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Input selection aims at selecting the most relevant inputs set for a given task.
This problem is complex and remains an important issue in many domains. The
main goal of this thesis is to show how mutual information can be used for the
input selection in time series prediction problem. Mutual information measures
the relationship between input variables and output.

First, the problem of input selection for time series prediction is generally ex-
plained.

Then, various mutual information estimation methods are reviewed and com-
pared. Here, we focus on two effective estimators in the case of high dimensional
data space. The estimator based on the k-Nearest Neighbours statistics is pro-
posed.

After that, different algorithms for implementing mutual information for input
selection are explored. The aim is to select the best set of inputs which is the
one that maximizes mutual information.

Finally, the proposed methodology is applied to several experiments and it is
proved to be a useful input selection method in the problem of time series
prediction.
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Syötteen valinnan tavoite on annettua tehtävää varten olennaisimpien syöttei-
den valinta. Tämä ongelma on kompleksi ja tärkeä monilla aloilla. Tämän
diplomityön päätarkoitus on näyttää, kuinka keskinäisinformaatiota voidaan
käyttää syötteen valinnassa aikasarjojen ennustus ongelmassa. Keskinäisinfor-
maatio mittaa suhdetta syötemuuttujien ja ulostulon välillä.

Aluksi syötteen valinta aikasarjojen ennustuksessa selitetään yleisellä tasolla.

Tämän jälkeen erilaisia keskinäisinformaation estimointimenetelmiä esitetään
ja verrataan keskenään. Keskitymme tässä korkeaulotteisiin data-avaruuksiin.
K:n lähimmän naapurin statistiikkaan perustuvaa estimaattoria ehdotetaan.

Tämän jälkeen tarkastellaan erilaisia algoritmeja keskinäisinformaation imple-
mentoitiin syötteen valintaa varten. Tavoite on sen muuttujajoukon valitsemi-
nen, joka maksimoi keskinäisinformaation.

Lopuksi ehdotettua metodologiaa sovelletaan useisiin kokeisiin ja sen osoitetaan
olevan käyttökelpoinen muuttujanvalintamenetelmä aikasarjojen ennustuksessa.

Avainsanat: aikasarjat, syötteen valinta, keskinäisinformaatio
k:n lähimmän naapurin menetelmä
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Chapter 1

Introduction

1.1 Scope of the thesis

Input selection is one of the most important issues in machine learning, espe-
cially when the number of observations is relatively small compared with the
number of inputs. It has been the subject in application domains like pattern
recognition, process identification, time series modelling and econometrics.
In this thesis, we focus on its application to the time series prediction prob-
lem, which is an important part of decision making and planning process in
such as engineering, business and medicine.

In practice, when dealing with the problem of time series prediction, the
necessary size of the data set increases dramatically with the number of ob-
servations (curse of dimensionality). To circumvent this, one should select
the best features or inputs in the sense that they contain the necessary infor-
mation. Then it would be possible to capture and reconstruct the underlying
regularity or relationship between input and output data pairs.

With respect to this, several approaches have been proposed. Some of them
deal with the input selection problem as a generalization error estimation
problem. These approaches are very time consuming and may take pro-
hibitive amount of time. However, there are other approaches [1, 2, 3] which
select a priori inputs based only on the data set, so the computational cost
would be less than the cost of the model dependent cases. Model indepen-
dent approaches select a set of inputs by optimizing a criterion over different
combinations of inputs. The criterion computes the dependencies between
this combination of input variables and the output. Various alternatives of
criterion exist.

In this thesis, the mutual information (MI) between the selected inputs and
the output is used as the criterion. Basically, MI measures the amount of
information contained in an input variable or a group of input variables, in

1



CHAPTER 1. INTRODUCTION 2

order to predict the output. It has the advantage to be model-independent
and nonlinear at the same time.

When one is to implement the MI based input selection approach, estima-
tion of MI poses great challenge. Histogram based estimator is a simple and
efficient estimator, but the accuracy of most histogram estimators is sub-
stantially degraded in high-dimensional data space. Compounded by this
problem, continuous kernel based estimators are considered as a good alter-
native for estimating MI. However, the computational load of these methods
increases rapidly with the number of data points, and the performances of
them would be significantly degraded when there is highly redundant input
variable in the high-dimensional data space. The above problem is addressed
by two new parametrical methods introduced in this thesis. One is based on
the idea of estimating local density in the joint space by computing the high-
dimensional volume; the other is based on the k-Nearest Neighbours (k-NN)
statistics. In this thesis, for the second estimator, a method is developed to
find the optimal k value by l-Nearest Neighbours (l-NN1) approximator and
Leave-One-Out (LOO) method.

With the estimation results of MI, one will need some input selection strate-
gies to select the optimal inputs subset from a series of dedicate inputs. The
optimal algorithm is to compute the MI for all the possible combinations
of inputs, but it is extremely heavy from the computational point of view.
There are various other input selection strategies, such as forward selection,
backward elimination, forward-backward selection algorithm,...,etc. In this
thesis, all of the input selection strategies will be compared from both theory
and experiment aspect.

The aims in this thesis are to explore the problem of input selection, give a
literature survey, and present one input selection method which is based on
MI. Finally, the proposed MI based input selection method is applied to the
long-term time series prediction problem.

1.2 Publications

The publications related to this work are:

Publication [4] discusses the use of l-NN approximator to select the main
variable in MI based estimator, and the selection results are applied for the
long-term time series prediction problem.

In Publication [5], a comparison of direct and recursive method for long-term
time series prediction is presented. In the paper, MI is used to select the
inputs and least squares support vector machines (LS-SVMs) are used as the

1
l is used instead of k here to avoid confusion with the k appearing before.



CHAPTER 1. INTRODUCTION 3

prediction model.

In Publication [6], a comparison work of two input selection approaches
is done. One is based on MI; the other is based on nonparametric noise
estimator (NNE). Both of these methods are applied into the problem of
function approximation and time series prediction.

1.3 Structure of the thesis

This thesis is organized as follows. In this chapter, the problem, goals and
publications associated with this work have been presented.

In Chapter 2, an overview of the time series prediction and input selection
problems is given.

In Chapter 3, the theory of MI is explored and the MI estimation methods
are discussed and compared. Then, the one that performs best is promoted.

In Chapter 4, different input selection strategies are presented and the per-
formances of them are compared.

Chapter 5 discusses the application of MI based input selection into long-
term time series prediction problem. Two experiments are performed there.
In both experiments, three different time series are used.

Finally, Chapter 6 gives a conclusion of the work and plan of future works.



Chapter 2

Time series prediction and

input selection

2.1 Time series prediction

2.1.1 Introduction of time series prediction

Time series prediction plays an important role in many domains of science
and engineering, such as finance [7], electricity [8], environment [9] and ecol-
ogy [10]. Basically, time series prediction can be considered as a modelling
problem: a model is built to establish a mapping between the input(s) and
output(s). After such a mapping is set up, it can be used to predict the
future values based on the previous and current values.

A time series is a sequence of observations made through time, in the form
of vector or scalar. In general, a time series may exhibit non-linearity, non-
stationarity, possibly periodic behaviour such as seasonality. Furthermore,
observations may be contaminated by noise. Figure 2.1 shows a noisy, sta-
tionary and non-periodic time series. These four characteristics of a time
series are described as follows:

• Linearity: A time series is linear if the future values can be expressed as
a linear function of some or all of its previous values. In this thesis, we
are interested in developing general models that can represent nonlinear
time series, which include the linear case.

• Stationarity: A time series is stationary if its mean and variance are
constant in time and the auto-covariance depends on the time lag
only [11]. We are interested in stationary time series and a special
class of non-stationary time series, which consists of several regimes
in which each regime corresponds to a chaotic process, and the overall

4



CHAPTER 2. TIME SERIES PREDICTION AND INPUT SELECTION 5
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Figure 2.1: An example of a noisy, stationary and non-periodic time series

time series is a collection of multiple chaotic regimes, such as Santa Fe
data set [12].

• Periodicity: A time series with periodic components are periodic. The
periodic time series is easier to predict and in this thesis, we study the
non-periodic one.

• Noise: Random noise can be present in the entire or some parts of a
time series.

The time series prediction problem is the prediction of future values based
on previous and current values:

{ŷ(t+ 1), ŷ(t+ 2), · · · , ŷ(t+ h)} = F (y(t), y(t− 1), · · · , (2.1)

y(t− p+ 1)),

where h is the time steps parameter, representing the h step ahead prediction.
F are the multi-output nonlinear prediction models as F = {f1, f2, · · · , fh}.
Vectors {y(t), y(t− 1), · · · , y(t− p+ 1)} are the regressor of size p.

