be used to rank
features using e.g. mutual information [3,4]. Thereafter, feature
subsets are built by adding features in the order defined by the
ranking. However, feature subsets can evolve discontinuously for
nonlinear problems: the best feature subset of size dþ1 does not
necessarily contain the best subset of size d [1]. Methods like
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forward or backward search [1] allow searching through the
space of possible feature subsets, but they can only select or drop
one feature at a time. Moreover, many possible feature selections
must be considered at each iteration by such methods based on
greedy search.

This paper proposes a new algorithm to build the feature
selection path and the sparsity-error trade-off curve for nonlinear
problems. Contrarily to e.g. forward search, the proposed iterative
algorithm considers only one neighbour at each iteration. Yet,
multiple features can enter or leave the current feature subset at
each step of the search. Extreme learning machines are used since
they are very fast to train and an estimate of their generalisation
error can easily be computed [5–10]. The proposed method is
theoretically and experimentally compared with other feature
selection methods. Experiments show that the proposed algo-
rithm obtains reliable estimates of the two plots: the feature
selection path and the sparsity-error trade-off curve. In some
cases, the proposed algorithm obtains (i) optimal test errors using
less features and (ii) feature selection paths with more informa-
tion, with respect to the paths obtained by the other feature
selection algorithms used here for comparison.

The following of this paper is organised as follows. Section 2
discusses feature selection. Section 3 introduces the feature
selection path and the sparsity-error trade-off curve and discusses
how they can be used in practice. Section 4 proposes an algorithm
and compares it theoretically with existing methods. Section 5
assesses the proposed algorithm experimentally and conclusions
are drawn in Section 6.

2. Domain analysis and feature selection

In many applications, feature selection is necessary. Indeed,
the number of available samples is usually small with respect to
the data dimensionality. In that case, the curse of dimensionality
prevents us from using all the features, since the necessary
number of training samples grows exponentially with the dimen-
sionality. Therefore, feature selection consists of choosing a trade-
off between the number of selected features and the adequacy of
the learned model. However, it is not always obvious what is a
good feature subset.

A common criterion for assessing the quality of a subset of
features is the generalisation error, i.e. the expected error for new
samples. This criterion relates to the capacity of the model to
generalise beyond training data. Sometimes, experts simply want
to minimise the generalisation error. However, in some contexts,
experts are searching for sparse feature subsets with only a few
features because interpretability is a major concern. In such cases,
the number of features is chosen in order to achieve sufficient
generalisation. Limiting the number of features may also be
necessary because of e.g. measurement costs. In conclusion,
feature selection requires flexible tools which are able to adapt
to specific user needs.

The next section discusses two strongly related tools for
addressing common questions in feature selection situations:
the feature selection path and the sparsity-error trade-off curve.
Section 4 proposes an algorithm to estimate both of them in the
case of nonlinear regression problems. In this paper, the focus is
set on regression and the mean square error (MSE)

1

n

Xn

i ¼ 1

½ti�f̂ ðx1
i ,: :,xd

i 9yÞ�
2 ð1Þ

is used, where xi ¼ ðx
1
i , . . . ,xd

i Þ is instance i, ti is the target value,
n is the number of samples and f̂ is a function approximator with
parameters y.

3. Feature selection path and sparsity-error trade-off curve

Given a set of features, a feature selection path (FSP) shows the
best feature subset for each subset size. Here, best feature subsets
are selected in terms of generalisation error. Fig. 1 shows an
estimate of the feature selection path (FSP) for an artificial
problem, called here the XOR-like problem. The artificial dataset
is built using six random features which are uniformly distributed
in [0,1]. For each sample xi ¼ ðx

1
i , . . . ,x6

i Þ, the target is

f ðxiÞ ¼ x1
i þðx

2
i 40:5Þðx3

i 40:5ÞþEi ð2Þ

where (i) ðx40:5Þ is equal to 1 when x40:5 and is equal to
0 otherwise and (ii) Ei is a noise with distribution N ð0,0:1Þ. This
regression problem is similar to the XOR problem in classifica-
tion: the product term can only be computed using both features
2 and 3. In order to have a sufficient number of data for the
feature selection, 1000 training samples were generated. Fig. 1 is
obtained with the approach proposed in this paper (see Sections
4 and 5). Each column corresponds to a subset size, where black
cells correspond to selected features. Rows correspond to fea-
tures. In essence, a feature selection path is very similar to the
plots in Efron et al. [2], which show estimates of regression
coefficients for different coefficient sparsities.

Each feature subset corresponds to a generalisation error.
Indeed, for each subset size, one can estimate how well the
selected features allow generalising to new samples. These gen-
eralisation errors are required in order to choose one of the
feature subsets in the FSP. Therefore, one obtains a sparsity-error
trade-off (SET) curve, which shows the best achievable general-
isation error for the different feature set sizes. Here, sparsity
refers to the size of the feature subset itself: sparse feature
subsets contain less features.

Fig. 2 shows an estimate of the sparsity-error trade-off (SET)
curve for the XOR-like problem, where the generalisation errors
correspond to the feature subsets given in Fig. 1. The SET curve
shows that the generalisation error is large when only a few
features are selected, i.e. when the feature subset is too sparse.
The generalisation error improves quickly as sparsity decreases
and achieves its optimum for three features. Then, the general-
isation error starts to increase, because of the curse of dimension-
ality. Indeed, the number of training samples becomes too small
with respect to the dimensionality.

Using the feature selection path and the sparsity-error trade-
off curve, experts can answer many questions. It is possible to see
e.g. which features are useful, which features are necessary to
achieve correct results, which features do not seem to be worth
collecting, etc. These questions cannot be answered if one only

Fig. 1. Estimate of the feature selection path for the XOR-like problem. Columns

and rows correspond to subset sizes and features, respectively.
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has the best feature subset: the path of feature subsets is
necessary, as well as the corresponding generalisation errors.

Let us shortly discuss the XOR-like problem using the FSP and
the SET curve in Figs. 1 and 2. Here, three features are sufficient to
achieve optimal models. Indeed, the estimate of the general-
isation error has reached its minimum value. Notice that the
selected features are the relevant features in Eq. (2).

The FSP provides important additional information: features
2 and 3 should be selected together. Indeed, when only one feature
is selected, the feature subset is {1}. But when two feature are
selected, feature 1 is no longer used. Instead, features 2 and 3 are
selected jointly. This cannot be seen when looking only at the
optimal feature subset { 1,2,3}. The FSP reflects Eq. (2), where the
target depends on a nonlinear combination of features 2 and 3.

4. Estimating FSPs and SET curves

In practice, the true FSP and the true SET curve are impossible
to obtain. Indeed, both the true approximated functional and the
true data distribution are unknown. Instead, one has to rely on
estimates. This section reviews existing approaches and intro-
duces a new algorithm in order to overcome their weaknesses.

4.1. Estimating the generalisation error

In order to estimate the SET curve, it is necessary to choose an
estimator of the generalisation error. The generalisation error
corresponds to the expected value of the error on new, unknown
samples. Hence, techniques like e.g. cross-validation or bootstrap
can be used [11,12]. Namely, these methods use the available data
to build a training set and a test set. A model is trained using
training data and tested on test data. The resulting error gives an
estimate of the generalisation error, since none of the test
samples have been used for training. The process can be repeated
to obtain reliable estimates.

It should be pointed out that both cross-validation and boot-
strap estimate the generalisation of a given model, not the best
possible generalisation error. Therefore, using a good model is
necessary to obtain a reliable estimate of the SET curve. A
problem might be that the choice of the feature subsets may be
biased by the model. Indeed, it is possible for optimal feature
subsets to differ with respect to the model. However, it seems
reasonable to think that the problem will not be too important for
sparse feature subsets, which are precisely the feature subsets
which are looked for by experts.

In this paper, leave-one-out (LOO) cross-validation [13] is used
to estimate the generalisation error. First, a single sample is

removed from the dataset and a model is built using the remain-
ing data. Then, the prediction error on the unused sample is
computed. The process is repeated for each sample; the average
result gives an estimate of the generalisation error.

4.2. Optimising feature subsets

In practice, it is impossible to test all possible feature subsets,
since the number of tests grows exponentially with the dimen-
sionality of data. Instead, one typically starts with an arbitrary
feature subset, which is iteratively improved. Examples of such
methods include LARS and forward-backward search. The latter
can e.g. use mutual information to guide the search.

LARS [2] is an algorithm which solves efficiently the LASSO
problem [14], i.e. an L1-regularised linear regression. The con-
straint on the L1-norm enforces sparsity: the number of selected
features increases as the regularisation decreases. LARS can be
used for feature selection and the path of its solutions can be
converted into a FSP. However, LARS is optimal for linear
problems but not necessarily for nonlinear ones.

Mutual information [3,4] is a measure of the statistical
dependency between a set of features and a target variable. It
can be used to choose a subset of features using the strength of
the statistical link between the subset and the output. A simple
example of feature selection method based on mutual informa-
tion consists of (i) ranking features according to their mutual
information with respect to the output and (ii) adding features to
the feature subset in the order defined by the ranking. In such a
case, only d features subsets need to be considered, where d is the
dimensionality. Such procedures are simple, but they cannot deal
efficiently e.g. with XOR-like problems, where features must be
considered together to establish statistical dependencies. An
alternative consists of using multivariate greedy methods, like
e.g. forward or backward search.

Forward search [1] starts from an empty set of features and
iteratively selects a feature to add. Backward search [1] is similar,
but its starts with all features and iteratively removes them. At
each step, every feature which is not yet selected has to be
considered, which means that a total of Oðd2

Þ feature subsets are
considered. Mutual information or validation error can be e.g.
used to choose feature subsets and guide the search. Since
features are added (or removed) one at a time, successive feature
subsets can only differ by one feature, which may not be optimal
in practice.

In the above methods, it is impossible to add or remove several
features simultaneously. It means that for problems like the XOR-
like problem of Section 3, the FSP may not be optimal and may
not highlight the fact that some features must be selected
together. Indeed, Fig. 1 shows that when the number of selected
features changes from one to two, three features must be
changed. This cannot be achieved with e.g. forward search.
Moreover, for the above methods, a lot of possible feature subsets
have to be considered at each iteration.

In the rest of this section, a new algorithm is introduced to
overcome the weaknesses of the above methods. Namely, the
proposed algorithm allows obtaining FSP with significant differ-
ences in successive feature subsets. In Section 5, experiments
show that in some situations, the proposed algorithm obtains
(i) optimal test errors using less features and (ii) FSPs with more
information than the FSPs obtained by LARS and two other greedy
search algorithms.

4.3. Relaxing the feature selection problem

The generalisation error is seldom used to guide the search
for feature subsets. Indeed, this error is usually very costly to

Fig. 2. Estimate of the sparsity-error trade-off curve for the XOR-like problem.
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estimate, since one needs to rely on e.g. cross-validation. Instead,
the heuristic methods described above use other objective func-
tions like e.g. regularised training error or mutual information.
Here, a similar approach to LARS is proposed. The feature selec-
tion problem is firstly relaxed and a regularisation scheme is used
to enforce feature sparsity.

In order to approximate the FSP and the SET curve, let us focus
on finding good feature subsets and good models for each feature
subset size. Using Eq. (1), the corresponding problem can be
stated for regression as

min
b,y

1

n

Xn

i ¼ 1

½ti�f̂ ðb1x1
i ,: :,bdxd

i 9yÞ�
2 s:t: JbJ0 ¼ dsrd ð3Þ

where b is a vector of binary variables s.t. biAf0;1g, JbJ0 is the
L0-norm of b, i.e. the number of non-zero components bi, and ds is
the size of the feature subset. Here, each binary variable bi

indicates whether the ith feature is selected or not. The constraint
limits the number of active features. Notice that the general-
isation error is replaced by the training error in (3).

Because of the L0-norm constraint, the above optimisation
problem is still combinatorial and difficult to solve. In order to
simplify the optimisation problem, let us first rewrite Eq. (3) as a
regularisation, i.e.

min
b,y

1

n

Xn

i ¼ 1

½ti�f̂ ðb1x1
i ,: :,bdxd

i 9yÞ�
2þC0JbJ0 ð4Þ

for some regularisation constant C0ARþ . It is now possible to use
a common approach in machine learning, which consists of
replacing the L0-norm with an L1-norm [15]. Indeed, it has been
shown e.g. for linear models [2] and support vector machines
[16,17] that regularising with respect to the L1-norm decreases
the number of features actually used by the model. Moreover, the
L1-norm is easier to optimise than the L0-norm. The same idea is
used in LARS: [2] shows that a linear regression with an L1

regularisation can be used to reduce the number of selected
features. Notice that the above approach is similar to a common
approach in integer programming which is called relaxation [18].
Eq. (4) becomes

min
~b ,y

1

n

Xn

i ¼ 1

½ti�f̂ ð ~b1x1
i ,: :, ~bdxd

i 9yÞ�
2þC1J

~bJ1 ð5Þ

for some regularisation constant C1ARþ . Vector ~b no longer
defines a feature subset. Instead, Eq. (5) is related to feature

scaling, a problem similar to feature selection where ones tries to
find coefficients giving a different importance to each feature.

Eq. (5) is easier to solve than Eq. (4) since it is differentiable.
Yet, solutions of Eq. (5) can be converted into approximated
solutions of Eq. (4). Indeed, a non-zero ~b i variable can be
considered to mean that the corresponding feature is selected,
i.e. bi ¼ 1. Indeed, even for small values of ~b i, feature i is still used
by the model. The next subsection proposes an algorithm to build
the FSP and the SET curve using Eq. (5).

Notice that the C1 constant is controlling the regularisation on
~b. Indeed, the resulting feature scaling becomes sparser and
sparser as C1 increases. In general, an L1-norm regularisation on
a vector of coefficients causes the coefficients to become zero one
after another, until none of them remains [14,2,19,1]. Indeed,
using the L1-norm regularisation is equivalent to setting a
Laplacian prior on ~b [19]. Using the L2-norm, sparsity would be
lost [19,1], which explains why the L1-norm is used here. The L1-
norm regularisation behaviour is illustrated by Efron et al. in the
case of LARS [2].

4.4. Solving the relaxed feature selection problem

For various values of C1, the solutions of Eq. (5) have different
degrees of sparsity. The algorithm which is proposed here uses
this fact to span the different sizes of feature subsets. Indeed, if C1

is progressively increased, the sparsity of resulting feature subsets
will increase as well. In a nutshell, the proposed algorithm
therefore simply solves Eq. (5) for increasing C1 values.

Solving Eq. (5) is not trivial. Indeed, the objective function may
be non-convex and many local minima may exist. A possible
approach is gradient descent with multiple restarts. However,
gradient descent on continuous variables can be very slow, e.g. if
the minimised function has many plateaux. Moreover, it is
difficult to reach exact values like e.g. ~b i ¼ 0 or ~b i ¼ 1.

In this paper, feature scalings are discretised to overcome the
above problems. Indeed, exact solutions are not necessary, since
they are converted into binary feature subsets afterwards. The
space of all possible feature scaling 0;1½ �

d becomes a hypergrid
f0;1=k,: :,1gd with kþ1 non-zero values in each dimension. Next,
the gradient of the regularised training error is used to guide the
search. At each step, the search only considers the direct neigh-
bour pointed to by the gradient. Here, a direct neighbour of the
feature scaling ~b is a feature scaling ~b

0
s.t. maxi9

~bi
0
� ~b i9r1=k.

According to that definition, several feature scalings can change at
each step. In this paper, k is equal to 10 for the experiments.