Usually, one only needs to make a one-step ahead forecast (h = 1), which
can be called short-term prediction. When h > 1, it is considered as the
long-term prediction.

The long-term prediction is more difficult and time consuming, since it adds
more uncertainty in the prediction of future values. Basically, two strategies
can be used for the long-term prediction problem: direct and recursive fore-
casts. A comparison work of these two methods can be found in [5] and it
will be detailed in Section 5.1. The direct forecast builds different models
for each ŷ(t+ h) as:

ŷ(t+ 1) = f1(y(t), y(t− 1), · · · , y(t− p+ 1)), (2.2)
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ŷ2(t+ 2) = f2(y(t), y(t− 1), · · · , y(t− p+ 1)),

The recursive forecast first makes one step ahead prediction as:

ŷ(t+ 1) = f1(y(t), y(t− 1), · · · , y(t− p+ 1)), (2.3)

and then predict the next value with the same model as:

ŷ(t+ 2) = f1(ŷ(t+ 1), y(t), y(t− 1), · · · , y(t− p+ 2)), (2.4)

2.1.2 Modelling methods

There exist many models for solving the time series prediction problem.
The task is to select the best model according to some criteria such as the
generalisation error. A large variety of time series models have been proposed
and studied in the last four decades. Figure 2.2 lists a classification of the
various prediction models. Next, we will introduce the methods following
this classification, and then, give more explanation for the method we will
use, as shown with thick arrows in Figure 2.2.

Time Series Models
������9

PPPPq

PPPPq

PPPPq

PPPPq

PPPPq

Linear Models:
AR, ARMA Nonlinear Models

�����9
XXXXXz

XXXXXz

XXXXXz

XXXXXz

XXXXXz

Pre-defined nonlinearity:
bilinear AR, TAR

General nonlinearity
(Machine learning)

�������9
�

�
�

�
��	 ??

PPPPq
Statistic:
k-NN

Reinforcement:
Q-learning

Supervised:
SVM, Neural network

Unsupervised:
clustering

Figure 2.2: A classification of time series models

Linear models

The simplest widely used model is the linear model, such as AR, ARMA,
ARMAX,...,etc [13, 14]. This model is easy to use, and does not suffer too
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much from the choice of structural parameters. It performs really well in
many cases, but will fail when the data is substantially nonlinear.

Nonlinear models

Nonlinear models can be classified into models with pre-defined non-linearity
assumptions and general models, as shown in Figure 2.2. The first class in-
cludes bilinear autoregression [15], time-varying parameter models [16],...,etc.
They are not effective for modelling time series with unknown nonlinear be-
haviour. The second class, which is also called machine learning, can handle
nonlinear time series because it learns a model without non-linearity assump-
tions. Specific methods of machine learning include statistic learning (such
as k-NN [17]), reinforcement learning (such as Q-learning [18]), unsupervised
learning (such as clustering methods [19]), and supervised learning (such as
support vector machines (SVMs) [20], LS-SVMs, and artificial neural net-
works (ANNs) [21]). In this thesis, we use the LS-SVMs because of their
ability to escape from the local minima problem.

Least squares support vector machines Support vector machines, in-
troduced by Vapnik, have been applied successfully to solve numerous prob-
lems in classification and regression. Trafalis and Santosa [22] used support
vector regression (SVR) along with a feed-forward neural network and radial
basis function networks to predict monthly flour prices in three cities. The
results also showed that SVR outperformed the two other methods.

LS-SVMs [23] for function estimation were introduced by Saunders [24] as
an interpretation of ridge regression in dual variables space. This approach
is closely related to SVMs. Suyken [23, 25] then developed LS-SVMs and
weighted LS-SVMs for function estimation. Compared to standard SVR,
Least squares support vector regression (LS-SVR) is more effective in term
of time complexity, since a linear system of equations is solved instead of
a quadratic programming problem. The LS-SVMs are defined in its primal
weight space by,

ŷ = ωTϕ(x) + b, (2.5)

where ϕ(x) is a function which maps the input space into a higher dimen-
sional feature space, x is the N -dimensional vector of inputs x

i. ω and b
are the parameters of the model. In LS-SVMs for function estimation, the
following optimization problem is formulated,

minω,b,eJ(ω, e) =
1

2
ωTω+ γ

1

2

N
∑

i=1

(ei)2, (2.6)
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subject to the equality constraints,

yi = ωTϕ(xi) + b+ ei, (2.7)

i = 1, 2, · · · , N,

where the superscript i refers to the number of a sample. Solving this opti-
mization problem in dual space leads to finding the αi and b coefficients in
the following solution,

h(x) =
N

∑

i=1

αiK(x,xi) + b. (2.8)

Function K(x,xi) is the kernel defined as the dot product between ϕ(xT )
and ϕ(x) mappings. The meta-parameters of LS-SVMs models are the width
of the Gaussian kernels (taken to be identical for all kernels) and the γ
regularization factor. LS-SVMs can be viewed as a form of parametric ridge
regression in the primal space. The training method for the estimation of
the ω and b parameters can be found in [23].

Learning, validation and testing In order to learn the parameters of the
nonlinear model, the traditional way is to divide the available data into three
non-overlapping sets, respectively referred to as learning set (L), validation
set (V ), and testing set (T ) [26]. Once the number of parameters of the
model has been chosen, L will be used to learn the values of the parameters
for the model. Normally, the performances of several models with different
parameter values are compared, and the optimal parameters can be selected
based on the performance evaluation. The performance evaluation must be
done on an independent set of data, and the data set V is used for this task.
Finally, set T is used for assessing the performance of the model selected
after validation step.

However, the idea of splitting the data set into three independent sets has
some problems. In many real situations, there is only a limited number of
data available, but with the learning set L, only part of the original data is
used for learning. To circumvent this problem, the re-sampling technique is
used, such as d-fold cross-validation [2]1, LOO and bootstrap [1]. The main
idea of these approaches is to repeat the learning and validation procedure
with different divisions of the original data set. For example, in d-fold cross-
validation [2], first, a part of data is set to be the testing set T . After that,
the remaining data set are split into d sets with equal size. Then, d learning
procedures are performed, each time, one of the d sets is taken as validation
set V and the other sets as learning sets L. In this way, each sample except
the ones in set T has been used both for learning and validation.

1
d is used instead of k here to avoid confusion with the k appearing before in Section 1.1.
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2.2 Input selection

Most of the nonlinear models perform rather poorly when faced with many
irrelevant or redundant inputs. Usually, when the number of parameters is
small, the model is not complex enough and the prediction will not be very
accurate. On the contrary, if there are too many parameters, the parameters
will try to capture also the noise contained in the data. This is the so-
called overfitting phenomenon. The overfitting problem increases with model
complexity, thus, it is more difficult to handle when there are many inputs.
Therefore, some strategies are needed for choosing a set of most relevant
inputs for building the model. This is the problem of input selection. The
aim of input selection is to reduce the inputs as much as possible in order to
improve the quality of the model built, and to improve the interpretability
of the selected set of inputs.

Input selection is an essential pre-processing stage to guarantee high accu-
racy, efficiency, and scalability [27] in problems such as machine learning,
especially when the number of observations is relatively small compared to
the number of inputs. It has been the subject in application domains like
pattern recognition, process identification, time series modelling and econo-
metrics. Problems which can occur due to poor selection of input variables
include:

• If the input dimensionality is too large, the ‘curse of dimensionality’
problem [28] may happen. Moreover, the computational complexity
and memory requirement of the learning model will increase.

• Poor model may be built with additional unrelated inputs or not
enough relevant inputs.

• Understanding complex models which contain too many inputs is more
difficult than simple models with less inputs which can give comparable
good performance.

Many input selection algorithms have been devised for this task. In this
section, a general introduction is given, then, the promoted method will be
explained elaborately in Chapters 3 and 4.

Usually, the input selection methods can be divided into two broad classes:
filter method and wrapper method, see Figure 2.3.

2.2.1 Filter method

In case of the filter method, the best inputs subset is selected a priori based
only on the data set. The input selection procedure in this case can be
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Figure 2.3: Two approaches of input variable subset selection

considered to be a pre-processing step, which is independent of the learning
algorithm. The inputs subset is chosen by an evaluation criterion, which
measures the relation of each subset of input variables with the output. The
literature has plenty of filter measure methods with different natures [29]:
distance metrics, dependence measures, scores based on the information the-
ory,...,etc.

2.2.2 Wrapper method

In case of the wrapper method, the best inputs subset is selected according
to the criterion which is directly defined from the learning algorithm. The
wrapper method searches for a good subset of inputs using the learning model
itself as a part of the evaluation function, which is the same algorithm that
will be used to induce the final learning model. After selecting a model,
the wrapper method uses an inputs subset and optimizing the parameters
of the model by measuring some cost functions. Then, the inputs subset is
changed and the same procedure repeated. Finally, the set of inputs that
minimizes the generalization error can be selected using LOO, bootstrap or
other re-sampling techniques.

2.2.3 Comparison

Comparing these two types of input selection strategies, the wrapper method
tries to solve the real problem, hence the criterion can be really optimized
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for the specific problem. But it is potentially very time consuming, as the
ultimate problem has to be included in the cost function, which may be eval-
uated thousands of times when searching for the best subset. For example, if
LS-SVMs, which is introduced in Section 2.1.2, is used as the learning algo-
rithm. Suppose we have 1000 data, then, for each subset of inputs, LS-SVMs
need about 10 hours for evaluation. Thus, if we have 10 input variables and
we use the forward selection strategy, which will be explained in Section 4.1.2,
to select one more input at each step, we need to test 10(10− 1)/2 different
subsets of inputs, so we will need 450 hours to evaluate all of the different
subsets in this case, which is more than 2 weeks. In practice, we usually have
more than 10 inputs in the time series prediction problem, and we need to
use other selection strategies which need more operations than the forward
selection method, the computational time using wrapper method will thus
increase dramatically.

On the contrary, the filter method is much faster because the problem it
solves is in general simpler. Due to the long computational time the wrapper
method needs, it is unrealistic to compare the wrapper and filter method for
input selection in time series prediction problem in this thesis.

2.2.4 Proposed method

In the following sections, we will focus on the filter method. As has been
introduced in Section 2.2.1, the filter method selects a set of inputs by opti-
mizing a criterion over different combinations of inputs. The criterion com-
putes the dependencies between each combination of inputs and the output
using predictability, correlation, MI or other statistics. So, there are two
problems we need to solve for the input selection now:

1. Find an input evaluation criterion to compare the input variable sub-
sets. In this thesis, MI is used as the evaluation criterion. MI based
input selection has been developed more recently and is a general se-
lection technique which is data hypothesis free and might be used for
any system. It is based on a probabilistic dependence measure between
two sets of variables. MI will be explained in detail in Chapter 3.

2. Find a search procedure, to explore a (sub)space of possible inputs
subsets and select the most relevant inputs for the output with respect
to the specific criterion. In Chapter 4, different search algorithms will
be introduced and compared.



Chapter 3

Input selection method using

mutual information

3.1 Definition of mutual information

Mutual information can be used for evaluating the dependencies between
random variables. The MI of two variables, let say X and Y , is the amount of
information obtained from X in the presence of Y . In time series prediction
problem, if Y is the output and X is a subset of input variables, the MI
between X and Y is particularly the criterion for measuring the dependence
of Y onX. Thus, the inputs subsetX giving maximum MI should be selected
to predict the output Y .

The definition of MI begins from the entropy in the information theory. For
continuous random variables (scalar or vector), let pX,Y , pX and pY represent
the joint probability density function (pdf) and the two marginal density
functions of the variables. The entropy of X is defined by Shannon as [30]:

H(X) = −
∫

∞

−∞

pX(x) log pX(x)dx. (3.1)

where ‘logť means natural logarithm in the following of this thesis so that in-
formation is measured in natural units. When we know Y , butX is unknown,
the remaining uncertainty of X is measured by the conditional entropy as:

H(X|Y ) = −
∫

∞

−∞

pY (y)

∫

∞

−∞

pX(x|Y = y) (3.2)

log pX(x|Y = y)dxdy.

The joint entropy is defined to be:

H(X,Y ) = −
∫

∞

−∞

∫

∞

−∞

pX,Y (x, y) log pX,Y (x, y)dxdy. (3.3)

12
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The MI between variables X and Y can be defined as [31]:

I(X,Y ) = H(Y ) −H(Y |X)

= H(X) +H(Y ) −H(X,Y ), (3.4)

It measures how much information one variable contains of another. From
Eqs. 3.1, 3.3, 3.3 and 3.4, MI can be computed as:

I(X,Y ) =

∫

∞

−∞

∫

∞

−∞

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
dxdy. (3.5)

From Eq 3.5, it can been seen that what we need for computing MI is only
the estimations of the pdfs pX,Y , pX and pY .

3.2 Estimating mutual information

As described in the previous section, the challenge of estimating MI lies
in how to estimate the pdf values. There exist mainly three types of pdf
estimation methods, namely, histogram based method, kernel based method
and parametrical method. In the following, these three types of methods
will be compared and the one suitable for input selection in our case will be
proposed.

3.2.1 Histogram based estimator

For estimating pdf value, the most straightforward and widely used approach
is the histogram based method (HB) [30, 32]. The basic idea of it is to divide
the continuous input space into several discrete partitions. The entropy
and MI can thus be estimated by substituting the integration operation by
addition operation. Consider a collection of N variables x and y: (xi, yi), i =
1, · · · , N , which are assumed to be independent and identically distributed
(iid) realizations of a random variable Z = (X,Y ). With an origin a and
a width h, the bins of the histogram for the variable x are defined through
the intervals [a + dh, a + (d + 1)h] with d = 0, · · · , D − 1 [32], (Note that
in [32], d = 0, · · · , D is incorrect). Hence, the data are partitioned into D
bins Bi, i = 1, · · · , D. Let gi denotes the number of measurements lying
inside the bin Bi, the pdf of x: pi, can then be approximated by pi ≈ gi/N .
With the same idea, the joint density can be estimated by the number of
measurements falling into the intersections of the bins of x and y coordinates.
So, the true entropy in theory should be Htrue = −∑D

i=1 p
i log pi and the

observed entropy can be written as:

Hobserved = −
D

∑

i=1

gi

N
log

gi

N
(3.6)
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= −
D

∑

i=1

qi log qi,

where the notation qi = gi/N has been used. It was also shown in [7] that:

E(gi) = Npi, (3.7)

E(qi) = pi, (3.8)

where E(.) represents expectation value.

It is known that the estimation of entropies from finite samples may be
affected by systematic errors [33]. In [34, 35], the correction term has been
used. Let us introduce a variable defined in [35],

ǫi =
qi − pi

pi
. (3.9)

Hobserved in Eq. 3.7 can thus be written as:

Hobserved = −
D

∑

i=1

pi(1 + ǫi) log(pi(1 + ǫi))

= −
D

∑

i=1

pi(1 + υi)(log pi + log(1 + ǫi))). (3.10)

When N is large enough, ǫ is small, Eq. 3.10 can be written in a Taylor
series as:

Hobserved = −(
D

∑

i=1

pi log pi + ǫipi(1 + pi) +
(ǫi)2pi

2
+O((ǫi)3))

= Htrue − (
D

∑

i=1

ǫipi(1 + pi) +
(ǫi)2pi

2
+O((ǫi)3)). (3.11)

Since the expectation value of ǫi is zero, the expectation value of the observed
entropy, to the second order in ǫi, will be:

E(Hobserved) ≈ Htrue − (
D

∑

i=1

E((ǫi)2)pi

2
. (3.12)

From Eqs. 3.7, 3.8 and 3.9, it can be deduced that:

E((ǫi)2) =
(1 − pi)

Npi
, (3.13)

pi 6= 0.
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Then, substituting Eq. 3.14 into Eq. 3.12 gives:

E(Hobserved) ≈ Htrue − D − 1

2N
, (3.14)

where D is the number of histogram bins with nonzero probability. From
Eqs. 3.4 and 3.14, it can be found that:

I(X,Y )observed ≈ I(X,Y )true + ∆I(X,Y ), (3.15)

∆I(X,Y ) =
Dxy −Dx −Dy + 1

2N
.

Here, Dx, Dy, Dxy are the number of histogram bins with nonzero pdf.

3.2.2 Kernel based estimator

In [36], continuous kernel based pdf estimators (KB) are produced. Suppose
a set of N M -dimensional training vectors {x1, x2, · · · , xN}, with a general-
ized kernel function K(.), the pdf estimate is given by:

p̂(x) =
1

N

N
∑

i=1

K(x− xi, h), (3.16)

where h is called the window width. Parzen showed that if the kernel function
K(.) and window width h are selected properly, the p̂(x) will converge to the
true density function [36]. The Kernel function K(.) is required to be a
finite-valued non-negative density function where:

∫

∞

−∞

K(z, h)dz = 1, (3.17)

and the width parameter is required to be a function of n so that:

limn→∞h(n) = 0, (3.18)

limn→∞nh
M (n) = ∞. (3.19)

For kernel function, the rectangular and Gaussian functions are commonly
used. In [37], Gaussian pdf estimators were chosen for estimating MI, where
the Gaussian function is given as:

K(z, h) =
1

(2π)M/2hM |∑ |1/2
exp(−z

T
∑

−1 z

2h2
), (3.20)

with
∑

the covariance matrix of the M -dimensional vector of random vari-
ables z. The window width parameter h determines the influence field of the
window, the smaller the h, the narrower the range of influence of window
becomes. In this thesis, h is determined following the method in [38] as:

h =
4

(M + 2)

1
(M+4)

N−
1

M+4 , (3.21)

where M is the dimension of variable z and N is the number of data points.