The proposed procedure is detailed in Algorithm 1. A fast
implementation based on extreme learning machines is proposed
in Section 4.5. For each repetition of the main loop, the feature
scaling ~b is randomly initialised and C1 is set to zero, i.e. no
regularisation is initially performed. The current solution and the
current model are used to update the FSP and the SET curve for
J ~bJ0 features, if necessary. Given the current solution ~b and the
current value of C1, the gradient of the regularised training error is
used to find a candidate ~bnew in the direct neighbourhood of ~b. If
~bnew is actually better than ~b in terms of regularised training
error, then ~bnew becomes the new, current solution. Otherwise, a
local minimum has been found; C1 is increased and the algorithm
searches for a sparser solution with a smaller regularised training
error (with respect to the new C1 constant). The algorithm stops
when C1 is so large that the L0-norm J ~bJ0 becomes zero, i.e. when
the feature subset becomes empty.

Algorithm 1. Local search algorithm for the relaxed feature
selection problem

for all restarts do
C1’0

initialise ~b randomly

find the vector of parameters y corresponding to ~b (train a
model)
compute the regularised training error

while ~JbJ040 do

estimate the generalisation error obtained using ~b and y
convert the feature scaling ~b into a feature subset b
update the FSP and the SET curve, if necessary

compute the gradient of the regularised training error

find the direct neighbour ~bnew pointed by the gradient

find the vector of parameters ynew corresponding to ~bnew

(train a model)

compute the new regularised training error
if the regularised error has not decreased then

increase C1 until the gradient points to ~bnew s.t.

J ~bnewJ1oJ ~bJ1
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increase C1 until the regularised training error for ~bnew

becomes lower

find the vector of parameters ynew corresponding to ~bnew

compute the new regularised training error
end if

update the current solution ~b with ~bnew

update the vector of parameters y with ynew

update the regularised training error
end while

end for

In Algorithm 1, y is the vector of model parameters introduced
in Eq. (1). The procedure to obtain y depends on the type of model
which is used. For example, in the case of linear regression,
instances can be first multiplied by scaling coefficients ~b. Then,
the weights y of the linear regression are obtained as usual using
the scaled instances and the target values. The case of non-linear
models is illustrated in Section 4.5, which proposes a fast
implementation of Algorithm 1 based on extreme learning
machines.

Since (i) each local minimum is reached in a finite number of
steps and (ii) C1 is increased whenever a local minimum of the
regularised training error is reached, Algorithm 1 is guaranteed to
terminate in a finite amount of steps. Eventually, the feature
subset becomes empty and the algorithm terminates. Feature
scalings are converted into feature subsets by simply assuming
that features with non-zero scalings ~bi are selected. Indeed,
simply rounding the scalings toward 0 or 1 could not be sufficient,
as even features which correspond to small scalings may never-
theless be used by the model.

Algorithm 1 is not guaranteed to find the optimal solution for
each feature subset size. However, by slowly increasing the
regularisation on JbJ1, the proposed algorithm spans the whole
spectrum of feature subsets sizes. Multiple restarts are performed
to decrease the influence of local minima.

Compared with e.g. forward search and backward elimination,
Algorithm 1 has several advantages. Firstly, the gradient informa-
tion is used to consider only one neighbour at each iteration.
Secondly, multiple features can be updated simultaneously.
Moreover, Algorithm 1 can select unselected features or remove
selected features, which is impossible in simple forward or back-
ward search.

4.5. Fast implementation of the proposed algorithm

Algorithm 1 requires (i) models which are fast to train and (ii)
a fast estimator of the generalisation error. Extreme learning
machines (ELMs) meet both these requirements [5–8]. Firstly,
their training is very fast, since it only requires solving a linear
system. Secondly, the LOO error of an ELM can be computed
quickly and exactly using the PRESS statistics [13,10]. The LOO
error is a special case of the cross-validation error, an estimator of
the generalisation error. This subsection firstly reviews ELMs,
then shows how to use ELMs in order to implement Algorithm 1.

ELMs are feed-forward neural networks with one hidden layer
(see Fig. 3). In traditional feed-forward neural networks, the
weights of both hidden and output weights are simultaneously
optimised through gradient descent. This learning procedure is
called back-propagation in the case of the popular multi-layer
perceptron [20]. However, gradient descent has many drawbacks.
In particular, it is slow and can get stuck in one of the many local
minima of the objective function [5].

Extreme learning machines [5–7] provide an interesting alter-
native to train feed-forward neural networks, which solves the
above problems. Firstly, the weights and biases in the hidden
layer are set randomly and remain fixed during the training
process. Then, the hidden layer output matrix of the ELM with
m hidden neurons is computed as

H¼

s
Pd

i ¼ 1 Wi1X1iþb1

� �
� � � s

Pd
i ¼ 1 WimX1iþbm

� �

^ & ^

s
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i ¼ 1 Wi1Xniþb1

� �
� � � s

Pd
i ¼ 1 WimXniþbm

� �

2
6664

3
7775 ð6Þ

where s is the activation function of the hidden units, W is the
d�m matrix of random hidden layer weights, X is a n� d matrix
where each row corresponds to a training instance and b is the
m-dimensional vector of random hidden layer biases. Usually, s is
the hyperbolic tangent tanh, but any infinitely differentiable
function can be used [5]. For example, radial basis functions are
also considered in [21].

Since the output of an ELM is a linear combination of the
m hidden layer neuron outputs, the output weights are found by
solving the linear problem

min
w

JT�HwJ2
2 ð7Þ

where T is an n-dimensional vector containing the target values
and w is the m-dimensional vector of output weights. It is well
known that the unique solution of Eq. (7) is

w¼HyT ð8Þ

where Hy is the Moore–Penrose pseudo-inverse [22] of H. Using
e.g. singular value decomposition, Hy can be computed efficiently.

In the seminal paper [5], it is shown that ELMs achieve good
performances in terms of error, with respect to other state-of-
the-art algorithms. Moreover, ELMs are shown to be much faster
than traditional machine learning models. For example, they
can be trained up to thousands times faster than support vector
machines. Notice that there exist a significant number of variants
of ELMs. In particular, other activation functions can be used [21]
and ELMs can be trained incrementally [9]. The universal approx-
imation capability of ELMs is discussed in [23].

Another advantage of ELMs is that it is possible to obtain an
analytical expression for an estimate of their generalisation error

Fig. 3. Feed-forward neural network with one hidden layer.
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[10]. Indeed, the LOO error for an ELM can be obtained using the
PRESS statistics [13], i.e.

PRESS¼
1

n

Xn

i ¼ 1

ei

1�zii

� �2

ð9Þ

where ei is the error for the ith training instance and zii is the ith
diagonal term of

Z ¼HHy: ð10Þ

Since ELMs are fast to train and a fast estimator of their
generalisation error exists, they are perfectly fitted to implement
Algorithm 1. Intuitively, as shown in Fig. 4, the feature scaling can
be seen as an extra layer put in front of the ELM. In the following,
the feature scaling is directly plugged into ELMs to make the
development easier. The hidden layer output matrix of the new
ELM becomes
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and the optimal output weights of the new ELM are now given by

~w ¼ ~H
y
T ð12Þ

Using the above definitions, the gradient of the regularised
training error with respect to the scaling vector ~b becomes

r ~bMSE¼

� 2
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where ei is the error for the ith training instance and ~H
0

is defined
as
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since s is here the hyperbolic tangent tanh whose derivative is
tanh0ðzÞ ¼ 1�tanhðzÞ2.

Algorithm 1 can be implemented using (i) Eq. (12) to train an
ELM, (ii) Eq. (9) to estimate its generalisation error and (iii)
Eq. (13) to compute the gradient guiding the search. Notice that
the vector of model parameters y which appears in both Eq. (1)
and Algorithm 1 corresponds here to the vector of output weights
~w. In theory, one should optimise the ELM size m before starting

the scaling search. However, there is no guarantee that the
optimal ELM size is identical for different numbers of selected
features. Therefore, the solution chosen here is simply to choose a
random ELM size at each restart. Indeed, only ELMs with correct
sizes (with respect to the feature subset size) will eventually be
taken into account, since they are precisely the ELMs which will
be used to build the FSP and the SET curve.

In the rest of this paper, the proposed implementation of
Algorithm 1 is called ELM-FS, for ELM-based feature selection.

4.6. Remarks on the estimated SET curve

In the proposed approach, the SET curve is estimated by
selecting the best feature subsets among those which are con-
sidered during the search. The resulting SET curve can be used to
select a feature subset, e.g. the one with the lowest generalisation
error. However, two remarks hold here. Firstly, the estimate of the
generalisation error provided by cross-validation (and in particu-
lar LOO) tends to be less reliable when more and more features
are added, because of the curse of dimensionality. This could lead
experts to choose too large feature subsets. Secondly, the esti-
mated generalisation error is not valid any more as soon as a
particular feature selection is chosen. Indeed, since the estimate
was used to select a particular feature subset, it is biased for this
particular solution. An additional, independent set of instances
should be used to estimate the final generalisation error. Yet, the
estimated SET curve can be used to select a subset size.

5. Experiments

In this section, two goals are pursued through experiments.
Firstly, it is necessary to assess whether the proposed algorithm
obtains feature subsets which are either equivalent or better than
those obtained using standard feature selection methods. Sec-
ondly, since the proposed algorithm naturally provides a FSP, it is
important to assess whether the FSP provides useful information
or not, with respect to methods which only provide a best feature
subset.

The following of this section is organised as follows. Section
5.1 describes the experimental settings. Sections 5.2 and 5.3 show
the results for artificial and real datasets, respectively.

5.1. Experimental settings

ELM-FS is compared with three other methods, in terms of
feature subsets and test error: LARS, forward search with mutual
information (MI-FW) and forward-backward search with mutual
information (MI-FWBW). LARS searches for linear relationships in
data [2], whereas MI-FW and MI-FWBW search for more general,
possibly nonlinear relationships. Whereas the features and the
output are compared in terms of correlation for LARS, mutual
information estimates their statistical dependency. Each feature is
normalised using the mean and the standard deviation computed
on training samples.

MI-FW starts with an empty subset of features. At each
iteration, MI-FW computes the mutual information between the
current subset of features and the output. Then, the feature which

Fig. 4. Extreme learning machine with integrated feature scaling.
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increases the most this mutual information is added to the
current subset of features. The algorithm continues until all
features have been added. MI-FW is not repeated, since it always
starts with the same, empty subset of features. The implementa-
tion of MI-FWBW is similar, except that features can be either
added or removed at each step. Moreover, MI-FWBW is repeated
100 times with random initial feature subsets in order to
(i) reduce the effect of local minima and (ii) obtain a complete
FSP. Mutual information is estimated using a k-nearest neigh-
bours approach introduced by Kraskov et al. [3], where k is chosen
using cross-validation [24].

ELM-FS is performed using 100 repetitions. The neurons of the
100 corresponding ELMs are chosen in a fixed set of 100 neurons.
For each repetition, (i) a random number of neurons is chosen
between 1 and 100 and (ii) the corresponding number of neurons
are chosen in the fixed set of neurons.

The test errors are computed as follows. For each dataset, an
ELM is initialised with 100 neurons. Then, for each feature
selection algorithm and each feature subset size, the output
weights are optimised using the feature subset of the correspond-
ing size, the training samples and OP-ELM, a state-of-the-art
method in extreme learning [10]. Eventually, the predictions of

Fig. 5. Results for the XOR-like dataset: (a–d) the FSPs for LARS, MI-FW, MI-FWBW and ELM-FS, (e) the SET curve for ELM-FS and (f) the test errors for the four compared

methods. Notice the logarithmic scales for errors. (a) FSP: LARS. (b) FSP: MI-FW. (c) FSP: MI-FWBW. (d) FSP: ELM-FS. (e) SET curve: ELM-FS. (f) test errors.

Fig. 6. Results for the functional dataset: (a-d) the FSPs for LARS, MI-FW, MI-FWBW and ELM-FS, (e) the SET curve for ELM-FS and (f) the test errors for the four compared

methods. Notice the logarithmic scales for errors. (a) FSP: LARS. (b) FSP: MI-FW. (c) FSP: MI-FWBW. (d) FSP: ELM-FS. (e) SET curve: ELM-FS. (f) test errors.
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the resulting ELM are compared on the test samples in order to
produce the test error. In order to be able to compare the different
feature selection algorithms, the test errors for a given dataset are
obtained using the same initial ELM. Therefore, identical feature
subsets correspond to identical test errors.

5.2. Results on artificial datasets

In this subsection, two artificial toy problems are used to
compare ELM-FS with LARS, MI-FW and MI-FWBW: (i) the XOR-
like problem introduced in Section 3 and (ii) a complex, nonlinear
functional [24]. For convenience, the definition of the XOR-like
problem is repeated below.

For the XOR-like problem, the artificial dataset is built using
six random features which are uniformly-distributed in [0,1]. For
each sample xi ¼ ðx

1
i , . . . ,x6

i Þ, the target is

f ðxiÞ ¼ x1
i þðx

2
i 40:5Þðx3

i 40:5ÞþEi ð15Þ

where (i) ðx40:5Þ is equal to 1 when x40:5 and is equal to
0 otherwise and (ii) Ei is a noise with distribution N ð0,0:1Þ. This
regression problem is similar to the XOR problem in classifica-
tion: the product term can only be computed using both features
2 and 3.

For the functional problem, the artificial dataset is built using
ten random features which are uniformly-distributed in [0,1]. For
each sample xi ¼ ðx

1
i , . . . ,x10

i Þ, the target is

f ðxiÞ ¼ 10 sinðx1
i Þx

2
i þ20ðx3

i �0:5Þ2þ10x4
i þ5x5

i þEi ð16Þ

where Ei is a noise with distribution N ð0,0:1Þ.

For both artificial problems, 1000 training samples were
generated in order to have a sufficient amount of data for the
feature selection. Each test set consists of 9000 samples, so that
the test error accurately estimates the generalisation error.

For the XOR-like dataset, Fig. 5 shows (i) the FSPs for LARS, MI-
FW, MI-FWBW and ELM-FS, (ii) the SET curve for ELM-FS and
(iii) the test errors for the four methods. The SET curve recom-
mends to use three features. In this case, the four methods choose
the correct feature subset, i.e. f1;2,3g. However, the FSP obtained
using ELM-FS provides additional information: features 2 and
3 should be selected together. Indeed, when ELM-FS selects only
one feature, feature 1 is selected. But when ELM-FS selects two
features, feature 1 is no longer used. Instead, features 2 and 3 are
selected jointly. This information cannot be seen on the FSPs of
LARS, MI-FW and MI-FWBW: they successively select feature
1 and either feature 2 or feature 3. In conclusion, the FSP obtained
using ELM-FS reflects well Eq. (15), where the target depends on a
nonlinear combination of features 2 and 3. Notice that when only
two features are selected, ELM-FS obtains a slightly smaller test
error, which supports its choice of features.

For the functional dataset, Fig. 6 shows (i) the FSPs for LARS,
MI-FW, MI-FWBW and ELM-FS, (ii) the SET curve for ELM-FS and
(iii) the test errors for the four methods. ELM-FS recommends to
use the five features which are actually the ones used to compute
the target. Identical feature subsets and test errors are obtained
using the other algorithms, except LARS which includes feature
3 only for large feature subset sizes and achieves larger test
errors.

According to results for the XOR-like and functional datasets,
ELM-FS is able to cope with nonlinearities and obtains sound
feature subsets. Moreover, for both datasets, the feature subset
which corresponds to the minimum of the SET curve also obtains
the minimum test error. In other words, the SET curve estimated
by ELM-FS using the PRESS statistics is a valuable tool for
choosing the size of the optimal feature subset.