CHAPTER 3. INPUT SELECTION METHOD USING MUTUAL INFORMATION 16

3.2.3 Parametrical estimator

In this thesis, two recent parametrical approaches for estimating MI are
presented to deal with the problems in high-dimensional data space. One is
based on the k-NN statistics [39]; the other uses the idea of high-dimensional
volume [40].

k-NN based mutual information estimator

The novelty of this k-NN based MI estimator consists in its ability to estimate
the MI between two variables of any dimensional space. Suppose one has a set
of N input-output pairs zi = (xi, yi), i = 1, · · · , N , which are iid realizations
of a random variable Z = (X,Y ), where x and y can be either scalars or
vectors. Then, if z and z′ are different variables from the data set, the
maximum norm is,

∥

∥z − z′
∥

∥ = max{
∥

∥x− x′
∥

∥ ,
∥

∥y − y′
∥

∥}, (3.22)

The basic idea of [39] is to estimate I(X,Y ) from the average distances (esti-
mated by the maximum norm) from zi to its k nearest neighbours, averaged
over all zi. Let us denote zk(i) = (xk(i), yk(i)) as the kth nearest neighbour
of zi, and di =

∥

∥zi − zk(i)
∥

∥ , di
X =

∥

∥xi − xk(i)
∥

∥ , di
Y =

∥

∥yi − yk(i)
∥

∥. Obvi-
ously, di = max(di

X , d
i
Y ). Then, we count the number ni

X of points xj whose
distance from xi is strictly less than di, and similarly, ni

Y is the number of
points yj whose distance from yi is strictly less than di. Then, I(X,Y ) can
be estimated as shown in [39]:

I(X,Y ) = ψ(k) − 1

N

N
∑

i=1

[ψ(ni
X + 1) +ψ(ni

Y + 1)] +ψ(N), (3.23)

where ψ(.) is the digamma function:

ψ(t) =
d

dt
log Γ(t), (3.24)

where Γ(.) is the gamma function:

Γ(t) =

∫

∞

0
ut−1e−udu. (3.25)

The digamma function satisfies the recursion ψ(t + 1) = ψ(t) + 1/t and
ψ(1) = −c, c = 0.5772156 · · · is the Euler-Mascheroni constant. Software for
calculating MI based on this method can be downloaded from [41].
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For more variables such as X1, X2, · · · , XM , the MI estimate is defined as
in [39]:

I(X1, X2, · · · , XM ) = ψ(k) − 1

N

N
∑

i=1

[ψ(ni
X1

+ 1) +ψ(ni
X2

+ 1)

+ · · · +ψ(ni
XM

+ 1)] + (M − 1)ψ(N). (3.26)

From the grouping property of MI,

I(X,Y, Z) = I((X,Y ), Z) + I(X,Y ), (3.27)

the MI between any set of random variables and any random variable can
be computed by iterating Eq. 3.27. This is important in this thesis for input
selection, as what we need to estimate is the MI between any inputs subset
and the output.

The estimation of MI of this method depends on the pre-decided value k.
It is explained in [39] that statistical errors increase when k decreases. In
practice, it means that one should use k > 1 in order to reduce statistical
errors. But on the other hand, too large values of k should be avoided
since then the increase of systematic errors may outweigh the decrease of
statistical errors. In [39], it is suggested to use a mid-range value k=6. But
we found that when applied to time series prediction problem, it needs to be
tuned for different data sets and different data dimensions to obtain better
performance. In this thesis, to select the inputs based on this k-NN estimator
when applied to the time series prediction problems, the optimal k value is
obtained by l-NN and LOO methods. A general introduction of l-NN and
LOO methods are given here, more details can be found in [4].

Leave-One-Out method Leave-One-Out method [3] is a special case of
d-fold cross-validation re-sampling method. In d-fold cross-validation, train-
ing data is divided into d approximately equal sized sets. LOO procedure is
the same as d-fold cross-validation with d equal to the size of the training
set N . For each model to be tested, LOO procedure is used to calculate the
generalization error estimated by removing each data point at a time from
the training set, building a model with the rest of the training data and cal-
culating the validation error with the one taken out. This procedure is done
for every data point in the training set and the estimate of generalization
error is calculated as a mean of all d, or N validation errors as shown in
Eq. 3.28.

Êgen(q) =

∑N
i=1(h

q(xi, (θi)∗(q)) − yi)2

N
, (3.28)

where xi is the ith input vector from the training set, yi is the corresponding
output, hq denotes the qth tested model and (θi)∗(q) includes the model
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parameters without using (xi, yi) in training. Finally, as a result from the
LOO procedure, we select the model that gives us the smallest generalization
error estimate.

l-Nearest-Neighbours approximator l-Nearest Neighbours approxima-
tion method is a very simple, but powerful method. It has been used in many
different applications and particularly in classification tasks [42]. The key
idea behind l-NN is that similar input data vectors have similar output val-
ues. One has to look for a certain number of nearest neighbours, according
to Euclidean distance [42], and their corresponding output values to get the
output approximation. We can calculate the estimation of outputs by us-
ing average of the outputs of neighbours in the neighbourhood. If the pairs
(xi, yi) represent the data with xi as an M -dimensional input and yi as a
scalar output value, l-NN approximation is

ŷi =

∑l
j=1 y

P (j)

l
, (3.29)

where ŷi represents the output estimation, P (j) is the index number of the
jth nearest neighbour of input xi and l is the number of neighbours used.
We use the same neighbourhood size for every data point, so we use a global
l, which can be determined by minimizing the error.

Selection of k for k-NN estimator using LOO and l-NN methods

To select the parameter k for k-NN based MI estimator using the LOO and
l-NN methods, three steps are followed:

1. First, the inputs are selected using the input selection process which
will be introduced in Section 4. In the process, the MI is calculated by
Eq. 3.26 with number of neighbours k varies from 2 to K, where K is
the maximum nearest neighbours number that can be chosen by user.

2. Then, with each selected subset of inputs, l-NN and LOO methods are
performed and the LOO error are calculated.

3. Finally, the selected inputs set which minimizes the LOO error are
chosen and the corresponding k value is selected.

High-dimensional volume based mutual information estimator

This high-dimensional volume based MI estimator (HDV) is based on the
idea of estimating local density in the joint space by computing the volume
a single point x ‘occupiesť in the sense of the maximal ball volume around
x, which does not contain any other point [40]. Then for N sample points
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in the joint space, the average of N estimated local densities are used to
compute the entropy.

Let D = (xi
1, x

i
2, · · · , xi

M ), i = 1, · · · , N be an ensemble of N data points in
theM -dimensional joint space, with pdf value pX . Suppose x, x′ ∈ D,x 6= x′,
take now

ri
xm

= min(
∥

∥xi
m − x′im

∥

∥), (3.30)

m = 1, 2, · · · ,M + 1,

with xi
m,m = 1, 2, · · · ,M as the projection of point on the mth coordinate

of the joint space of D, and xi
M+1 represents the point in the joint space.

So ri
xm
,m = 1, 2, · · · ,M are the minimum distances in each dimension of D

and ri
xM+1

is the minimum distance in the joint space. Then,

V i
x = Bm(ri

xm
)m, (3.31)

where Bm is the volume of the m-dimensional unit ball. For the Euclidean
norm which is used here:

Bm = πm/2/Γ(1 +m/2) (3.32)

Thus, Vx is the minimal ball volume around x ∈ D, which does not contain
any other point in D.

Then, it is shown in [40] that the entropy can be accurately approximated
as,

H(X) ≈ logN +
1

N

N
∑

i=1

log V i
x + c, (3.33)

where c is the Euler-Mascheroni constant.

Consequently, the estimator leads to a very simple algorithm because the
entropies for the marginal and joint distributions can both be computed by
Eq. 3.33. The algorithm for estimating MI is as follows:

• Sample N points in R
M : D = (xi

1, x
i
2, · · · , xi

M ), i = 1, · · · , N.

• Compute in each dimension and in R
M the minimum distance as in

Eq. 3.30, and the minimal volume as in Eq. 3.31, with m = 1 for each
dimension of M and m = M for the joint space in R

M .

• Estimate the entropies H(X) for each marginal of M dimensions and
the joint space, as in Eq. 3.33.

• compute

I(X1, X2, · · · , XM ) = H(X1) +H(X2) + · · · +H(XM )

−H(X1, X2, · · · , XM ). (3.34)
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From the grouping property of MI, the I((X,Y ), Z) can then be estimated
as,

I((X,Y ), Z) = I(X,Y, Z) − I(X,Y )

= H(X) +H(Y ) + +H(Z) −H(X,Y, Z)

−H(X) −H(Y ) +H(X,Y )

= H(Z) −H(X,Y, Z) +H(X,Y ), (3.35)

and the MI between any set of random variables and any random variable
can be computed by iterating it.

3.3 Comparison

Different MI estimation methods will be compared extensively in this section.
They are histogram based estimator, kernel based estimator, k-NN based
estimator and the high dimensional volume based estimator. These four
approaches are first compared with respect to the algorithm theory. Then,
they are applied to a typical data set with Normal distribution and the
estimations of entropy and joint entropy are compared. Furthermore, the
computational times are evaluated.

3.3.1 Algorithm theory

The first estimator introduced is the HB estimator. It can be seen from
Eq. 3.16 that the finite-size corrections depend on the number of data points,
and this method is feasible only when the number of data points is consider-
ably larger than the number of the histogram bins. The accuracy of most HB
estimators is dramatically degraded in high-dimensional space [21]. Hence,
they can be applied to the problems with only one- or two-dimensional data
space.

The KB estimator circumvented the problem of HB estimator for high-
dimensional data space. However, the KB methods proposed in [37] still
have some problems: the computational complexity of these methods in-
creases rapidly with the size of data set; the performances of them will still
be significantly degraded in high-dimensional data space; they cannot give
respectable estimation when data set is relatively small.

In the two parametrical estimation methods, all of the above problems are
addressed. These two approaches solve the problem of estimating the high-
dimensional joint entropy in different ways based on the same starting point:

H(X) ≈ −ψ(k) +ψ(N) +
1

N

N
∑

i=1

logBm(ri)m, (3.36)
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In k-NN estimator, the maximum norm is used. So, Bm = 1 and 2ri = di,
Eq. 3.36 turns to be:

H(X) ≈ −ψ(k) +ψ(N) + log Vm +
m

N

N
∑

i=1

log di, (3.37)

In the HDV estimator, k = 1, which means the 1st nearest neighbour based
on the Euclidean norm is used. With ψ(N) ≈ logN whenN is large, Eq. 3.36
becomes:

H(X) ≈ logN +
1

N

N
∑

i=1

logBm(ri)m −ψ(1), (3.38)

So, the difference between these two methods is that the k-NN method esti-
mates the joint entropy by using the idea of k nearest neighbours and while
the HDV method estimates the joint entropy with the idea of computing the
high-dimensional ball volume.

3.3.2 Implementation and results

It is noted from the definition of MI in Eq. 3.4 that to compute MI, what
we need are the estimations of entropies in each dimension and the joint
entropy. Thus, in this section, the estimations of entropy and joint entropy
will be compared. To simpify the problem here, for the k-NN estimator, k
is set to be 6.

Estimation of entropy

Let X be Gaussian with mean xm and variance σ2. So,

pX(x) =
1√

2πσ2
exp(−(x− xm)2

2σ2
), (3.39)

The entropy should then be:

H(X) = −
∫

∞

−∞

pX(x) log pX(x)dx

= −
∫

∞

−∞

1√
2πσ2

exp(
(x− xm)2

−2σ2
) log(

1√
2πσ2

exp(
(x− xm)2

−2σ2
))dx

=

∫

∞

−∞

1√
2πσ2

exp(−(x− xm)2

2σ2
)(1/2) log(2πσ2)

+

∫

∞

−∞

1√
2πσ2

exp(−(x− xm)2

2σ2
)(1/2)(1/2)(−(x− xm)2

σ2
)dx
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= (1/2) log(2πσ2) + (1/2)E(
(x− xm)2

σ2
)

= (1/2) log(2πσ2) + 1/2

= (1/2) log(2πσ2e),

(3.40)

since
∫

∞

−∞

1√
2πσ2

exp(−(x− xm)2

2σ2
)dx = 1.

(3.41)

E(.) represents expectation value.

If X has zero mean and unit variance,

H(X) ≈ (1/2) log(2πe) (3.42)

≈ 1.4189.

So, the theoretical value of real entropy is already known. Now, let us
compare the estimations of entropy from the four methods. A set of Gaussian
X is generated with zero mean and unit variance. Here, the size of Gaussian
X is set to be from 500 to 10000, with step size 500. For each size, 10 data
sets were independently generated, the average results of these 10 trails are
presented in Figure 3.1.
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Figure 3.1: Comparison of entropy estimation: the solid line is the real value,
dotted line with ‘+ť mark is from k-NN method, dashed line is from HDV
method, dotted line is from HB method and dashed-dotted line from KB
method

As is shown from Figure 3.1, both of the k-NN and HDV methods can
give good estimation of entropy, and the k-NN method’s results are more
accurate. The KB method can give stable estimation with a constant offset
from the real value. The HB method performs the worst.
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Estimation of joint entropy

The estimations of joint entropy from different approaches will be compared
in this section. Let X and Y be two Gaussians, with means xm and ym,
variances σ2

X and σ2
Y , and the covariance between them is r. In this case,

I(X,Y ) is known exactly to be [43],

I(X,Y ) = −1

2
log(1 − r2). (3.43)

So, from Eqs. 3.4 and 3.40, the joint entropy can be computed as:

H(X,Y ) = H(X) +H(Y ) − I(X,Y )

=
1

2
log(2πσ2

Xe) +
1

2
log(2πσ2

Y e) +
1

2
log(1 − r2). (3.44)

Now, X and Y are generated to be two independent Gaussians. By comput-
ing the covariance r between X and Y , the real values of joint entropy can
be estimated by Eq. 3.44. The size of data is set to be from 500 to 10000,
with step size 500. For each size, 10 data sets were independently generated,
and the average results of these 10 trails are shown in Figure 3.2:
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Figure 3.2: Comparison of joint entropy estimation: the solid line is the real
value, dotted line with ‘+ť mark is from k-NN method, dashed line is from
HDV method, dotted line is from HB method and dashed-dotted line from
KB method

From Figure 3.2, it can be seen that for the estimation of joint entropy,
both the HDV and k-NN methods’ estimations are close to the real values.
But the estimation results by HDV method is not as accurate as the k-NN
method. The KB method’s estimation is biased. The HB method gives the
worst estimation.
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Computational time

With respect to the computational time, as it mainly depends on the data
size, in this test, we change the data size from 1000 to 5000, with step size
1000, and other parameters are fixed, the resulting computational times of
four methods for different data sizes are shown in Table 3.1.

1000 data 2000 data 3000 data 4000 data 5000 data
HB 0.0035 0.0064 0.0082 0.0101 0.0124
KB 23.19 46.03 73.01 102.39 133.73

HDV 0.50 1.91 4.96 9.61 22.64
k-NN 11.52 61.51 189.27 462.68 903.05

Table 3.1: Computational time of different estimation methods(in seconds)

It can be seen from Table 3.1 that the HB method consumes the least com-
putational time, the HDV method is faster than the KB and k-NN based
methods, and the k-NN method is the slowest when data size is large.

3.3.3 Conclusion of comparison

Based on the experimental results, the estimation accuracy and computa-
tional time of the four different methods are summarized in Table 3.2.

Estimation of Estimation of Computational
entropy joint entropy time

HB - - - - + +
KB - - -
HDV + + +
k-NN + + + + - -

Table 3.2: Comparison of performance of different estimation methods: + +
represents very good, + is good, - represents bad and - - means very bad

In the table, the k-NN method is shown to be most accurate in estimating
entropy and joint entropy, and thus in estimating MI. As what we need in
this thesis is to rank different inputs subset based on the MI between it and
the output, the estimation of MI value needs to be as accurate as possible.
With this respect, the estimator based on k-NN is proposed here.



Chapter 4

Mutual information based

input selection process

4.1 Mutual information based input selection

The original input selection problem is to select the most k relevant input
variables from a set of N inputs and Battiti named it as ‘feature reductionť
problem in [30]:

[FRN − k:] Given an initial set of N features, find the subset
with k < N features that is ‘maximally informativeť about the
class.

As shown in Chapter 3, the MI values can be used for selecting the relevant
inputs, and the FRN−k problem could then be reformulated as follows [30]:

[FRN−k:] Given an initial set F with N features, find the subset
S ⊂ F with k features that i.e., maximizes the MI I(C, S), where
C represents the class.