An important difference between ELM-FS and the other
methods, i.e. LARS, MI-FW and MI-FWBW, is that the obtained FSP
highlight features which must be selected together. Indeed, ELM-FS
is able to drop a feature when the feature subset size increases,

Table 1
Computation times in seconds of the different feature selection algorithms for the

XOR-like problem and the functional problem, including the search of the k

parameter for the Kraskov estimator.

LARS MI-FW MI-FWBW ELM-FS

XOR-like 1.2e�2 1.0eþ2 2.6eþ2 3.1eþ2

functional 1.3e�2 1.7eþ2 5.1eþ2 4.2eþ2

Fig. 7. Results for the diabetes dataset: (a-d) the FSPs for LARS, MI-FW, MI-FWBW and ELM-FS, (e) the SET curve for ELM-FS and (f) the test errors for the four compared

methods. Notice the logarithmic scales for errors. (a) FSP: LARS. (b) FSP: MI-FW. (c) FSP: MI-FWBW. (d) FSP: ELM-FS. (e) SET curve: ELM-FS. (f) test errors.
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in order to add two new features which must be used jointly. This
provides an insightful information about the target function.

Table 1 shows the computation times for the different feature
selection algorithms, including the computation time for the
selection of the k parameter used by the Kraskov estimator of

the mutual information. In terms of computation time, ELM-FS is
comparable to MI-FWBW, whereas LARS and MI-FW are faster.
However, it should be highlighted that (i) LARS only searches for
linear relationships and (ii) MI-FW searches through a much
smaller space of possible feature subsets.

Fig. 8. Results for the Poland electricity load dataset: (a-d) the FSPs for LARS, MI-FW, MI-FWBW and ELM-FS, (e) the SET curve for ELM-FS and (f) the test errors for the four

compared methods. Notice the logarithmic scales for errors.
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5.3. Results on real datasets

In this subsection, four real datasets [25] are used to compare
ELM-FS with LARS, MI-FW and MI-FWBW: (i) the diabetes dataset
from Efron et al. [2], (ii) the Poland electricity load dataset [26],
(iii) the Santa Fe laser dataset [27] and (iv) the anthrokids dataset
[28]. The diabetes dataset consists of 442 samples with 10
continuous features. For comparison, a FSP is given for LARS
in [2]. The Poland electricity load dataset consist of 1370 samples
with 30 continuous features. The original time series is trans-
formed into a regression problem, where the 30 past values are
used to predict the electricity load of the next day. For example,
the first feature corresponds to the last day. The Santa Fe laser
dataset consists of 10,081 samples with 12 continuous features.
The anthrokids dataset consists of 1019 samples with 53 features.
For the experiments, the diabetes dataset, the Poland electricity
load dataset and the anthrokids dataset are split into two parts:
70% of the instances are used for training and the remaining 30%
of the instances are used for test. The Santa Fe laser dataset is split
into a training set of 1000 instances and a test set of 9081
instances.

For the diabetes dataset, Fig. 7 shows (i) the FSPs for LARS,
MI-FW, MI-FWBW and ELM-FS, (ii) the SET curve for ELM-FS and
(iii) the test errors for the four methods. For feature subsets of at
most three features, LARS and ELM-FS obtain lower test errors
than MI-FW and MI-FWBW. The FSP of LARS and ELM-FS are
identical for the three first subset sizes: feature 3 (body mass
index), feature 9 (one of the serum measurements) and feature
4 (blood pressure). For larger feature subset sizes, the four algo-
rithms achieve similar test errors. Here, ELM-FS has no advantage
over other methods, but it achieves performances which are similar
in terms of test error to those obtained by LARS, which it the best
other method for this dataset. The SET curve provided by ELM-FS
shows that using two or three features, almost optimal results can
be achieved, which is confirmed by the test errors.

For the Poland electricity load dataset, Fig. 8 shows (i) the FSPs
for LARS, MI-FW, MI-FWBW and ELM-FS, (ii) the SET curve for
ELM-FS and (iii) the test errors for the four methods. According to
the SET curve for ELM-FS, seven features are sufficient to achieve

almost optimal generalisation error. For this subset size, LARS,
MI-FW, MI-FWBW and ELM-FS choose the feature subsets
{1,6,7,14,21, 23, 30} {1,7,8,14,15,21,22}, {1,7,8,14,15,21,22} and
f1;3,7;8,21;22,23g, respectively. In other words, the four methods
recommend to use the electricity load of yesterday (feature 1) and
the electricity load of previous weeks on the same day (e.g.
features 7, 14 or 21). Moreover, they recommend to use the
electricity load around these days (e.g. features 6, 8, 15 or 22),
which could e.g. be used to estimate the time series derivative. A
few other features are used (e.g. features 3, 23 and 30), which
may be explained by the important amount of redundancy in this
regression problem. Test errors are similar for the four methods.

For the Santa Fe laser dataset, Fig. 9 shows (i) the FSPs for
LARS, MI-FW, MI-FWBW and ELM-FS, (ii) the SET curve for ELM-
FS and (iii) the test errors for the four methods. For ELM-FS, the
SET curve shows that 4 features are sufficient to achieve almost
optimal results. The FSP for ELM-FS shows that the corresponding
subset is 1;2,4;7f g. But the FSP also shows that features 3 and
8 seem to be important. Here, the FSP provide additional informa-
tion: the analysis of the successive feature subsets for smaller
subset sizes reveals other interesting features. This cannot be seen
if only the selected feature subset is considered. LARS, MI-FW and
MI-FWBW do not select features 1, 2, 4, and 7 together for small
feature subsets. It explains that ELM-FS beats them in terms of
test error for these subsets sizes. Here, LARS needs eight features
to achieves a similar test error, whereas the methods based on
mutual information are not able to compare to ELM-FS. Notice
that the FSP obtained using ELM-FS has many discontinuities,
which suggests redundancy or complex interactions between the
features and the target function.

For the anthrokids dataset, Figs. 10, 11 and 12 show (i) the FSPs
for LARS, MI-FW, MI-FWBW and ELM-FS, (ii) the SET curve for ELM-
FS and (iii) the test errors for the four methods. For ELM-FS, the SET
curve shows that nine features are sufficient to achieve almost
optimal results. The test error achieves its minimum around this
point for all methods. No method seems to be significantly better
than the others. Yet, the FSP for ELM-FS is different from the three
other FSPs: whereas LARS, MI-FW and MI-FWBW choose successive
feature subsets which are very similar by design, ELM-FS does not

Fig. 9. Results for the Santa Fe laser dataset: (a-d) the FSPs for LARS, MI-FW, MI-FWBW and ELM-FS, (e) the SET curve for ELM-FS and (f) the test errors for the four

compared methods. Notice the logarithmic scales for errors.
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suffer from this constraint. The discontinuities in the FSP for ELM-FS
indicate that there is an important amount of redundancy between
features in this regression problem, what could not be seen with
LARS, MI-FW and MI-FWBW. A closer analysis shows that three
clusters of features are selected often in the nine first columns of the
FSP for ELM-FS: features 1–3, 19–21 and 35–39. These three clusters
are also found by the other feature selection methods. Notice that
ELM-FS also selects e.g. features 8, 12 and 49 which are not selected
by other methods.

Similarly to the case of artificial datasets, the results obtained
in this subsection show that ELM-FS obtains sound feature
subsets. For the diabetes dataset, the Poland electricity load
dataset and the anthrokids dataset, ELM-FS is equivalent to the
best methods in terms of test error. For all four datasets, the SET
curve obtained by ELM-FS can be used to select the best feature
subset size. For the Poland electricity load dataset and the Santa
Fe laser dataset, the feature subset which corresponds to the
minimum of the SET curve also obtains the minimum test error.

Fig. 10. Results for the anthrokids dataset: (a-b) the FSPs for LARS and MI-FW.
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For the diabetes dataset and the anthrokids dataset, the feature
subset which corresponds to a sufficient LOO error in the
SET curve almost obtains the minimum test error, with 3 and
9 features respectively.

The results for the Santa Fe laser dataset show that ELM-FS can
be useful for problems with complex relationships between the
features and the output. Firstly, the optimal test error is achieved
with only four features, whereas LARS needs eight features to
achieve a similar result. For the Santa Fe laser dataset, the small
feature subsets obtained by ELM-FS allows reaching test errors

which are significantly better (for the same subset sizes) than the
test errors achieved by other methods. Secondly, the FSP obtained
by ELM-FS reflects the complex relationships between the fea-
tures and the target: there are many discontinuities in the FSP,
which is also the case for the anthrokids dataset.

Table 2 shows the computation times for the different feature
selection algorithms, including the computation time for the
selection of the k parameter used by the Kraskov estimator of
the mutual information. In terms of computation time, ELM-FS is
comparable to MI-FWBW, whereas LARS and MI-FW are faster.

Fig. 11. Results for the anthrokids dataset: (a-b) the FSPs for MI-FWBW and ELM-FS.
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Again, it should be highlighted that (i) LARS only searches for
linear relationships and (ii) MI-FW searches through a much
smaller space of possible feature subsets.

6. Conclusion

This paper reviews two visual tools to help users and experts
to perform feature selection and gain knowledge about the
domain: the feature selection and the sparsity-error trade-off
curve. The ELM-FS algorithm is proposed to build these two tools.
A specific implementation using ELMs is used to analyse different
datasets. The experimental results show that the proposed tools
and the proposed algorithm can actually help users and experts.
Indeed, they provide not only the optimal number of features but
also the evolution of the estimation of the generalisation error,
and which features are selected for different number of selected
features. The proposed methodology allows making a trade-off
between feature selection sparsity and generalisation error. This
way, experts can e.g. reduce the number of features in order to
design a model of the underlying process.
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1. Introduction

The problem of variable selection is crucial for the time of the design models that classify or perform
regression; so, the better the selection is, the more accurate that models can be designed [1–3]. Although
classification and regression are both modeling problems, they should be treated separately. Thus, the
work presented in this paper focuses on regression, also known as function approximation. Formally, the
function approximation problem is to determine, given a set of input/output pairs (xi, yi) ∈ Rd ×R i =

1...N and an unknown function, f , such as f(xi) ≈ yi. From this, the problem of variable selection
can be defined as the search for the subset of variables that make it possible to build a model that
approximates the data as accurately as possible.

At first, the method to determine the most adequate subset of variables could seem trivial: build a
model for each possible solution. This approach could be considered as the brute force approach and
would be optimal; however, it has critical problems:

• It is not possible to compute all the combinations when the problem has a large number of
variables, due to the computational cost;
• The validity criterion depends in the model, which usually has several parameters that affect the

final results considerably.

These problems have encouraged the use of non-parametric metrics (which are model independent)
to be more objective about the time of evaluating a solution. One of the mainstream ways is to use
mutual information (MI) [4] as a criterion. MI is defined as the difference between the sum of the
individual entropies and the joint entropy and of two events (in the variable selection problem, the events
are the output, Y , and the inputs, X). The higher it is, the more relevant for the model the variables
selected for X should be. This approach has been successfully applied using several estimators to
compute it. Another non-parametric criterion that has been applied to variable selection is the delta
test (DT) [5]. There are few papers that apply it, although its adequacy to perform variable selection
has been theoretically demonstrated in [6,7]. Concretely, in [7], there are comparisons of DT versus
MI using Kraskov’s estimator, where DT shows better performance. A recent comparison between
both approaches has been done in [8], where the MI showed a slightly better performance according to
experts’ opinions. However, in [9], MI estimation using the Parzen window and Kraskov’s method were
outperformed by DT, considering objective metrics as the approximation error using least squares support
vector machines and experts’ opinions. The interesting thing about this last paper is that, due to the
small number of samples, an exhaustive search is performed, so that the global optimum for each metric
is obtained. This encourages the research presented in this paper, because it emphasizes how important
it is to analyze as many solutions as possible. Therefore, this work is focused on optimizing a parallel
genetic algorithm, which is implemented on a novel high performance computing (HPC) architecture
using clusters of computers with several graphical processing units (GPUs). Using this architecture,
speed up can be obtained by using GPUs to compute the fitness (in this case, the DT) and CPUs to
parallelize the genetic algorithm (GA). Moreover, the parallelization of optimization algorithms seems
to be the only way to obtain solutions in large dataset problems, as there are computation and time
limitations if a single machine is used. This work presents analyses, as well one of the most important
parameters in parallel genetic algorithms: the migration operator.
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The rest of the paper is organized as follows: Section 2 introduces the delta test. Afterwards, Section 3
describes the design of the parallel genetic algorithm, which will perform the optimizations presented in
the experiments included in Section 4. Finally, conclusions are discussed.

2. Delta Test in Variable Selection

In order to evaluate the goodness of an individual, the delta test (DT) [5] value obtained using the
combination of variables is used, as it has been shown to be an adequate criterion [6,10].

In function estimation, the main problem is to find the correct signal and noise terms. As mentioned,
the relationship between input (signal) xi and output yi is represented as

yi = f(xi) + ri, i = 1, . . . , N (1)

where ri is the noise term. The usual assumption in many domains behind ri is that the term is
independent and identically distributed following the normal distribution ri ∼ N (0, σ2). In the training
phase, the goal is to have a model with a good generalization ability that does not “learn” the noise, ri.
The DT provides a way to find out how much noise is present in the data before the modeling stage. That
is, it is estimating the variance of the noise, σ2, or the mean squared error (MSE), which can be obtained
without overfitting.

The DT is computed using the nearest neighbor approach as:

σ2 = Var[r] ≈ 1

2N

N∑

i=1

(yi − yNN(i))
2 (2)

where the first nearest neighbor of a point, xi, in the Rd space is xNN(i) and yNN(i) is the output of
xNN(i). The DT is a special case of the Gamma Test [11], another noise variance estimator is based
on nearest neighbor distributions. The difference is in the extra hyper-parameter present in the Gamma
Test (the number of neighbors), while the DT uses only the first nearest neighbor, providing a fully
non-parametric method. The reduction to only the closest neighbor still gives the unbiased estimator of
the noise variance in the limit N →∞ [10].

2.1. Computation of Delta Test Using Pre-Calculated Distances

Computation of the nearest neighbor in the naive way involves calculating the distances between each
pair of samples:

di,j =
d∑

m=1

(x
(m)
i − x(m)

j )2 (3)

and returning the smallest di,j and the corresponding index of the Nearest Neigbor, NN(i), for each
sample. Since the focus is on examining non-empty subsets of variables that can share individual
elements, a lot of time is wasted recomputing the squared differences to obtain di,j . A simple solution
to decrease the running time is to store that information into a N(N − 1)/2 × d matrix, where each row
contains precomputed squared differences for a pair of samples (xi, xj). Given this matrix, computing all
pairwise distances for a given variable subset I ⊆ {1, 2, . . . , d} involves summing precomputed values
for those I variables (i.e., the I-th columns of the matrix).
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2.2. Computation of the Delta Test on a GPU

The computation of the k nearest neighbors (KNN) requires great computational effort, since it has
to compute the pairwise distances between all the points and, then, sort them to choose the closest ones.
In [12], an implementation of the KNN algorithm on a GPU (the code is available at [13]) is presented.
In this approach, brute force is used to compute the distances between the input vectors, as they are
independent of each other; therefore, they are easily parallelized using the single instruction multiple
data (SIMD) paradigm.

After computing the distances, they need to be sorted to determine the closest neighbors. To do so, the
insertion sort algorithm used is Quicksort; due to its recursive nature, it cannot be implemented on GPUs.

All the processes require about 10 times faster speed than other algorithms implemented in libraries,
such as ANN (Approximate Nearest Neighbor [14]) which uses kd-trees and box-decomposition trees to
improve performance.

Another advantage of using the GPU is that, although the computation is repeated constantly, it
allows one to handle large problems, unlike the pre-calculated distance approach, which might have
memory limitations.

3. Design of the Genetic Algorithm

Genetic algorithms (GAs) are a well-known optimization tool that has been applied to many problems.
This kind of algorithm is based on the principles of natural evolution, where the offspring of the new
generations are supposed to be better than their parents. The main advantage of GAs is that they have
the ability to explore the solution space globally, but at the same time, they can exploit the regions where
the best solutions are.

When a GA is designed, the first decision to be made is how an individual will represent a solution,
that is, the solution encoding. The variable selection problem has a straightforward encoding using a
binary chromosome, whose length is equal to the number of variables. If a gene within the chromosome
equals one, the variable is selected; if it is zero, then the variable is discarded.

Once the encoding of the solutions is defined, it is necessary to determine the operators that will affect
the evolution of the individuals. These are introduced in the following subsections.

3.1. GA Operator Description

There are several types of operators that will modify the chromosome of an individual. The first one
is the selection operator, which determines if an individual is going to reproduce and generate offspring.
If the selection is very restrictive and only the best individuals reproduce, the convergence of the
algorithm is accelerated. On the other hand, if random individuals are chosen, there is the risk of
not converging to a good solution, as well as a lack of robustness. The chosen operator is “binary
tournament selection”, which consists of taking two couples of individuals and selecting from each
couple the individual that has better fitness.

The second one is the crossover operator, which is responsible for combining the genes of the parents
to produce the offspring. For the binary encoding, many operators have been proposed, although the
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two-points binary crossover seems to have a compromise between the exploration/exploitation of the
solutions [15]. This operator defines two points in the chromosome where the individuals exchange
genes, generating two new individuals.

Once the offspring are obtained, they might suffer a mutation in their chromosome. This mutation is
the one that helps the algorithm to escape from local minima and jump to other regions of the solution
space. The mutation selected was at the gene level, that is, if the individual is mutating, select-unselect
a random variable.

Finally, to obtain the population t + 1, it has to be decided if the whole population, t, is going to
be replaced (generational GA) or only some of the offspring replace their ancestors (stationary GA).
As there is the need to obtain a high number of solutions, it is more adequate to use the newly generated
individuals, but to maintain exploitation, the best individuals of the previous generation are kept. This is
known as elitism [16].

The evolution continues until a stop criterion is satisfied. There are many possibilities and approaches
proposed in the literature [17]; however, the proposed algorithm only considers an execution time limit
of 600 s. This criterion affects all the previous operators, as well as their parameters (i.e., crossover and
mutation probabilities).

The reason for choosing 600 s is because this value is considered as the maximum time
an operator is willing to wait before a solution is provided. Even though variable selection
is an off − line problem, a human operator might decide to recompute solutions with new
collected data at any time. This time limit has been previously used in the literature for
GAs [18,19], and it is a common time barrier used in many programs implemented by important
companies, like Microsoft [20], Apple [21] , Apache [22] , etc.

Therefore, the limitation implies that the convergence should be fast, but diversity should still be
reasonably maintained. These are the reasons to select the binary tournament (high selection pressure),
two-point binary crossover with a high probability of obtaining a high exploitation of the solutions,
mutation at a gene level, but with a high probability of maintain exploration, and elitism, to always keep
the best chromosomes so far (high exploitation).

To summarize, the standard operators chosen for the algorithm are:

(1) Crossover: two-point binary with 0.8 probability.
(2) Mutation: gene level with 0.1 probability.
(3) Selection: binary tournament selection.
(4) Elitism: keep 10% of the best individuals from the previous generation.
(5) Stop criterion: 600-s time limit.

3.2. Parallelizing the GA

Apart from the optimization of the computation of the fitness function using GPUs, the available
architecture allows the algorithm to be distributed through several machines in a classical cluster manner.
GAs are intrinsically parallel in the sense that several operations can be done in parallel, because
they are independent. However, modifications in the execution flow, like splitting the populations into
sub-populations, also known as demes, lead to better results [23–26].
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3.2.1. Island Model and Migration/Immigration Policy

Among the several approaches proposed in the literature to parallelize GAs [27], the
multi-deme distributed GA (also known as the island model) is one of the most popular, due to its good
behavior [26–28]. This implementation consists of evolving isolated populations on different islands
and, in some cases, exchanging individuals. The implementation of this paradigm usually maps an
island to a processor. In the available architecture for this work, since a processor might have several
cores, populations are mapped to cores. Regarding the use of the GPUs to compute the DT for each
individual, an island uses one GPU to compute the distance matrix.

The mechanism that exchanges individuals between the islands is known as the migration operator.
The benefits of this procedure can be different, depending on the way it is applied and the criterion that
selects the individuals [29]; it can help to maintain diversity by exploring new solutions provided by the
new individuals, or it might help exploitation, because all islands will share some equal individuals. The
communication between the islands requires one to consider the following parameters:

• Send policy: decides which individual or individuals should be sent.
• Acceptance policy: decides if one or several individuals coming from other islands are or are not

included in the destination island.
• Replacement policy: if new individuals are incorporated into the population, this policy must

determine which individuals of the current population should be replaced (in order to maintain the
population size).
• Communication topology: defines the migration flow, that is, between which islands are

individuals being exchanging.
• Communication frequency: determines when the migration step will be carried out.

The analysis of the GA behavior as a function of the migration process has not been studied deeply
since some years ago [30,31], although recent papers study this parameter, as it has an important
influence on the results [32,33]. Concretely, in [33], the authors propose the MultiKulti algorithm,
whose main novelty is to introduce a criterion that determines if an island accepts a migration or does
not. The results presented showed that the diversity and the number of individual evaluations before the
algorithm finished increased using this migration filtering.

The migration rate is a parameter that can be random [34], fixed [26] or autoregulated, depending on
the diversity of the population. However, to consider the population diversity to modulate the migration
rate is equivalent to determining a replacement policy. The reason is that if the replacement policy
determination is based as well on the current population and does not accept any replacement, it is as if
the migration rate has been decreased.

The details on how the algorithm performs the selection of the individuals selected to be migrated and
the ones to be replaced is analyzed in detail in Section 4.3. Regarding the migration topology, all the
islands communicate with each other in a collective manner, as is depicted in Figure 1.
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Figure 1. Fully connected island migration scheme.

3.2.2. Population Distribution in the Cluster

Since the available architecture is a heterogeneous grid of computers, it is obvious that the time
to complete a generation during the run will be different on each computer [35]. As the distributed
populations perform a collective communication broadcasting to individuals, the global performance of
the algorithm would be injured if the fastest machines had to wait for the slower ones, wasting computing
resources. In order to ameliorate this fact, the decision of setting different population sizes has been
taken. Slower or overloaded machines will process less individuals, allowing these processes to require
a shorter time to complete a generation. Therefore, during the collective communications, the waiting
time for the synchronization will be reduced. Obviously, this approach is the same as increasing the
predefined population size in the more powerful machines.

The question that arises from this policy is: how much should the size of the population be
decreased/increased? The answer can be obtained empirically by measuring the time for one generation
on each machine and obtaining the fraction between the fastest/slowest and the other time measurements.
For example, if the time of Machine1 is double that of Machine2, the population size for Machine1

should be half (or the population size for Machine2 should be doubled).
Therefore, a communication step must be performed at the beginning of the algorithms: the root

process (rank 0) is the reference, so each process with its corresponding GPU performs the evaluation
of the same individual (i.e., all variables selected) and waits for the message from the root process,
indicating how much it took to perform the evaluation. Then, each process computes the number of
individuals as:

round

(
sizePop ∗ timeDT

rootT imeDT

)
(4)

keeping in mind that the number of individuals must be even.

3.2.3. Optimizing the Computation of the Population Fitness

The implementation presented by [12] had to be adapted in order to use several GPUs within the same
node. To do so, several functions from the NVIDIAlibrary have to be called, as is described in [36], to
set the desired GPU by each process. For each time the KNN function is called, the whole reference
dataset has to be copied to the GPU memory to compute the distances. Therefore, during the evaluation
of the whole population, this process has to be repeated as many times as the number of individuals with
the possibility of creating an overhead time that could be avoided, since a process will not use other
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GPUs than the one selected and the reference dataset is the same. The implementation of the function
was modified, so that the complete population was given to the mex-function, which computes the KNN
neighbors. Thus, the kernels, when computing the distances just have to accumulate or not accumulate a
distance in a certain dimension depending on the value of the gene in the chromosome.

However, the implementation splits the queries to fit in the GPU memory, and this depends in the
dimension of the dataset, performing a “memcopy” from the host to the device for each split. Therefore,
the higher the dimension of the problem is, the longer it will take to compute the distances.

In this paper, this computation has been optimized, as the dimension of the dataset defined by each
chromosome is different. For example, a chromosome that encodes a selection of just two variables does
not need the other d − 2 variables. Therefore, the function distance computation function is called as
many times as there are individuals, but cropping the dimensionality of the input vectors on each call to
match the variable selection encoded on each chromosome. This process is depicted in Figure 2 with a
chromosome that encodes a solution with two variables.

Figure 2. The procedure to crop the query set based on the chromosome in order to make
the computation of the distances and the data transfer faster.

This cropping is easily performed in MATLAB, due to its efficient matrix operations. Therefore, the
computation of the fitness for individuals with a low number of variables becomes much faster, as the
KNN function does not have to split the query to iterate through all the dimensions of the dataset.

This reduction in time is much higher than the one obtained by reducing the number of calls to select
the GPU and to perform the copy of the reference set to the GPU memory.

4. Experiments

This section shows the performance of the proposed algorithm when compared to previous approaches
using small and large datasets. Afterwards, an analysis of the migration policy chosen is made.
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4.1. Cluster Architecture

The cluster that was configured had the components described below that were interconnected, as
Figure 3 shows.

Figure 3. The cluster of graphical processing units (GPUs) used in the experiments.

(1) One master node with two GPUs:
Processor:

• Model name : (26) Intel(R) Core(TM) i7 CPU 930 @ 2.80 GHz—cache size: 8192 KB
• CPU cores: 4; siblings: 8

Two GPUs:

• Graphics processor: GeForce GTS 450—CUDA cores: 192
• Memory: 1024 MB; memory interface: 128-bit
• Bus Type: PCI Express x16 Gen1 - PCI-E Max link speed: 2500

(2) Two Local network node with one GPU:
Processor:

• Model name: (23) Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83 GHz—cache size:
6144 KB
• CPU cores: 4; siblings: 4

GPU:

• Graphics processor: GeForce 9800 GTX — CUDA cores: 128
• Memory: 512 MB; memory interface: 256-bit
• Bus type: PCIExpress x16 Gen2; PCI-E max link speed: 5000

Processor:

• Model name: (15) Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40 GHz—cache size:
4096 KB
• cpu cores: 4; siblings: 4

GPU:

• Graphics processor: GeForce 8400 GS—CUDA cores: 16
• Memory: 512 MB; memory interface: 64-bit
• Bus type: PCIExpress x16; PCI-E max link speed: not available
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4.2. Comparison with Previous Approaches

This section will analyze the performance and behavior of the proposed algorithm. First,
small datasets are compared with a previous work; afterwards, the algorithm is applied to a large
real-world dataset.

4.2.1. Small Datasets

The algorithm is compared with the approach presented in [37], which is a previous parallel version
of the algorithm implemented in a regular cluster. For the sake of a fair comparison, the stop criteria will
be the same: execution time. In [37], the time limit is set to 600 s, based on studies and recommendations
from the industry arguing that that is the maximum time that an operator is willing to wait to see
a solution.

The same population sizes were used (50,100 and 150), and the datasets processed were: (1) The
Tecator dataset [38]: The Tecator dataset aims at performing the task of predicting the fat content of
a meat sample on the basis of its near-infrared absorbance spectrum. The dataset contains 215 useful
instances for interpolation problems, with 100 input channels and 3 outputs, although only one is going to
be used (fat content). (2) The Anthrokids modified dataset [39]:This dataset consists of several measures
to predict a child’s weight. It has 1019 instances and 55 variables.

The results are shown in Table 1. As the table reflects, the performance of the proposed algorithm is
not impressive in comparison with the previous algorithm. In fact, it does not outperform the previous
approach. However, it is remarkable that the difference between the solutions is not too big, and in some
cases, the new algorithm outperforms the previous one, demonstrating that the proposed approach is a
good algorithm. The reason because the previous algorithm obtains, in general, better solutions for these
datasets is because the GA is able to generate more populations, due to the pre-calculation of the distance
matrix, as it was described in Section 2.

Table 1. Performance in terms of the delta test (DT) value of the cluster of GPUs (pGPU)
against sequential (seq.) and parallel approaches (where the number of processes is notated
as np and the number of GPUs as nGPU) .

Dataset Population Measurement seq. parallel (np = 2) parallel (np = 4) pGPU (np = 4, nGPU = 4)

Anthrokids

50 Mean (DT) 0.01278 (11.5 ×10−4) 0.01269 (14.2 ×10−4) 0.01204 (12.6 ×10−4) 0.01587 (8.1 ×10−3)

100 Mean (DT) 0.01351 (11.6 ×10−4) 0.01266 (86.4 ×10−4) 0.01202 (17.4 ×10−4) 0.014553 (5.6 ×10−4)

150 Mean (DT) 0.01475 (12.1 ×10−4) 0.01318 (11.2 ×10−4) 0.01148 (9.9 ×10−4) 0.01556 (12 ×10−4)

Tecator

50 Mean (DT) 0.13158 (7.9 ×10−4) 0.14297 (7.7 ×10−3) 0.13976 (7.8 ×10−3) 0.123803 (3.7 ×10−3)

100 Mean (DT) 0.13321 (3.1 ×10−3) 0.13587 (2.4 ×10−3) 0.13914 (8.6 ×10−3) 0.132501 (3 ×10−3)

150 Mean (DT) 0.13146 (8.5 ×10−4) 0.1345 (2.4 ×10−3) 0.13522 (6.9 ×10−3) 0.13197 (9.9 ×10−4)

4.2.2. Large Datasets

The analysis of the previous results might discourage the use of GPUs instead of using a
pre-calculation of the distances; however, when the dataset starts becoming a little bit bigger, this second
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approach is not possible any more. The reason is because the application runs out of memory, so to use
a cluster of GPUs, it is not a matter of performance in time or quality results, it is a matter of being able
to provide a solution.

As an example, part of the dataset provided by the Spanish Institute of Statistics (Instituto Nacional
de Estadı́stica (INE)) that contains data about marital dissolutions in Spain is used. Several problems
arise from this data, and one of them is predicting the dissolution process length, which is translated into
the regression problem.

The data to be used consists of 19,967 input samples of 20 variables, which is divided into training
(of 15,385) test (4568) sets. The size of the training set is too big to pre-calculate the distance matrix
used in previous approaches [37].

The proposed approach is executed during 600 s using the same configuration of the previous section
(detailed in Section 3.1), being able to finish only one generation, with 50 individuals providing a DT
value of 0.001642 using 9 variables. Due to the high memory requirements, one of the computers with
the oldest GPU model was delaying the other two, because of the synchronization step in the migration.
Therefore, the experiments are repeated only with two nodes instead of three. The performance increases
significantly, allowing the algorithm to evolve a mean of 7.6 generations, obtaining a DT value of
0.001589 using only 4 variables.