In case of regression, we need to maximize the MI between a set of input
variables and the output, but the selected input number k is unknown in our
case. So, what we actually do is to test all the numbers of k = 1, 2, · · · , N
and select the one giving maximum MI value. There are several strategies
for solving both the problem of selecting the optimal number k and the best
inputs subset. These approaches will be introduced in the following.

4.1.1 Exhaustive search

The optimal algorithm is to compute the MI for all the possible combinations
of inputs, e.g. 2M − 1 input combinations are tested (M is the number of

25
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input variables). Then, the one that gives maximum MI is selected. However,
it will be explained later that this procedure is too much time consuming.

4.1.2 Forward selection

In this method, starting from the empty set S of the selected input variables,
the best available input is added to the set S one by one, until the size of
S is M . Suppose we have a set of inputs Xi, i = 1, 2, · · · ,M and the output
Y , the algorithm is as follows:

1. (Initialization)
Set F to be the initial set of original M inputs, and S to be the empty
set which will contain the selected inputs.

2. (Selection of the first variable)
Find:

Xs = arg max
Xi

I(Xi, Y ), Xi ∈ F,

where Xs represents the selected variable.
Save I(Xs, Y ), and move Xs from F to S.

3. (Selection of the following variables)
Find:

Xs = arg max
Xi

I({S,Xi}, Y ), Xi ∈ F.

Save I({S,Xs}, Y ) and move Xs from F to S.
Continue with the same way, till the size of S is M .
At the same time, save the MI value for each size of set S.

4. (Result)
Compare the MI values for all the sizes of sets S, the selection result
is set S with the corresponding size giving maximum MI.

4.1.3 Backward elimination or pruning

Backward elimination, also called pruning procedure, is the opposite of for-
ward selection process. In this strategy, the selected inputs set S is initially
set to contain all the input variables. Then, the worst input variable whose
elimination gives the maximum MI between the rest of inputs and the output
is removed from set S one by one, until the size of S is 1.

Suppose we have a set of inputs Xi, i = 1, 2, · · · ,M and the output Y , the
algorithm is like this:



CHAPTER 4. MUTUAL INFORMATION BASED INPUT SELECTION PROCESS 27

1. (Initialization)
Set S to be the set which contains all of the input variables.

2. (Elimination of the first variable)
Find:

Xr = arg min
Xi

I(Xi, Y ), Xi ∈ S.

Save I(S\Xr, Y ), where S\Xr means set S without Xr, and remove
Xr from S.

3. (Elimination of the following variables)
Find:

Xr = arg max
Xi

I(S\Xi, Y ), Xi ∈ S.

Save I(S\Xr, Y ), and remove Xr from S.
Continue with the same way, till the size of S is 1.
At the same time, save the MI value for each size of set S.

4. (Result)
Compare the MI values for all the sizes of sets S, the selection result
is set S with the corresponding size giving maximum MI.

4.1.4 Forward-backward selection

Both forward selection and backward elimination methods suffer from the
incomplete search. Forward-backward selection algorithm combines both
methods. It offers the flexibility to reconsider input variables previously
discarded and vice versa, to discard input variables previously selected. It
can start from any inputs set, even randomly initialized set.

Also suppose we have a set of inputs Xi, i = 1, 2, · · · ,M and the output Y ,
the procedure of the forward-backward selection is:

1. (Initialization)
Let set S to be the selected inputs set which can contain any input
variables, and set F to be the unselected inputs set containing the rest
inputs which are not in set S. Compute I(S, Y ).

2. (Forward-backward selection)
Find:

Xs = arg max
Xi,j

{I({S,Xj}, Y )} ∪ {I(S\Xi, Y )}, Xi ∈ S,Xj ∈ F.

If the old I(S, Y ) is larger than the new MI, stop; otherwise, update
set S and save the new MI, repeat step 2 till no further change can
increase the MI value.
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3. (Result)
The selection result is in set S.

It is noted that the selection result depends on the initialization of the inputs
set. Here, we consider two options. One is to begin from the empty set; the
other is to begin from the full set S = {X1, X2, · · · , XM}.

4.1.5 MIFS, MIFS-U and AMIFS

The above four types of input selection algorithms can be used when MI
between any combination of inputs and the output can be estimated. How-
ever, the estimators such as histogram based one can only estimate the MI
between two variables. To avoid computing MI between high-dimensional
vectors, so that we can use this kind of MI estimators, Battini [30] adopted
a heuristic criterion which computes only I(Xi, Y ) and I(Xi, Xs), instead of
calculating I({Xs, Xi}, Y ).

Three feature selection algorithms are developed based on this idea. They
are MI based feature selection (MIFS) , modified MI based feature selec-
tion which is deduced from the uniform distribution data set (MIFS-U) and
adaptive MI based feature selection (AMIFS). These three algorithms share
the same idea with the forward selection algorithm. The only difference is
in the third step.

Battiti’s MIFS algorithm selects the input that maximizes the MI between
the new input and the output, subtracted by a quantity proportional to the
average MI between the new input and the already selected inputs. The
third step in the forward selection algorithm is thus changed to:
Repeat until the size of S reaches M (M is the number of input variables):

Xs2 = arg max
Xi

(I(Xi, Y ) − β
∑

s∈S

I(Xi, Xs)), (4.1)

where β is a control parameter chosen by the user.

Kwak and Choi [44] made an enhancement of MIFS, called MIFS-U. It only
changes the selection criterion in the MIFS and Xs2 is selected by:

Xs2 = arg max
Xi

(I(Xi, Y ) − β
∑

s∈S

I(Xs, Y )

H(Xs)
I(Xi, Xs)), (4.2)

In both MIFS and MIFS-U algorithms, parameter β regulates the relative
importance of MI between the candidate input and the already-selected in-
puts with respect to the MI with the output [30]. If parameter β is set to be
zero, only the MI between the candidate input and the output is considered.
As β increases, this measure is discounted by a quantity proportional to the



CHAPTER 4. MUTUAL INFORMATION BASED INPUT SELECTION PROCESS 29

total MI with respect to the already-selected inputs. However, the optimal
value of parameter β is strongly dependent on the problem at hand [45].
In [30], a value for β between 0.5 and 1 is proposed, and β = 1 is used
in [44].

In AMIFS [43], to avoid using the control parameter β which is hard to
decide, the criterion is changed to be:

Xs2 = arg max
Xi

(I(Xi, Y ) −
∑

s∈S

I(Xs, Xs)

NsH̃(X)
), (4.3)

where H̃(X) = min(H(Xs), H(Xi)) and Ns is the number of already selected
inputs.

4.2 Comparison

Different input selection strategies introduced in the previous section are
compared here. First, all of the approaches are compared from the algorithm
theory point of view. Then, some of them are chosen for implementation
based on the performance from theory viewpoint. A toy example of function
approximation will be used. The MI estimator used here is the k-NN based
estimator, which has been proposed in the end of Section 3.3.3. At the same
time, the computational time will be compared.

4.2.1 Algorithm theory

Exhaustive search is the first choice when considering input selection. How-
ever, it requires a large number of computation. Indeed, for M = 15, where
M is the number of input variables, the number of operation is 32767, so, it
is not possible to test all the combinations of inputs when M exceeds such as
15. Therefore, in order to reduce the complexity when M is relatively large,
some heuristic algorithms for selecting the inputs are need.

MIFS, MIFS-U and AMIFS are developed for finding the best inputs com-
bination without considering the high-dimensional case. In all of these three
approaches, the selection criterion is composed of two terms. The first one
measures the relevance of the new input with the output; while the second
one ensures that the redundant input which is quite similar with the already
selected input variables will not be selected. However, MIFS, as in Eq. 4.1,
is too simple that when there are many irrelevant and redundant inputs,
its performance will degrade as it penalizes too much the redundancy. The
MIFS-U algorithm, as in Eq. 4.2, can give better estimation than the orig-
inal MIFS approach. But both MIFS and MIFS-U algorithms rely on the
parameter β for balancing the redundancy penalization, whose optimal value
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is hard to choose and dependent on the specific problem, as pointed out in
Section 4.1.5. AMIFS differs from the first two algorithms by replacing the
fixed parameter β by an adaptive term. However, these three algorithms are
developed to avoid estimating high-dimensional MI by doing it in an indirect
way. This type of approaches might make it impossible to select truly infor-
mative input variables when the relationship between input and the output
is strongly nonlinear. Consequently, as we have already the estimators such
as k-NN based and HDV based methods which can solve the problem of
high-dimensional data space, these three types of algorithm are not suitable
for our case.