To test the validity of the selection provided, a model (a radial basis function neural network with
15 neurons) is designed using the methodology proposed in [40] without local search optimization. The
experiments are done using all the variables and using the ones selected by the algorithm, obtaining the
results shown in Tables 2 and 3. The approximation errors provided by the neural networks prove how
critical the necessity of performing variable selection before modeling a real world problem is. The
network maintains a good generalization capability, as the differences between the test error and the
training error are small.

Table 2. Delta test values for the large-sized dataset (standard deviation in brackets).

Running Time DT value (std) # variables # generations (std)

600 s (3 nodes, 4 GPUs) 0.001629 (2 ×10−4) 9 1 (0)
600 s (2 nodes, 3 GPUs) 0.001592 (1 ×10−4) 4 7.6 (0.5)

Table 3. Approximation errors (Normalized Root Mean Square Error - NRMSE ) of the
large dataset with and without variable selection using an RBFNN (Radial Basis Function
Neural Network) with 15 neurons.

Train Error Test Error

with variable selection 0.4846 0.5017
without variable selection 1.3086 1.3197
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4.3. Comparison Between Different Migration Policies

Another experiment carried out consists of a comparison of several approaches regarding how the
communication between the islands is performed. In order to isolate as much as possible the effect of the
migration parameters, the seeds of the random function used on each run is the same, so that the unique
element that could modify the results is the migration step. The setting for the experiments is:

• Send policy:
Send best (SB): selects the best individual of the current population;
Send random (SR): selects a random individual of the current population.
• Acceptance policy:

Always accept (AA): always includes the incoming individuals to the population;
Accept if different (AiD): includes the individuals if they fulfill a predefined criterion.
• Replacement policies:

Replace worst (RW): substitutes the worst individual by the incoming one.
• Communication topology:

fully connected (send to all, receive from all).
• Communication frequency:

synchronous fixed rate each 5 generations.

Regarding the send policy, the two selected options are considered, as are the most popular in the
literature. The acceptance policy consists of always accepting the incoming individuals or only accepting
them if they are different from the best individual in the population. In the implementation, an individual
~i = i1, i2, ..., id with ik ∈ 0, 1 is considered different from another individual if the Hamming distance
between them is not higher than d/2.

As the tackled problem requires huge computational effort, only the worst individual replacement
policy is chosen with the aim of converging to a good solution fast. Other approaches could consider
other replacement policies.

4.3.1. Diversity of the Population

The value of the average Hamming distance between each pair of chromosomes is chosen to be the
metric that determines the diversity of the population. For each run, the evolution of this parameter
is recorded and, then, the average of the evolutions is computed; these values are graphically depicted
in Figure 4. It is easy to see how the population maintains diversity when the conditional acceptance
criterion is applied, and the configuration, SB-AA-RW, is the one that has less diversity in the population,
confirming previous results.

4.3.2. Accuracy and Robustness

The reduction of the diversity by not using a conditional acceptance criterion could seem a
disadvantage; however, as Table 4 shows, it is totally the opposite case, because it allows the algorithm
to exploit the less divergent individuals more and to achieve better performance. This table also shows
that the use of the conditional criterion does not affect the final result at all.
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Figure 4. Diversity of the population using different communication parameters. SB, send
best; AA, always accept; RW, replace worst; AiD, accept if different; SR, send random.
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Table 4. Average results and the standard deviation of the best individual obtained.

Migration policy DT value

SB-AA-RW 1.668 ×10−3 (8.8 ×10−5)
SB-AiD-RW 1.763 ×10−3 (1.1 ×10−4)
SR-AA-RW 1.721 ×10−3 (1.3 ×10−4)
SR-AiD-RW 1.721 ×10−3 (1.3 ×10−4)

5. Conclusions

In this paper, we present a new algorithm that takes advantage of new high performance computing
technologies. The main novelty is the use of a cluster, where the nodes have graphical processing units
to compute the fitness function efficiently; this is a cluster of a cluster of GPUs. Another important
contribution is the analysis of several migration policies, showing their influence on population diversity
and result robustness. The performance of the algorithm for small datasets is acceptable when compared
with previous methods, plus it is able to provide good results in a reasonable time. Even when the size
of the dataset becomes too large, the proposed algorithm is able to provide a good solution, in contrast
to the previous approach, which is not able to provide any.
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a b s t r a c t

In this paper, a new hidden layer construction method for Extreme Learning Machines (ELMs) is
investigated, aimed at generating a diverse set of weights. The paper proposes two new ELM variants:
Binary ELM, with a weight initialization scheme based on f0;1g–weights; and Ternary ELM, with a
weight initialization scheme based on f�1;0;1g–weights. The motivation behind this approach is that
these features will be from very different subspaces and therefore each neuron extracts more diverse
information from the inputs than neurons with completely random features traditionally used in ELM.
Therefore, ideally it should lead to better ELMs. Experiments show that indeed ELMs with ternary
weights generally achieve lower test error. Furthermore, the experiments show that the Binary and
Ternary ELMs are more robust to irrelevant and noisy variables and are in fact performing implicit
variable selection. Finally, since only the weight generation scheme is adapted, the computational time
of the ELM is unaffected, and the improved accuracy, added robustness and the implicit variable
selection of Binary ELM and Ternary ELM come for free.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The core idea of the Extreme Learning Machine (ELM) [1,2] is
that it creates a single-layer feedforward neural network (SLFN)
consisting of a randomly initialized hidden layer which randomly
projects the inputs into a high-dimensional space. These randomly
projected inputs are then transformed in a nonlinear way using
some (often) nonlinear transfer function like tanh. Finally, the
training of the ELM consists of solving the linear system formed by
these nonlinearly transformed outputs of the hidden layer, and
their corresponding target values [1,2].

The fact that the hidden layer is not touched after initialization
and training consists of solving a linear system, makes the ELM very
fast compared to other learning methods based on for example back-
propagation or gradient-descent [1,2]. However, an aspect of the ELM
that has not received much attention so far is how to exactly initialize
the hidden layer. Typically, some heuristics are used and the random
layer weights and biases are drawn from a uniform distribution in
interval [�5,5] (assuming that the data is normalized to be zero
mean and unit variance) [3], or from another probability distribution
like the Gaussian distribution [4]. However, heuristics like these are
not necessarily optimal for any given data set and it is possible to
improve the hidden layer initialization by adapting it to the problem
at hand.

One approach for adapting the hidden layer to the context is
the mechanism of batch intrinsic plasticity (BIP) [5–7]. The idea of
BIP is that it adapts the slope and bias of the hidden layer neurons
such that their outputs are approximately exponentially distrib-
uted. Given that the exponential distribution is the maximum
entropy distribution, the information transmission of the neurons
is maximized, resulting in a better model [8].

However, given that a transfer function typically looks like
f ðwTxþbÞ, and wTx, the inner product between weight vector w
and input x, can be rewritten as wTx¼ jwJxj cos θ; where θ is the
angle between vectors w and x, it can be seen that the diversity of
neuronal inputs is mostly affected by the diversity of the norms of
vectors w and x and their angle θ. Although BIP adapts the scaling of
the input weights (and with that, the expected value of jwJxj) such
that the neuron operates in a useful regime, BIP does not optimize
the weight generation scheme itself. This suggests that in order to
further improve the diversity of the information extracted by the
hidden layer, the diversity of the angle θ between the weight vectors
and the inputs could be optimized. In this paper, this is achieved by
using a binary f0;1g�weight scheme, or a ternary f�1;0;1g�weight
scheme. By using a weight scheme like this, each neuron in the
hidden layer focuses on a particular subspace of the variables, and
the diversity of the extracted information is improved. Furthermore,
the binary and ternary weight schemes allow the ELM to perform
implicit variable selection, because neurons that incorporate useful
variables extract more useful information and receive higher weight,
while neurons that incorporate bad variables extract less useful
information and are given lower weight.
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Experiments show that especially the ternary weight scheme
can generally improve the achieved test error. Furthermore, it is
shown that the Binary ELM and the Ternary ELM are more robust
against irrelevant and noisy variables and are in fact performing
implicit variable selection. These advantages come at no increase
in computational cost in comparison to drawing the random
weights from e.g. a uniform or Gaussian distribution, since only
the weight generation scheme is adapted.

The rest of the paper is organized as follows. Section 2 of the
paper discusses the background and theory of ELM, and gives a
short overview of ELM variants as well as preliminaries and
methods relevant for this paper. In particular, it is discussed how
to perform efficient model selection and optimization of the L2
regularization parameter in ELM, which is important for training
robust models. Furthermore, BIP is discussed, since it is useful to
adapt the scaling of the hidden layer weights such that the neurons
operate in an optimal regime. BIP is also important because it
allows us to conclude that any observed differences in performance
between ELMs are due to the different weight generation scheme.
Section 3 discusses the proposed binary and ternary weight
schemes. Finally, Section 4 contains the experiments and analysis
which form the validation for the proposed approach.

2. Preliminaries

2.1. Regression/classification

In this paper, the focus is on the problem of regression, which is
about establishing a relationship between a set of output variables
(continuous) yiAR; 1r irM (single-output here) and another set
of input variables xi ¼ ðx1i ;…; xdi ÞARd. Note that although in this
paper the focus is on regression, the proposed pretraining
approach can just as well be used when applying the ELM in a
classification context.

2.2. Extreme Learning Machine (ELM)

The ELM algorithm is proposed by Huang et al. [2] and uses
Single-Layer Feedforward Neural Networks (SLFN). The key idea of
ELM is the random initialization of a SLFN weights. Below, the
main concepts of ELM as presented in [2] are reviewed.

Consider a set of N distinct samples ðxi; yiÞ with xiARd and yiAR.
Then, a SLFN with M hidden neurons is modeled as the following
sum

∑
M

i ¼ 1
βif ðwi � xjþbiÞ; jA ½1;N�; ð1Þ

with f being the activation function, wi the input weights to the ith
neuron in the hidden layer, bi the hidden layer biases and βi the
output weights.

In the case where the SLFN would perfectly approximate the
data (meaning the error between the output ŷi and the actual
value yi is zero), the relation is

∑
M

i ¼ 1
βif ðwi � xjþbiÞ ¼ yj; jA ½1;N�; ð2Þ

which can be written compactly as

Hβ¼ Y; ð3Þ
where H is the hidden layer output matrix defined as

H¼
f ðw1 � x1þb1Þ ⋯ f ðwM � x1þbMÞ

⋮ ⋱ ⋮
f ðw1 � xNþb1Þ ⋯ f ðwM � xNþbMÞ

0
B@

1
CA ð4Þ

and β¼ ðβ1…βMÞT . With these notations, the theorem presented in
[2] states that with randomly initialized input weights and biases
for the SLFN, and under the condition that the activation function f
is infinitely differentiable, then the hidden layer output matrix can
be determined and will provide an approximation of the target
values as good as desired (non-zero).

Algorithm 1. Standard ELM.

Given a training set ðxi; yiÞ; xiARd; yiAR, an activation function
f : R↦R and M hidden nodes:

1. Randomly assign input weights wi and biases bi, iA ½1;M�.
2. Calculate the hidden layer output matrix H.

3. Calculate output weights matrix β¼H†Y.

The proposed solution to the equation Hβ¼ Y in the ELM
algorithm, as β¼H†Y has three main properties making it a rather
appealing solution:

1. It is one of the least-squares solutions to the mentioned
equation, hence the minimum training error can be reached
with this solution.

2. Among the least-squares solutions, it is the solution with the
smallest norm.

3. This smallest norm solution among the least-squares solutions
is unique and is β¼H†Y.

The reason why the smallest norm solution is preferred, is because
smaller norm solutions tend to have better generalization perfor-
mance, as discussed in [9]. Theoretical proofs and a more thorough
presentation of the ELM algorithm are detailed in the original paper
inwhich Huang et al. present the algorithm and its justifications [2].
Furthermore, the hidden nodes need not be ‘neuron-alike’ [10–12].

Finally, it is recommended to have a bias in the output layer (e.
g. achieved by concatenating the H matrix with a column of ones).
Although this output bias is often not included in the description
of the ELM (since theoretically it is not needed), having the output
bias allows the ELM to adapt to any non-zero mean in the output
at the expense of only a single extra parameter, namely the extra
output weight. This way, the rest of the nonlinear weights can
focus on fitting the nonlinear part of the problem. In a different
context of deep learning [13], decomposing the problem into a
linear part and a nonlinear part has proven to be very effective.

Given a set of candidate neurons, what remains is optimizing the
ELM's other parameters like the subset of M neurons to use or the
regularization parameter. Approaches for picking a subset of M
neurons include model structure selection using an information
criterion like BIC and cross-validation using a criterion like the
leave-one-out error (described in the next section). Other approaches
include methods which first generate a larger than needed set of
neurons, and consequently prune this set of neurons (for example
OP-ELM [3], TROP-ELM [14]), or incremental ways for determining a
set of hidden layer neurons (for example I-ELM [12], CI-ELM [10],
EM-ELM [11]).

An optimization mechanism that is orthogonal to optimizing the
subset of neurons is that of batch intrinsic plasticity (BIP) pretraining
(see Section 2.5), which is a method for optimizing the output
distribution of a given neuron, such that the amount of information
encoded about the inputs is maximized. Also, the proposed binary
and ternary weight schemes (see Section 3) can be considered as
orthogonal to optimizing the subset of neurons, since – like batch
intrinsic plasticity pretraining – it takes place before the training and
optimization of ELM. Therefore, both BIP and the proposed binary
and ternary weight schemes can be applied as a step in many
different ELM variants, and are not restricted to a particular ELM.
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2.3. Efficient LOO computation and model selection

Given a set of candidate ELM models and their corresponding
parameters, model selection enables one to determine the optimal
ELM and parameters. The set of candidate ELMs consists of ELMs that
can for example vary in terms of the number of neurons in the
hidden layer (most common), or the L2 regularization parameter.
Given this set of candidate ELMs, the quality of each ELM is evaluated
using some criterion which estimates its generalization capabilities.

The particular criterion used in this paper for the model selection
is leave-one-out (LOO) cross-validation [15]. In LOO cross-validation,
given a training set of N samples, the candidate models are trained
on N different training sets each of which has exactly one of the
samples left out (hence the name LOO cross-validation). The left-out
sample is then used for evaluating the trained model, and the final
estimation of the generalization error is the mean of the N obtained
squared errors (MSE). Due to the fact that maximum use is made of
the training set, the LOO cross-validation gives a reliable estimate of
the generalization error [15], which is important for performing
accurate model selection.

The amount of computation for LOO cross-validation might seem
excessive, but for linear models one can compute the LOO error
MSEPRESS, without retraining the model N times, by using PRESS
statistics [16]. Since ELMs are essentially linear models of the outputs
of the hidden layer, the PRESS approach can be applied here as well:

MSEPRESS ¼ 1
N

∑
N

i ¼ 1

yi� ŷi

1�hatii

� �2

ð5Þ

where yi and ŷi are respectively the ith training targets, and its
approximation by the trained model, and hatii is the ith value on the
diagonal of the HAT-matrix, which is the matrix that transforms Y
into Ŷ:

Ŷ ¼Hβ
¼HH†Y

¼HðHTHÞ�1HTY
¼HAT � Y ð6Þ

From Eq. (6), it can be seen that a large part of the HAT-matrix
consists of H†, the Moore–Penrose generalized inverse of the matrix
H. Therefore, by explicitly computing H†, and reusing H† to compute
the LOO error MSEPRESS, model structure selection of the ELM comes
at very low overhead. A detailed description of this approach can be
found in [17]. In summary, the algorithm for training and LOO-based
model structure selection of ELM is stated in Algorithm 2.

Algorithm 2. Efficient LOO cross-validation for ELM

Given an ELM and a set H¼ fH1;H2;…;Hmaxgof H matrices
corresponding to ELMs with e.g.

different number of hidden neurons, different regularization
parameters, etc.

1: for all HiAH
2: Train the ELM:
3: - Calculate H†

i by solving it from ðHT
i HiÞH†

i ¼HT
i ;

4: - Calculate output weights matrix β¼H†
iY;

5: Compute MSEPRESS:
6: - Compute diagðHATÞ (row-wise dot-product of Hi and

H†T
i Þ;

7: ssc - MSEPRESS ¼ 1
N
∑N

i ¼ 1
yi� ŷi

1�hatii

� �2

;
8: end for
9: As model structure, select the ELM corresponding to that

HiAH which minimizes MSEPRESS;

With regard to Algorithm 2, in case an L2-regularization parameter
is optimized and the H matrices correspond to H matrices with
different regularization parameters, this is Regularized ELM [18],
which is referred to as TR-ELM in this paper. In the next section an
efficient way is discussed for cross-validating the L2-regularization
parameter of Tikhonov regularization.

2.4. Efficient Tikhonov regularization

When applying Tikhonov regularization, the pseudo-inverse
used in the ELM becomes H† ¼ ðHTHþλIÞ�1HT , for some regular-
ization parameter λ [18]. Each value of λ results in a different
pseudo-inverse H†, and it would be computationally expensive to
recompute the pseudo-inverse for every λ. However, by incorpor-
ating the regularization in the singular value decomposition (SVD)
approach to compute the pseudo-inverse, it becomes possible to
obtain the various H†'s with minimal re-computation. This scheme
was first used in the context of TROP-ELM in [14], and is discussed
next (with some minor optimizations).

Similar to Eq. (6) in Section 2.3, with Tikhonov regularization
the HAT matrix consists for a large part of the pseudo-inverse H†.
Only now, the pseudo-inverse is dependent on λ. Using the SVD
decomposition of H¼UDVT , it is possible to obtain all needed
information for computing the PRESS statistic without recomput-
ing the pseudo-inverse for every λ:

Ŷ ¼Hβ
¼HðHTHþλIÞ�1HTY

¼HVðD2þλIÞ�1DUTY

¼UDVTVðD2þλIÞ�1DUTY

¼UDðD2þλIÞ�1DUTY
¼HAT � Y

where DðD2þλIÞ�1D is a diagonal matrix with d2ii=ðd2iiþλÞ as the
ith diagonal entry. From the above equations it can now be seen
that given U:

MSETR�PRESS ¼ 1
N

∑
N

i ¼ 1

yi� ŷi

1�hatii

� �2

¼ 1
N

∑
N

i ¼ 1

yi� ŷi

1�hi�ðHTHþλIÞ�1hT
i�

 !2

¼ 1
N

∑
N

i ¼ 1

yi� ŷi

1�ui�
d2ii

d2iiþλ

 !
uT
i�

0
BBBB@

1
CCCCA

2

where hi� and ui� are the ith row vectors of H and U, respectively.
Now, the Tikhonov-regularized PRESS and the corresponding λ can
be computed using Algorithm 3, where A○B refers to the element-
wise product of matrices A and B (Schur product). Due to the
convex nature of criterion MSETR�PRESS with respect to regulariza-
tion parameter λ, the Nelder–Mead procedure used for optimizing
λ converges quickly in practice [19,20].

Algorithm 3. Tikhonov-regularized PRESS. In practice, the while
part of this algorithm (convergence for λ) is solved using by a
Nelder–Mead approach [19], a.k.a. downhill simplex.

1: Decompose H by SVD: H¼UDVT

2: Precompute B¼UTy
3: while no convergence on λ achieved do
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4:

- Precompute C¼U○

d211
d211 þλ

⋯ d211
d211 þλ

⋮ ⋱ ⋮
d2NN

d2NN þλ
⋯ d2NN

d2NN þλ

0
BBB@

1
CCCA

5: - Compute ŷ ¼ CB, the vector containing all ŷi

6: - Compute d¼ diagðCUT Þ, the diagonal of the HAT matrix,
by taking the row-wise dot-product of C and U

7: - Compute ε¼ y� ŷ
1�d, the leave-one-out errors

8: - Compute MSETR�PRESS ¼ 1
N∑

N
i ¼ 1ε

2
i

9: end while
10: Keep the best MSETR�PRESS and the associated λ value

2.5. Intrinsic plasticity

2.5.1. Background
The mechanism of intrinsic plasticity is one that is orthogonal

to the earlier mentioned approaches. Namely, it generally takes
place right after generating the random weights of the neurons,
and its result is subsequently used in the further optimization,
pruning and training of the ELM. As such, intrinsic plasticity can be
used in combination with most other ELM approaches.

The concept of intrinsic plasticity has a biological background
and refers to the fact that neurons adapt in such a way that they
maximize their entropy (and thus the amount of information
transmitted), while keeping the mean firing rate low. Intrinsic
plasticity originally appeared in the neural networks literature in
the context of reservoir computing, recurrent neural networks,
liquid state machines and echo state networks [21–23], where it is
used as a method to construct a priori suitable networks that are
guaranteed or likely to offer a certain performance [23]. Like its
biological equivalent, the goal of intrinsic plasticity in the context
of neural networks is to maximize the information transmission of
the neurons in the neural networks. The way it achieves this, is by
shaping the neuron outputs such that they approximately follow
an exponential distribution, which is the maximum entropy
distribution among all positive distributions with fixed mean [8].

2.5.2. Batch Intrinsic Plasticity (BIP) ELM
In [5,7,6,24] the principle of intrinsic plasticity is transferred to

ELMs and introduced as an efficient pretraining method, aimed at
adapting the hidden layer weights and biases, such that the output
distribution of the hidden layer is shaped like an exponential
distribution. The only parameter of batch intrinsic plasticity is the
mean μexp of the target exponential distribution.

Given the inputs ðx1;…; xNÞARN�d and input matrix WinARd�M

(with N being the number of samples in the training set, d the
dimensionality of the data, and M the number of neurons), the
synaptic input to neuron i is given by siðkÞ ¼ xkW

in
�i . Now, it is possible

to adapt slope ai and bias bi, such that the desired output distribution
is achieved for neuron output hi ¼ f ðaisiðkÞþbiÞ. To this end, for each
neuron random targets t¼ ðt1; t2;…; tNÞ are drawn from the expo-
nential distribution with mean μexp, and sorted such that t1o⋯otN .
The synaptic inputs to neuron are sorted as well into vector
si ¼ ðsið1Þ; sið2Þ;…; siðNÞÞ, such that sið1Þosið2Þo⋯osiðNÞ.

Now, in the case of an invertible transfer function, the targets
can be propagated back through the hidden layer, and a linear
model can be defined that maps the sorted si(k) as closely as
possible to the sorted ti(k). To this end, a modelΦðsiÞ ¼ ðsTi ; ð1…1ÞT Þ
and parameter vector vi ¼ ðai; biÞT are defined. Then, given the
invertible transfer function f the optimal slope ai and bias bi for
which each siðkÞ is approximately mapped to tk can be found

by minimizing

JΦðsiÞ � vi� f �1ðtÞJ
The optimal slope ai and bias bi can therefore, like in ELM, be
determined using the Moore–Penrose pseudo-inverse:

vi ¼ ðai; biÞT ¼Φ†ðsiÞ � f �1ðtÞ
This procedure is performed for every neuron with an invertible
transfer function, and even though the target distribution cannot
exactly be matched (due to the limited degrees of freedom in the
optimization problem) it has been shown in [5,7] that batch intrinsic
plasticity is an effective and efficient scheme for input-specific tuning
of input weights and biases used in the non-linear transfer functions.
Effectively, it makes the ELM insensitive to the original scaling of the
inputs and generated weights, and automatically adapts the transfer
function such that it operates in a meaningful regime.

There are several approaches to setting parameter μexp of the
exponential target distribution from which targets t are drawn:

� setting μexp randomly in the interval ½0;1� per-neuron [5,7]
� setting μexp to a specific value for all neurons [5,7]
� cross-validating μexp such that it adapts to the current context

In this paper, the first variant (denoted BIP(rand)-ELM) is used
since it offers an attractive balance between computational time
and accuracy.

As mentioned before, BIP is an optimization mechanism that is
orthogonal to most other approaches to optimizing an ELM, and can
therefore be incorporated in many existing ELM schemes like for
example the ELM trained with L2 regularization. A nice advantage
of this combination is that the stability of BIP-ELM combined with
L2 regularization essentially removes the need to tune the amount
of hidden neurons. Therefore, this is the approach used in the
experiments, combined with weights generated from a Gaussian
distribution, or generated using the proposed binary or ternary
weight scheme that is discussed in the next section.

3. Binary/ternary ELM

3.1. Motivation

The main idea behind the ELM is the fact that theoretically it is
sufficient to generate the hidden layer weights in a random way.
As long as the weights are independent and the transfer functions
are infinitely differentiable [1,2] the ELM is a universal approx-
imator and can approximate any function, given enough data and
given enough neurons. This is however, an asymptotic result, and
in practice there is only limited data available. Therefore, proper
care needs to be taken that the ELM does not overfit by e.g. using
L1 regularization [3], L2 regularization [18], or L1 and L2 regular-
ization [14] on the hidden layer.

Furthermore, as already discussed in the previous section, the
biases and hidden layer weights can be adapted using batch
intrinsic plasticity (BIP) pretraining such that they extract as much
information as possible from the inputs. However, apart from
scaling the weights and picking proper biases, BIP does not optimize
the direction of the weights themselves. It is still perfectly possible
that there exist redundancies between the neurons, and that
although each neuron extracts the maximum amount of informa-
tion, between neurons this information may be very similar. There-
fore, the ELM may still benefit from a weight picking scheme that
ensures the diversity of the extracted information.

To this end, in this paper a binary f0;1g�weight and a ternary
f�1;0;1g�weight scheme are proposed. The motivation for these
schemes is that weights picked in this way lie in very different
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subspaces, and therefore result in diverse inputs to the hidden
layer.

Another way to look at binary and ternary weight schemes is
by looking at the weights in terms of their direction. Weights
generated in this way point in very different directions, which is
advantageous for the diversity of the hidden layer inputs (and thus
the extracted information). This can be seen by rewriting the wTx
that is part of f ðwTxþbÞ as wTx¼ jwJxj cos θ; where θ is the
angle between vectorsw and x. Now, if the weights w have diverse
directions, the angles θ between w and x – and therefore the
hidden layer inputs – will be diverse as well. Furthermore,
combined with BIP pretraining (which essentially makes the
ELM insensitive to the initial jwj and jxj), any difference between
ELMs that only differ in the way they generate the weights, will
have to come from the diversity of cos θ; and hence the angles
between the weights and the input data.

Finally, since the only thing that is adapted in the binary and
ternary weight scheme is the way to generate the randomweights,
the computational time of the ELM is not affected compared to the
traditional random weights, and any advantages that may result
from the different weight generation scheme will come for free.

3.2. Binary scheme

In this scheme, the M d-dimensional weights of the hidden layer
are binary f0;1gd�weights, generated starting from the sparsest
weight vectors. This way, first all ðd1Þ subsets of 1 variable are
included, then all ðd2Þ subsets of 2 variables, etc., until there are M
hidden neurons generated and each neuron employs a different
subset of input variables. The weights are normalized to have unit
length, such that the expected value of wTx is approximately the
same for every neuron, regardless of the number of non-zero
weights. Otherwise, the number of non-zero weights would
strongly affect what part of the transfer function is activated. The
procedure is summarized in Algorithm 4. In case M42d (the
number of possible binary weights), also randomly rotated versions
of the binary weights are added. However, this rarely happens since
the number of possible weights grows exponentially with d.

Algorithm 4. Binary weight scheme, with M being the desired
number of hidden neurons, n the dimension of the subspaces in
which to generate weights, and d the number of inputs.

1: Generate ELM:
2: n¼1;
3: while numneuronsrM and nrd do
4: - Generate the ðdnÞ possible assignments of n ones to d

positions
5: - Shuffle the order of the generated weights to avoid bias

to certain inputs due to the scheme used to generate the ðdnÞ
assignments

6: - Add the generated weights (up to a maximum of M
neurons)

7: - n¼nþ1;
8: end while
9: - Normalize the norm of the weights, such that they are unit

length.

3.3. Ternary scheme

Whereas the binary weight scheme takes its motivation mostly
from an increase in the diversity of extracted information by
having each neuron use a different subset of variables, the ternary
weight scheme is more geometrically motivated: the procedure is
the same as for the binary weights, except that each position can
be a �1 or a 1, and therefore each weight can be seen as pointing
towards a corner of the hypercube. By including �1 as a possible
weight, the number of possible directions of the weights is
increased, while retaining the advantage of the neurons operating
on a different subset of input variables.

In summary, in the ternary scheme, the M d-dimensional
weights of the hidden layer are ternary f�1;0;1gd�weights,
generated starting from the sparsest weight vectors. This way,
first all 21 � ðd1Þ weights of 1 variable are included, then all 22 � ðd2Þ
weights of 2 variables, etc., until there are M hidden neurons
generated. In case M43d (the number of possible ternary
weights), also randomly rotated versions of the ternary weights
are added. This rarely happens though, since the number of
possible weights grows exponentially with d.

Fig. 1 illustrates the possible weights in both the binary and
ternary weight scheme within the 2D subspace constituted by
Abalone variables 2 and 4. Note that this is just one of the many 2D
subspaces, and the weights of Binary ELM and Ternary ELM are

Fig. 1. Illustration of possible weights (arrows) for binary (a) and ternary (b) weight scheme, in a 2D subspace of normalized Abalone data (blue dots). (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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drawn randomly from subspaces of increasingly higher dimension
in the way described above, until the desired number of neurons is
reached. Once the weights have been drawn, they may be normal-
ized in some fashion, or as is done in this paper, scaled using BIP
pretraining.

3.4. Motivation for BIP pretraining

Since for given weight w and input x, the expected value of
jwJxj determines in which part of the transfer function is
activated most, the norm of the weights is important and affects
the performance of ELM. Of course, the weights could be normal-
ized to be e.g. unit length, but the question remains what is the
optimal length for the given data. Therefore, to ensure that the
weights are properly scaled, the ELMs are pretrained using Batch
Intrinsic Plasticity (BIP) pretraining. In particular, the BIP(rand)
variant [5,7] is used, since it offers an attractive balance between
computational time and accuracy. An added advantage of using

BIP pretraining is that when comparing ELMs with varying weight
schemes, any differences in performance must come from the
differences in the direction of the weights and are not a result of
the different scaling of the weights.

Since BIP pretraining adapts the neurons to operate in their
non-linear regime, as many linear neurons are included as there
are input variables. This ensures good performance of the ELM,
even if the problem is completely linear.

3.5. Motivation for Tikhonov regularization

With limited data, the capability of ELM to overfit the data
increases with increasing number of neurons, especially if those
neurons are optimized to be well-suited for the function approx-
imation problem. Therefore, to avoid overfitting, Tikhonov reg-
ularization with optimized regularization parameter as explained
in Section 2.4, is used.