The forward-backward selection approach was generated as both the forward
and backward selection methods suffer from the so-called nesting effect [46].
That means, once an input variable is discarded in the backward method,
it is not possible to reconsider it anymore. The opposite is true for the
forward selection: once an input variable is chosen, there is no way to discard
it later on. It can be seen that although the forward-backward algorithm
does not guarantee finding all of the best inputs, it results in substantially
improvement compared with forward or backward processes.

4.2.2 Implementation and results

In this experiment, the MI is estimated by the k-NN method, whose k value is
set to be 6, as it doesn’t influence the results of comparison and can simplify
the problem. Five input selection procedures will be compared by some toy
examples of function approximation problem. The five methods are exhaus-
tive search, forward selection, backward elimination, forward-backward se-
lection from empty inputs set (forward-backward selection (a)) and forward-
backward selection from full inputs set (forward-backward selection (b)). To
test the robustness of these input selection methods working with different
models, first, a linear model with changing parameters is tested. Then, a
simple nonlinear model is used. After that, a nonlinear model with increas-
ing noise is tested. Last, a nonlinear model with the size of data changed is
used.

Linear model

Here, let X represents a uniform distributed 10-dimensional variable valued
between 0 and 1. The number of observations of X is 1000 (the size of the
data set). A linear model with four input variables with different coefficient
values is built in order to see what is the robustness of the five methods to
select the weakest input variable if some variables are more relevant to the
output than the others.
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• First, the following model is tested:

Y1 = aX1 + 3X2 + 3X5 + 3X10.

a is the coefficient of the first variable. It is decreased from 3 to 0.1,
with step size 0.1. It is found that all of the five methods can choose
the four correct inputs (X1, X2, X5 and X10), until a is decreased to 1.
After that, none of these five algorithms can select variable X1 because
the coefficient of it is too small comparing with other variables.

• Second, we increased the coefficients of X5 and X10 :

Y1 = aX1 + 3X2 + 7X5 + 9X10.

a is decreased in the same way. So Y becomes to be more dependent
on X5 and X10. This time, after a < 2.5, no method can find the first
input.

• Third, we increased the coefficients of X2 and X5:

Y1 = aX1 + 9X2 + 9X5 + 9X10.

a is decreased from 5 to 0.1, with step size 0.1. With this model, after
a < 3.1, the influence of variable X1 is comparative too small that it
can not be found out by any algorithm.

From this test, it is noted that all of these five methods can work well for
the simple linear model, and they give similar performances in this test.

Nonlinear model

With the same X defined in the linear model, a nonlinear model with four
input variables is built,

Y2 = X1X2 +X5 + sin(X10). (4.4)

For this nonlinear model, all of the five different algorithms can select the
correct inputs.

Nonlinear model with noise

It is noticed that the five approaches perform well on the simple nonlinear
model. Now, we add a noise to the same nonlinear model, and investigate
the robustness of different input selection approaches by increasing the noise.
The model is built as:

Y = X1X2 +X5 + sinX10 + bǫ.



CHAPTER 4. MUTUAL INFORMATION BASED INPUT SELECTION PROCESS 32

The noise ǫ is uniformly distributed in [-1, 1], X is the same as in the linear
model, b is the weighting coefficient of noise increased from 10 to 200, with
step size 10.

The performances of different methods is measured by good and bad inputs
it selects. For example, in this example, X1, X2, X5 and X10 are good inputs;
while X3, X4, X6, X7, X8 and X9 are bad inputs. When the selected inputs
by one algorithm is X1, X2, X5 and X9, then, Table 4.1 can be built. The

Good Inputs Bad Inputs
Selected Good Inputs 3 1
Non-Selected Bad Inputs 1 5

Table 4.1: Selected inputs classification

criterion for the ability of selecting the correct inputs for this algorithm is
defined to be: ( 3

3+1 + 5
5+1)/2.

Based on the criterion defined above, the results of the five methods tested
with different values of coefficient b is shown in Figure 4.1.
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Figure 4.1: Comparison of input selection procedures with increasing noise:
The solid line is from exhaustive search, the dashed line is from forward
selection, and the dashed-dotted line from backward elimination, dotted line
with ‘+ť mark is from forward-backward selection(a), and the dotted line is
from forward-backward selection (b)

From Figure 4.1, it can be seen that when the noise increases, the perfor-
mances of all of these five input selection strategies decrease. The exhaus-
tive search can give the best result, and the forward-backward selection (a)
performs better than the other algorithms. It is reasonable that forward-
backward selection (a) is better than forward-backward seleciton (b), as the
model includes 4 of the original 10 inputs, the algorithm initialized with the
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empty selected inputs set should work better than the one initialized from
the full inputs set.

Change size of data set

Here, we change the size of data set to test the robustness of different meth-
ods with respect to data size. The size of data set is decreased from 1000 to
10, with step size 50. The model used is the same nonlinear model without
noise, as in Eq. 4.4.

The criterion for evaluating the performances of different input selection
algorithms are as defined in the previous test. The results based on this
criterion are shown in Figure 4.2.
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Figure 4.2: Comparison of input selection procedures with decreasing size of
data set: The solid line is from exhaustive search, the dashed line is from
forward selection, and the dashed-dotted line from backward elimination,
dotted line with ‘+ť mark is from forward-backward selection(a), and the
dotted line is from forward-backward selection (b)

It can be seen from Figure 4.2 that when there are less data, the perfor-
mances of all these five input selection algorithms degrade. The exhaustive
search still performs best in this case, and the forward-backward selection
(a) performs better than the others.

Number of operation

Considering the number of operation, suppose M is the number of inputs, in
the exhaustive search algorithm, 2M −1 times of computation is needed. For
both the forward selection and backward elimination algorithms, the number
of operation is M(M−1)

2 . For the forward-backward approaches, the number
of operation varies. It depends on the initialization on the input set and
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the special problem. In theory, it needs around M(M − 1). However, with
some prior knowledge to choose the initialization, the number of operation
of forward-backward selection algorithms can decrease a lot.

Conclusion of comparison

Based on the experimental results, the input selection quality and the number
of operation for the five different algorithms are summarized in Table 4.2.

Input selection Number of
quality operations

Exhaustive search + + -
Forward selection - + +
Backward elimination - + +
Forward-backward selection (a) + +
Forward-backward selection (b) + +

Table 4.2: Comparison of performance of the four input selection procedures:
+ + represents very good, + is good, and - represents bad

Comparing both the quality of input selection and the number of operation of
the five algorithms, we can see that the exhaustive search performs best, but
needs a large number of computations, hence, when the maximum number
of inputs is less than for example 15, this algorithm is promoted. When the
size of data set exceeds 15, the forward-backward selection process is better.
In this thesis, to guarantee the performance, all of the four methods except
the exhaustive search algorithm will be used to select the inputs for the time
series prediction problem, and the best inputs subset giving maximum MI is
selected, the process will be explained in Chapter 5.



Chapter 5

Application to time series

prediction

The MI based input selection method introduced in chapters 3 and 4 is ap-
plied to the time series prediction problem in this chapter. Two experiments
will be performed.

The first one is to compare the direct and recursive prediction strategies of
the long-term time series using MI based input selection. LS-SVMs are used
as nonlinear models to avoid local minima problems.

The second experiment is to compare the input selection method using MI
with other two kinds of input selection methods: Nonparametric Noise Es-
timator and l-NN method. All of the three input selection methods will
be applied to the problem of long-term time series prediction with direct
prediction strategy and LS-SVMs learning models.

In both two experiments, three different time series will be used. The first
one is the Santa Fe Laser data set [12], which has approximately 10000 points.
It is a uni-variate time record of a single observed quantity, measured in a
physics laboratory experiment. The second data set is the Poland Electricity
data set, which has around 1500 points. It represents the daily electricity
load of Poland in the 90s. The third time series is the Darwin sea level data
set [47], which has 1400 data points. It is the monthly values of the Darwin
sea level pressure series from year 1882 to 1998. In the experiments, for all
of the three data sets, the first 1000 data set is used for training, and the
remaining data for testing. The learning part of these three data sets are
shown in Figure 5.1.

35
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Figure 5.1: Learning part of three data sets: the first one is Santa Fe Laser
data set, second one is Poland Electricity data set, and last one is Darwin
sea level data set

5.1 Direct and recursive prediction of time series

using mutual information based input selection

In this experiment, first, MI is used to select the inputs. The MI estimator
used here is the k-NN estimator, and the input selection process is performed
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as follows:

• Estimate MI values based on k-NN method with different number of
neighbours: k = 2, · · · , 10.

1. For each k value, four input selection processes: forward selec-
tion, backward elimination, forward-backward selection (a) and
forward-backward selection (b), as introduced in Chapter 4, are
performed to select the best inputs.