4. Experiments

This section describes the experiments that investigate the
effectiveness of the Binary and Ternary weight scheme compared
to the traditional random weights:

� the first experiment compares the average performances of
each weight scheme on several UCI data sets.

Table 1
Summary of the properties of the UCI data sets [25] used.

Task Abbreviation Number of variables # Training # Test

Abalone Ab 8 2000 2177
CaliforniaHousing Ca 8 8000 12,640
CensusHouse8L Ce 8 10,000 12,784
DeltaElevators De 6 4000 5517
ComputerActivity Co 12 4000 4192

Fig. 2. Number of neurons vs. average achieved test RMSE for ELM (black, dashed), LOO(CV)-ELM (purple), BIP(rand)-TR-ELM with Gaussian (black), binary (blue), ternary
(green) weight scheme. (a) Abalone. (b) CaliforniaHousing. (c) CensusHouse8L. (d) ComputerActivity. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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� the second experiment compares the robustness of the various
weight schemes to irrelevant and noisy input variables and
investigates whether the weight schemes are performing
implicit variable selection.

4.1. Data and preprocessing

As data sets, 5 different regression tasks from the UCI machine
learning repository [25] are used, with the division of the data in
training set and test set chosen in the same way as in [7], but
drawn in a random way (without repetition) for each run of the
experiment in order to control for the influence of the particular
realization of the training and test set on the results. The
specification of the data can be found in Table 1.

The data is preprocessed in such a way that each input and output
variable is zero mean and unit variance. Note that this way of
preprocessing makes it impossible to directly compare with papers
that use a different way of preprocessing like rescaling variables to a
specific interval. Results with different normalization, as well as
denormalized versions of the RMSEs, can be found in Appendix A.

4.2. Average performances of each weight scheme

In this experiment, the average performances are compared for
Binary ELMs, Ternary ELMs and ELMs with weights drawn from a
Gaussian prior. As explained in Section 3, batch intrinsic plasticity
pretraining with randomized μexp (BIP(rand)) is used to adapt the
scaling of the weights to the current context. This controls for
performance differences due to the scaling of the weights and

Fig. 3. Number of neurons vs. average training time for ELM (black, dashed), LOO(CV)-ELM (purple), BIP(rand)-TR-ELM with Gaussian (black), binary (blue), ternary (green)
weight scheme. (a) Abalone. (b) CaliforniaHousing. (c) CensusHouse8L. (d) ComputerActivity. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Table 2
Average test RMSE achieved over 100 random divisions in training and test set, for ELMs with 1000 hidden neurons (data normalized to be zero mean and unit standard
deviation).

Model Ab De Co Ce Ca

ELM 1.69470.4185 0.70870.0115 0.23270.0088 0.63870.0171 0.52070.0070
LOO(CV)-ELM 0.66870.0203 0.60570.0095 0.22970.0076 0.63070.0179 0.51570.0069
BIP(rand)-TR-ELM 0.65170.0184 0.60270.0096 0.17870.0070 0.58470.0177 0.50670.0098
BIP(rand)-TR-2-ELM 0.65370.0202 0.60270.0104 0.20570.0360 0.59270.0187 0.51070.0090
BIP(rand)-TR-3-ELM 0.64670.0202 0.60270.0093 0.16570.0050 0.58370.0170 0.50370.0129
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ensures that any differences in performance are actually due to the
weight scheme used. Furthermore, since the better the neurons
are the easier it will be to overfit, the ELMs also use Tikhonov
regularization (TR) as described in Section 2.4.

To illustrate the advantages and trade-offs made in the proposed
models, the models are also compared to standard ELM. Finally, since
the basic ELM suffers from overfitting in case the number of neurons is
large compared to the number of samples, another basic ELM variant
is included which includes cross-validation of the number of neurons
according to the LOO error. In this cross-validation procedure, the
number of neurons is increased in steps of 10 (up to the currently
tested number of hidden neurons), and an early stopping criterion is
used, such that the optimization stops if there was no decrease in LOO
error for 5 consecutive steps (i.e. 50 neurons).

Therefore, in summary, the ELMs tested are

� ELM
� LOO(CV)-ELM
� BIP(rand)-TR-ELM
� BIP(rand)-TR-Binary-ELM
� BIP(rand)-TR-Ternary-ELM

These ELMs have

� a trained output bias (achieved by adding a column of ones to
the H matrix);

� as many linear neurons as inputs;
� Fermi neurons

to approximate respectively the constant, linear, and nonlinear
component of the function. The number of hidden neurons is
varied up to 1000 hidden neurons, and the ELMs are tested on 100
random partitions of each data set into training and test set
(samples drawn without repetition).

4.2.1. Average RMSE
In Fig. 2 the average achieved RMSE on the test set is reported for

the varying number of hidden neurons. As expected, for increasing
number of neurons, the standard ELM starts to overfit at some point,
resulting in an increase in the RMSE on the test set. Performing the
LOO cross-validation to limit the number of used hidden neurons
prevents this overfitting. Furthermore, the proposed methods gener-
ally achieve much better RMSE than the basic ELM variants. Finally, it
can be seen that generally, ternary weights outperformweights drawn
from a Gaussian distribution, and binary weights generally perform
worse than ternary and Gaussian weights.

One possible hypothesis for why the binary weights performworse
than the ternary weights is that the binary weights result in less
diverse activation of the hidden neurons with transfer function
f ðwTxþbÞ ¼ f ðjwJxj cos θþbÞ. Indeed, considering Fig. 1, there are
only 3 possible binary weights within a particular 2D subspace,
covering π=2 radians of the circle (compared to 8 possible ternary
weights, covering all 2π radians of the circle). Therefore, for a fixed
sample x, the binaryweight scheme can potentially produce 3 different
values of θ (and thus cos θ) that are π=4 radians apart, whereas the
ternary weight scheme can potentially produce 8 different values that
are π=4 radians apart. After removing symmetries (since
cos ðθþπÞ ¼ � cos θ), this leaves 4 different values for cos θ that
would add different information to the hidden layer, compared to the
3 different values of the binary weight scheme, which might give the
ternary weight scheme its advantage. A further theoretical analysis of
the relative performance of the binary and ternary weight schemewill
be the subject of a future paper.

4.2.2. Average training time
The average training time for each model can be found in Fig. 3. It

is interesting to see that the computational time of the LOO(CV)-ELM
strongly depends on the used data set. For Abalone, the cross-
validation procedure finds an optimal number of hidden neurons of
about 50, after which the leave-one-out error quickly increases and
further optimization is quickly halted due to the stopping criterion.
Hence, the computational time remains low. However, for the other
data sets, the number of optimal hidden neurons is much higher, and
the cross-validation procedure becomes tedious. Furthermore, given
the fact that it is possible to perform both BIP pretraining and
optimization of the Tikhonov regularization parameter in less time
than it takes to train a basic ELM (i.e. the computational time is not
even doubled), cross-validation of the number of neurons becomes
very unattractive.

The relatively low overhead on the computational time com-
pared to the basic ELM, and the decreasing nature of the curves in

Fig. 4. Effect of adding irrelevant extra variables on RMSE for BIP(rand)-TR-ELM
with 1000 hidden neurons and with Gaussian (black), binary (blue), ternary (green)
weight scheme. (a) Abalone. (b) ComputerActivity. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this paper.)

Table 3
Average RMSE loss of ELMs with 1000 hidden neurons, trained on the original data, and the data with 30 added irrelevant variables.

RMSE Ab Co

Gaussian Binary Ternary Gaussian Binary Ternary

RMSE with original variables 0.6509 0.6537 0.6475 0.1773 0.1987 0.1653
RMSE with 30 added irr. vars 0.6949 0.6926 0.6763 0.3650 0.2335 0.1967
RMSE loss 0.0441 0.0389 0.0288 0.1877 0.0348 0.0315

M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187–197194



Fig. 2 therefore suggests that a robust and fast way to build a good
ELM is to use L2 regularization and a large number of neurons.
Table 2 summarizes the performance for the various weight
schemes for ELMs with 1000 neurons (i.e. the most right points
in the figures). Although for larger number of neurons the
differences in terms of RMSE are smaller, the advantages of ternary
weights over Gaussian weights are still present. Furthermore, the
results show that the standard deviations of the RMSEs for the

ternary weight scheme are consistently lower or equal than those
for the Gaussian weight scheme.

4.3. Effect of irrelevant variables

In this experiment, the robustness against added irrelev-
ant variables is evaluated, as well as a criterion showing that the
binary and ternary ELMs are performing implicit variable selection.

Fig. 5. Variable relevance measure for Abalone and ComputerActivity with 5 random noise variables R1, …, R5, 5 irrelevant variables D1, …, D5, and the original variables.
(a) Abalone, Gaussian. (b) Computer Activity, Gaussian (c) Abalone, binary. (d) Computer Activity, binary. (e) Abalone, ternary. (f) Computer Activity, ternary
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4.3.1. Robustness against added noise variables
Both the binary and ternary weight schemes result in neurons

operating on a diverse collection of subsets of the input variables.
However, since these subsets might also include irrelevant variables
in this experiment the robustness against irrelevant variables is
tested. The various weight schemes are evaluated on the Abalone
and ComputerActivity data with up to 30 irrelevant Gaussian noise
variables added.

The results are summarized in Fig. 4 and Table 3. These results
are again the averages over 100 random partitions of the data in
training and test set. It can be seen that the ternary and binary
weight schemes are more robust against irrelevant variables. The
difference is especially large for the ComputerActivity data set.

4.3.2. Implicit variable selection
Considering the fact that the weights are sparse in the input

variables, each neuron is in fact only extracting information from a
certain subset of variables. Therefore, given a trained ELM, the
output weights could be considered as an indication of how
important or useful a specific neuron and variable subset is for
the function approximation. In this experiment, the relevance of
each input variable in the ELMs is quantified as

relevance¼ ∑
M

i ¼ 1
jβi �wij;

whereM is the number of hidden neurons; βi is the output weight;
wi is the input weight corresponding to neuron i, and relevance is
the d-dimensional vector containing a measure of relevance for
each of the d input variables. If a variable j has a large value of
relevancej, compared to other variables, this can be interpreted as
that variable being implicitly selected by the ELM (i.e. the ELM
favors neurons that extract information from that variable).

To test whether the ELMs perform implicit variable selection,
the ELMs are trained on the Abalone and ComputerActivity data
sets, where 5 irrelevant variables (taken from the DeltaElevators
data) and 5 Gaussian noise variables have been added. The results
for this experiment on Abalone and ComputerActivity are sum-
marized in Fig. 5. There, it can be seen that for the Gaussian
weights, the relevance measure indicates that the ELM does not
favor any neurons that employ a particular input variable. How-
ever, for the Binary and Ternary ELM, the relevancemeasure clearly
shows that the ELMs favor neurons that employ specific input
variables. For example, the 12th input variable in ComputerActivity
seems especially preferred. Finally, the relevancemeasure indicates
that the irrelevant and noise variables are not given particularly
high importance in general.

5. Conclusion

In this paper, Binary ELM and Ternary ELM have been descri-
bed, which employ a weight initialization scheme based on
f0;1g�weights and f�1;0;1g�weights respectively. The motivation
behind these schemes is that weights picked in this way will be
from very different subspaces, and therefore improve the diversity
of the neurons in the hidden layer. Experiments show that Ternary
ELM generally achieves lower test error. Furthermore, the experi-
ments suggest that the binary and ternary weight schemes improve
robustness against irrelevant variables and that the binary and
ternary weight schemes perform implicit variable selection. Finally,
since only the weight generation scheme is changed, the computa-
tional time of ELM remains unchanged compared to ELMs with
traditional random weights. Therefore, the better performance,
added robustness and implicit variable selection in Binary ELM
and Ternary ELM come for free.

Appendix A

For comparison, RMSEs are included for another commonly-used normalization scheme (minmax), where input variables are rescaled
to interval [�1,1], and output variables are rescaled to interval [0,1]. Denormalized versions of the RMSEs for both normalization schemes
are included as well, which makes the RMSEs of both normalization schemes comparable and allows for evaluating the effect of the
normalization on RMSE. All errors are avg. RMSEs achieved over 100 random divisions in training and test set, for ELMs with 1000
neurons.

A.1. RMSEs for minmax normalization

Ab De Co Ce Ca

ELM 5.24674.3149 0.08770.0086 5.29e373.60e4 4.43376.9604 2.76472.3442
LOO(CV)-ELM 0.08670.0089 0.05970.0056 1.12378.1590 0.10270.0890 0.13270.0066
BIP(rand)-TR-ELM 0.08370.0072 0.06070.0056 0.03270.0021 0.06370.0011 0.12170.0022
BIP(rand)-TR-2-ELM 0.08370.0074 0.06070.0056 0.03670.0042 0.06470.0014 0.12370.0022
BIP(rand)-TR-3-ELM 0.08270.0073 0.06070.0056 0.03170.0006 0.06370.0012 0.11970.0020

A.2. Denormalized RMSEs for minmax normalization

Ab De Co Ce Ca

ELM 1.33e271.02e2 2.11e�379.54e�5 5.24e573.57e6 2.22e673.48e6 1.34e671.13e6
LOO(CV)-ELM 2.2071.10e�1 1.44e�371.38e�5 1.11e278.08e2 5.10e474.45e4 6.38e473.16e3
BIP(rand)-TR-ELM 2.1173.60e�2 1.45e�371.30e�5 3.1872.10e�1 3.16e475.27e2 5.85e471.03e3
BIP(rand)-TR-2-ELM 2.1275.05e�2 1.45e�371.33e�5 3.5874.21e�1 3.19e476.81e2 5.94e479.98e2
BIP(rand)-TR-3-ELM 2.0973.86e�2 1.45e�371.36e�5 3.0675.74e�2 3.14e475.94e2 5.78e479.15e2
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A.3. Denormalized RMSEs for zero mean, unit variance normalization

Ab De Co Ce Ca

ELM 5.4671.37 1.68e�372.13e�5 4.2571.24e�1 3.38e474.23e2 5.99e475.68e2
LOO(CV)-ELM 2.1574.36e�2 1.44e�371.10e�5 4.2071.09e�1 3.34e474.50e2 5.94e475.40e2
BIP(rand)-TR-ELM 2.1073.08e�2 1.43e�371.18e�5 3.2671.00e�1 3.10e475.26e2 5.83e471.01e3
BIP(rand)-TR-2-ELM 2.1173.87e�2 1.43e�371.38e�5 3.7576.44e�1 3.14e476.10e2 5.88e478.52e2
BIP(rand)-TR-3-ELM 2.0873.88e�2 1.43e�371.07e�5 3.0275.08e�2 3.09e474.55e2 5.80e471.30e3
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Abstract. In the training of neural networks, there often exists a trade-
off between the time spent optimizing the model under investigation, and
its final performance. Ideally, an optimization algorithm finds the model
that has best test accuracy from the hypothesis space as fast as possible,
and this model is efficient to evaluate at test time as well. However,
in practice, there exists a trade-off between training time, testing time
and testing accuracy, and the optimal trade-off depends on the user’s
requirements. This paper proposes the Compressive Extreme Learning
Machine, which allows for a time-accuracy trade-off by training the model
in a reduced space. Experiments indicate that this trade-off is efficient
in the sense that on average more time can be saved than accuracy lost.
Therefore, it provides a mechanism that can yield better models in less
time.

Keywords: Extreme Learning Machine, ELM, random projection,
compressive sensing, Johnson-Lindenstrauss, approximate matrix
decompositions.

1 Introduction

When choosing a model for solving a machine learning problem, which model is
most suitable depends a lot on the context and the requirements of the applica-
tion. For example, it might be the case that the model is trained on a continuous
stream of data, and therefore has some restrictions on the training time. On the
other hand, computational time in the testing phase might be restricted, like in
a setting where the model is used as the controller for an aircraft or a similar
setting that requires fast predictions. Alternatively, the context in which the
model is applied might not have any strong constraints on the computational
time, and above all, accuracy or interpretability is considered most important
regardless of the computational time.

This paper focuses on time-accuracy trade-offs in a neural network architec-
ture known as Extreme Learning Machine [1], and on trade-offs between training
time and accuracy in particular. This trade-off can be affected in two ways:

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 165–174, 2014.
c© Springer International Publishing Switzerland 2014
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– by improving the accuracy through spending more time optimizing the model,
– or vice-versa, by reducing the computational time of the model, without

sacrificing accuracy too much.

Each type of model has its own ways of balancing computational time and accu-
racy, and has an associated curve (or set of points) on a “training time”-accuracy
plot that expresses the efficiency of the model in achieving a certain accuracy
(the closer the curve is to the bottom left, the better). Thus, given a collection
of models, the question becomes: which model produces the best accuracy the
fastest?

The remainder of this paper is organized as follows. Section 2 discusses the
preliminaries and methods relevant for this paper and gives an example of the
time-accuracy trade-offs that exist within several ELM variants. This illustrates
the notion of ’efficiency’ of a model, and motivates the choice of model that is
studied in the rest of the paper. Section 3 proposes the Compressive ELM, a new
model which allows trading off computational time and accuracy by performing
the training in a reduced problem space rather than the original space. Finally,
Section 4 contains the experiments and analysis which form the validation for
the proposed approach.

2 Background

Regression / Classification. In this paper, the focus is on the problem of
regression, which is about establishing a relationship between a set of output
variables (continuous) yi ∈ R, 1 ≤ i ≤ M (single-output here) and another set
of input variables xi = (x1

i , . . . , x
d
i ) ∈ Rd. Note that although in this paper the

focus is on regression, the proposed approach can just as well be used when
applying the ELM in a classification context.

Extreme Learning Machine (ELM). The ELM algorithm is proposed by
Huang et al. in [1] and uses Single-Layer Feedforward Neural Networks (SLFN).
The key idea of ELM is that the hidden layer weights and hidden layer biases of
the SLFN can be generated randomly, and do not need to be trained.

Consider a set of N distinct samples (xi, yi) with xi ∈ Rd and yi ∈ R. Then,
an SLFN with M hidden neurons can be written as

M∑

i=1

βif(wi · xj + bi), j ∈ [1, N ], (1)

with f being the transfer function, wi the input weights to the ith neuron in the
hidden layer, bi the hidden layer biases and βi the output weights.

Gathering the outputs of the transfer functions in an N ×M matrix H and
the targets in Y, in case the network would perfectly approximate the targets
this can be written compactly as

Hβ = Y, (2)
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where H is the hidden layer output matrix defined as

H =

⎛
⎜⎝

f(w1 · x1 + b1) · · · f(wM · x1 + bM )
...

. . .
...

f(w1 · xN + b1) · · · f(wM · xN + bM )

⎞
⎟⎠ (3)

and β = (β1 . . . βM )T and Y = (y1 . . . yN )T . Under the condition that the input
weights and biases are randomly initialized, and the transfer function f is a
bounded non-constant piecewise continuous activation function, [2] proves that
the ELM is a universal approximator. Therefore, given enough neurons, the
ELM can approximate a function or set of target values as good as desired. The
optimal least-squares solution to the equation Hβ = Y in the ELM algorithm is
β = H†Y, where H† is the pseudo-inverse of H. In summary then, the standard
ELM algorithm can be described in Algorithm 1. Theoretical proofs and a more
thorough presentation of the ELM algorithm can be found in [1].

Algorithm 1. Standard ELM

Given a training set (xi, yi),xi ∈ Rd, yi ∈ R, an activation function f : R �→ R and M
hidden nodes:

1: - Randomly assign input weights wi and biases bi, i ∈ [1,M ];
2: - Calculate the hidden layer output matrix H;
3: - Calculate output weights matrix β = (HTH)−1HY = H†Y.

Efficient Optimization of Regularization Parameter with SVD. Trained
on a limited number of samples, the standard ELM is prone to overfitting the
training data. One way of preventing overfitting is by applying Tikhonov Regu-
larization, in which case pseudo-inverse used in the ELM becomes

H†=(HTH+λI)−1HT

for some regularization parameter λ [3]. Each value of λ results in a different
pseudo-inverse H†, and it would be computationally expensive to recompute the
pseudo-inverse for every λ. However, by incorporating the regularization in the
singular value decomposition (SVD) approach to compute the pseudo-inverse, it
becomes possible to obtain the various H†’s with minimal re-computation [4].
This scheme is first described in the context of ELM in [5], and is summarized
next (with some minor optimizations). Suppose

Ŷ = Hβ

= H(HTH+ λI)−1HTY

= HV(D2 + λI)−1DUTY

= UDVTV(D2 + λI)−1DUTY

= UD(D2 + λI)−1DUTY

= HAT ·Y
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where D(D2+λI)−1D is a diagonal matrix with
d2
ii

d2
ii+λ

as the ith diagonal entry.

From the above equations it can now be seen that given U:

MSETR-PRESS =
1

N

N∑

i=1

(
yi − ŷi
1− hatii

)2

=
1

N

N∑

i=1

(
yi − ŷi

1− hi·(HTH+ λI)−1hT
i·

)2

=
1

N

N∑

i=1

⎛
⎝ yi − ŷi

1− ui·
(

d2
ii

d2
ii+λ

)
uT
i·

⎞
⎠

2

where hi· and ui· are the ith row vectors of H and U, respectively. The optimal
Tikhonov-regularized PRESS and corresponding λ can be determined efficiently
using Algorithm 2. Due to the convex nature of criterion MSETR-PRESS with
respect to regularization parameter λ, the Nelder-Mead procedure used for op-
timizing λ converges quickly in practice [6,7].

Algorithm 2. Tikhonov-regularized PRESS. In practice, the while part of this
algorithm (convergence for λ) is solved using by a Nelder-Mead approach [6],
a.k.a. downhill simplex.

1: Decompose H by SVD: H = UDVT

2: Precompute B = UTy
3: while no convergence on λ achieved do

4: - Precompute C = U · diag
(

d211
d211+λ

, . . . ,
d2nn

d2nn+λ

)

5: - Compute ŷ = CB, the vector containing all ŷi
6: - Compute d = diag

(
CUT

)
, the diagonal of the HAT matrix, by taking the

row-wise dot-product of C and U
7: - Compute ε = y−ŷ

1−d
, the leave-one-out errors

8: - Compute MSETR-PRESS = 1
N

∑N
i=1 ε

2
i

9: end while
10: Keep the best MSETR-PRESS and the associated λ value

Example: Time-Accuracy Trade-offs for Several ELM Variants. In or-
der to illustrate what time-accuracy trade-offs exist within ELM, and to moti-
vate the choice of model studied later in this paper, this section presents time-
accuracy trade-offs of several models:

– ELM: the basic ELM [1].
– Optimally Pruned ELM (OP-ELM): ELM trained by generating a set

of neurons, ranking them by relevance, and then determining the optimal
prefix of that sorted list of neurons in terms of leave-one-out error [8]

– TROP-ELM:OP-ELM with efficient optimization of the Tikhonov regular-
ization integrated, using the SVD approach to computing H† [5]
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– TR-ELM: Tikhonov-regularized ELM [3], with efficient optimization of reg-
ularization parameter λ, using the SVD approach. [9]

– BIP(0.2), BIP(rand), BIP(CV): ELMs pretrained using Batch Intrinsic
Plasticity mechanism [10], aimed at adapting the hidden layer weights and
biases, such that they retain as much information from the input as possible.
The variants included here have the BIP parameter μexp fixed to a 0.2,
randomized, or cross-validated over 20 possible values.
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Fig. 1. Results for various ELM variants on Abalone UCI data set

All these models are trained and tested on the Abalone data set from the UCI
repository [11] (see Section 4 for details), use ternary weights (see [9]), and have
an initial number of hidden neurons varying between 2 and 1000. Each method
trains and optimizes the ELM in its own way, with results as summarized in
Figure 1. Depending on the users criteria, these results suggest:

– if training time most important, then BIP(rand)-TR-3-ELM is the obvious
choice from all candidates as it provides almost optimal performance, while
keeping training time low.

– if test error is most important, then BIP(CV)-TR-3-ELM is the best choice.
However, since it cross-validates over 20 possible parameter values, the train-
ing time is 20 times as high, while only giving slightly better accuracy.
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– if testing time is most important, then surprisingly TR-3-ELM is also the
most attractive model. Even though OP-ELM and TROP-ELM tend to be
faster in test, they suffer from slight overfitting as the number of initial
hidden neurons increases. Therefore, the TR-3-ELM is the best choice, since
it generally results in models with the best accuracy and lowest testing time.

Since TR-ELM offers attractive trade-offs between speed and accuracy, this
model will be central in the rest of the paper. Furthermore, since due to the
proper regularization the TR-ELM does not seem to overfit even for large num-
ber of neurons: more neurons generally means better accuracy. Naturally, this
comes at an increase in training time, which is something that will be addressed
in the next section, where the Compressive ELM is presented.

3 Compressive Extreme Learning Machine

Considering training time-accuracy trade-offs like in Figure 1, two possible
strategies present itself to obtain models that are preferable over other mod-
els:

– reducing test error, using some efficient algorithm (“in terms of training
time-accuracy plot: “pushing the curve down”)

– reducing computational time, while retaining as much accuracy as possible
(“in terms of training time-accuracy plot: “pushing the curve to the left”)

The latter is the strategy that is taken in Compressive ELM: instead of per-
forming the training in the original problem space, it performs the training in a
reduced space, and then project the solution back to the original space.

Johnson-Lindenstrauss and Approximate Matrix Decompositions.
Given anm×nmatrix, an approximate matrix decomposition can be achieved by
first embedding the rows of the matrix into a lower-dimensional space (through
one of many available low-distortion Johnson-Lindenstrauss-like embeddings),
solving the decomposition, and then projecting back to the full space. If such
an embedding (or sketch) is accurate, then this allows for solving the problem
with high accuracy in reduced time. The algorithm for Approximate SVD is
summarized in Algorithm 3, and more background can be found in [12].

Algorithm 3. Approximate SVD [12]

Given an m× n matrix A, compute k-term approximate SVD A ≈ UDV T as follows:

1: - Form the n×(k+p) random matrix Ω. (where p is small over sampling parameter)

2: - Form the m ×(k + p) sampling matrix Y = AΩ. (”sketch” it by applying Ω)
3: - Form the m ×(k + p) orthonormal matrix Q, such that range(Q) = range(Y ).
4: - Compute B = Q∗A.
5: - Form the SVD of B so that B = ÛDV T

6: - Compute the matrix U = QÛ
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Faster Sketching. Typically, the bottleneck in Algorithm 3 is the time it takes
to sketch the matrix. Rather than using a class of random matrices of Gaussian
variables for sketching A, one can also use random matrices that are sparse
or structured in some way [13,14], for which the matrix-vector product can be
computed more efficiently. Furthermore, Ailon and Chazelle [15] introduced the
Fast Johnson-Lindenstrauss Transform (FJLT), which uses a class of random
matrices that allow application of an n × n matrix to a vector in O(n log(n)),
rather than the usual O(n2). Besides this obvious speedup, this class of matrices
is also more successful in creating a low-distortion embedding when applied to
a sparse matrix. These transforms consist of the application of three easy-to-
compute matrices (

P
)
k×n

(
H

)
n×n

(
D
)
n×n

whereP ,H , andD vary depending on the exact scheme. Generally,D is a diagonal
matrix with random Rademacher variables (−1,+1) on the diagonal,H is encod-
ing either the discrete Hadamard or discrete Fourier transform, and P is a sparse
random matrix or a matrix sampling random columns fromH. TheD matrix can
be applied to a vector x inO(n), TheH matrix can be applied inO(n log(n)), and
the P matrix adds a factor nnz(P ) or k, depending on the type.

4 Experiments

This section describes the experiments that investigate the trade-off between
computational time (both training and test), and the accuracy of the Compres-
sive ELM in relation to, the dimensionality of the space into which the problem is
reduced, using the sketch. For sketching, TR-3-ELMs with the following sketch-
ing schemes are considered, and compared with the standard TR-3-ELM:

– Gaussian: sketching is performed using a k × n matrix of random Gaussian
variables

– FJLT: the transform introduced in [15], for which P is a sparse matrix of
random Gaussian variables, and H encodes the Discrete Hadamard Trans-
form

– SRHT: a variant of the FJLT, for which P is a matrix selecting k random
columns from H , and H encodes the Discrete Hadamard Transform

The number of hidden neurons in each model is varied between 2 and 1000, and
parameter k is chosen from [50, 100, 200, 400, 600]. Experiments are repeated
with 200 random realizations of the training and test set, and average results
over those 200 runs are reported.

Data and Preprocessing. As data sets, different regression tasks from the
UCI machine learning repository [11] are tested. Due to space restrictions only
the results for CaliforniaHousing and FJLT sketching are presented here, but
similar results hold for the other data sets and sketching methods. In each run,
the data is divided randomly into 8000 random samples for training and and
the remaining 12640 samples for testing. The data is preprocessed in such a way
that each input and output variable is zero mean and unit variance.



172 M. van Heeswijk, A. Lendasse, and Y. Miche

Results. The results of the experiment are summarized in Figure 2. There, it
can be seen that

– setting k lower than the number of neurons results in faster training times
(which makes sense since the problem solved is smaller).

– as long as parameter k is chosen large enough, the method is not losing
efficiency (i.e. there is no model that achieves better error in the same com-
putational time), and it is potentially gaining efficiency (as shown by the
bottom-left plot of Figure 2.

Finally, the experiments showed that sketches with Gaussian matrices are gen-
erally the fastest. Furthermore, for the tested problem sizes, the SRHT (which
allows an efficient matrix multiplication) is generally faster than the FJLT (which
uses sparse matrices). Although for this problem size the SRHT and FJLT are
slower, they might still be needed in case the matrix to sketch is sparse [15].
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Fig. 2. Results for Compressive ELMs using FJLT sketching with varying k on Cali-
forniaHousing UCI data set
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5 Conclusion

In this paper, the trade-off between computational time and test error has been
investigated, in particular the trade-off between training time and test error.
Having information about this trade-off for different models is useful information
in selecting the most suitable model for a particular task.

The Compressive ELM proposed in this paper investigates a way to reduce
training time by doing the optimization in a reduced space of k dimensions,
and is shown to be efficient in the sense that (given k large enough), among
the tested models the Compressive ELM achieves the best test error for each
computational time (i.e. there are no models that achieve better test error and
can be trained in the same or less time). A promising candidate for setting
k such that it optimally reduces computational time (yet retains accuracy),
would be to let k be informed by the theoretical bounds currently known for
the sketching schemes. These theoretical bounds give lower bounds on k for
which a low-distortion embedding of the given n points can be achieved with
high probability. Although these bounds are typically not sharp (and therefore
not optimal), in case the minimal k for successful embedding is lower than the
number of neurons in the ELM, it can be exploited to reduce the training time.

Finally, developing low-distortion embeddings and sharpening their associated
bounds is currently a hot topic of research, and any new developments in this
area can easily be integrated to improve the performance of Compressive ELM.
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