2. From the four selected inputs sets, the one giving maximum MI
between inputs and output is chosen.

3. l-NN and LOO methods are used to calculate the LOO error for
the chosen inputs subset.

• The selected k value is the one giving minimum LOO error and the
corresponding inputs subset is finally selected.

In the following, for long-term time series prediciton, this whole process will
be done for each time step to select the inputs subset.

After the selection of input variables, LS-SVMs are used as the nonlinear
model, and the prediction model is:

{ŷ(t+ 1), ŷ(t+ 2), · · · , ŷ(t+ h)} = F (y(t), y(t− 1), · · · , (5.1)

y(t− p+ 1)),

where F is the multi-output prediction model F = {f1, f2, · · · , fh}. As has
been introduced in Section 2.1.1, the direct forecast uses different models
fh for different time steps; while the recursive forecast uses the same model
f1 for all the time steps. In all of the following experiments, we set the
maximum time step h = 15.

5.1.1 Santa Fe Laser data set

Here, to apply the prediction model in Eq. 5.1, the maximum regressor size
is set as p = 15. This choice is made according to previous experience on this
time series [48]. First, MI is used to select the best inputs, l-NN and LOO
methods are used to select the k value for the k-NN based MI estimateor.
The resulting LOO errors with k = 2, · · · , 10 for 15 time steps can be found
in Appendix B.1.

Then, the first k values giving minimum LOO are selected for the 15 time
steps as shown in Table 5.1:

The corresponding selected inputs for direct forecast are shown in Appen-
dix B.1, and the recursive forecast only needs the one for the first time step.
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Time step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k 2 5 3 2 2 2 2 2 2 10 3 4 5 5 7

Table 5.1: Selected k of MI estimator for Santa Fe Laser data set

For example, in Appendix B.1, the column with number 4 means that,
ŷ(t+ 4) = f4(y(t), y(t− 1), y(t− 2), y(t− 3), y(t− 4), y(t− 5)) .

Then, LS-SVMs are used to make the prediction. 10-fold cross-validation
procedure for model selection purposes has been applied. The errors for
the 10-fold cross-validation procedure of every pairs of γ and σ are listed.
Then the area around the minima is zoomed and searched until the hyper-
parameters are found. For recursive prediction, only one function is used,
so one pair of γ and σ is needed, which is (1.25 × 107, 620). For direct
prediction, 15 pairs of function parameters are required. The selected ones
are shown in Table 5.2.

Time step 1 2 3 4 5
γ 1.25 × 107 2.56 × 104 1.6 19 6.5

σ 620 65 545 39 40

Time step 6 7 8 9 10
γ 2.05 × 104 2.7 1.55 2 × 106 52

σ 48 70 40.2 37.9 13.3

Time step 11 12 13 14 15
γ 3.7 2.6 × 104 1.8 × 106 120 1.6 × 106

σ 28.2 27 25.6 27.6 27.9

Table 5.2: Slected parameters for LS-SVMs for Santa Fe Laser data

The mean square error (MSE) on the test set of data is used to compared
the results. It is defined as:

MSE =
1

N

N
∑

i=1

(ŷ(t+ h) − y(t+ h))2, (5.2)

where N is the number of data points, ŷ(t+ h) is the prediction result and
y(t + h) is the real value. The resulting MSE on the test set are listed in
Table 5.3.

As illustration, the MSE values on the test set are presented also in Figure
5.2.

From the MSE values, it can be found that as time step increases, the per-
formances of the direct predictions are better than that of the recursive ones.
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Time step 1 2 3 4 5
Direct 19.668 116.96 155.35 128.58 175.47

Recursive (×104) 0.00197 0.01295 3.1 47 51

Time step 6 7 8 9 10
Direct 200.25 217.92 189.74 141.72 286.25

Recursive (×106) 0.59 1.7 1.3 1.8 1.6

Time step 11 12 13 14 15
Direct 263.04 252.94 258.7 245.1 247.39

Recursive (×106) 1.4 1.7 1.6 1.9 1.8

Table 5.3: MSE values of direct and recursive predictions on test set of Santa
Fe Laser data
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Figure 5.2: MSE values for 15 time steps of direct prediction on test set of
Santa Fe Laser data

To illustrate the prediction results from direct forecast method, the pre-
dicted values of it are plotted against the real values in Appendix A.1.2. In
the figure, the more the points are concentrated around a line, the better
the predictions are. It can be seen that when the time step increases, the
distribution of the points diverts from a line, because the prediction becomes
more difficult.

Three different parts of the direct predictions on the test set of data are
shown in Figure 5.3, in the order of the difficulty of prediction increasing.
In each part of the figure, 15 time steps prediction results are plotted.

From Figure 5.3, it can be seen that the predicted values and the real values
are very close. Hence, the models built using the corresponding inputs led
to good prediction performance.
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Figure 5.3: Three parts of 15 time steps predictions of test set of Santa Fe
Laser data are represented in dotted line and the real values are represented
in solid line

5.1.2 Poland Electricity data set

For this data set, the regressor size is set to 15. First, the k values in
MI estimator are selected by the minimum LOO errors which is shown in
Appendix A.2.1 for 15 time steps, the selected results are shown in Table
5.4:
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Time step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k 6 2 2 2 4 4 6 2 2 2 5 5 3 4 3

Table 5.4: Selected k of MI estimator for Poland Electricity data set

The corresponding selected inputs for direct forecast can be found in Ap-
pendix B.2.

Then LS-SVMs are used to make the prediction. Also 15 pairs of parameter
γ and σ are selected by 10-fold cross-validation procedure. The MSE values
on the test set are listed in Table 5.5.

Time step 1 2 3 4 5
Direct (×10−3) 2.16 2.67 2.80 2.88 3.03

Recursive (×10−3) 2.16 2.86 3.73 6.80 1097.1
Time step 6 7 8 9 10

Direct (×10−3) 3.04 3.16 3.71 4.45 4.98
Recursive 0.71 0.72 0.71 0.71 0.71
Time step 11 12 13 14 15

Direct (×10−3) 4.93 5.06 4.97 4.63 5.11
Recursive 0.72 0.71 0.71 4.02 2.61

Table 5.5: MSE values of direct and recursive prediction on test set of Poland
Electricity data set

As illustration, the MSE values on the test set are presented also in Figure
5.4.
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Figure 5.4: MSE values for 15 time steps of direct prediction on test set of
Poland Electricity data
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From the MSE values, it can be found that as time step increases, the per-
formances of the direct prediction are better than the recursive prediction.

To illustrate the prediction results from direct forecast method, the predic-
tion of it are plotted against the real values in Appendix A.2.2. It can be
seen that when the time step is large, the distribution of the points diverts
a lot.

Figure 5.5 shows 15 time steps direct predictions on the test set of Poland
Electricity data set. It can be seen that the predicted values and the real
values are very close in this case.
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Figure 5.5: The 15 time steps prediction on the test set of Poland Electricity
data set is represented in dotted line and the true value is represented in
solid line

5.1.3 Darwin sea level data set

The regressor size is set to be 30 here. First, the k values in MI estimator
are selected by the minimum LOO error which is shown in Appendix A.3.1
for 15 time steps. The selected k values are shown in Table 5.6.

Time step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k 2 5 3 3 7 5 5 4 4 4 3 3 6 9 3

Table 5.6: Selected k of MI estimator for Darwin sea level data set

The corresponding selected inputs for direct forecast can be found in Ap-
pendix B.3.

LS-SVMs are used to make the prediction. 15 pairs of parameter γ and σ
are selected by 10-fold cross-validation procedure. The MSE values on the
test set are listed in Table 5.7.
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Time step 1 2 3 4 5
Direct 0.95 1.11 1.18 1.41 1.43

Recursive 0.95 1.14 1.30 1.42 1.54
Time step 6 7 8 9 10

Direct 1.46 1.46 1.50 1.55 1.58
Recursive 1.60 1.60 1.67 1.74 1.77
Time step 11 12 13 14 15

Direct 1.55 1.55 1.68 1.72 1.71
Recursive 1.78 1.78 1.79 1.82 1.84

Table 5.7: MSE values of direct and recursive prediction on the test set of
Darwin sea level data
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Figure 5.6: MSE values for 15 time steps of direct and recursive forecast on
test set of Darwin sea level data: the solid line is from direct forecast, and
dotted line corresponds to recursive forecast

As illustration, the MSE values on the test set are presented also in Figure
5.6. From the MSE values, it can be found that with this data set, as time
step increases, the performances of the direct predictions are better than the
recursive ones.

To illustrate the prediction results from direct forecast method, the predicted
values are plotted against the real values in Appendix A.3.2.

15 time steps predictions from direct forecast method is given in Figure 5.7.
Figure 5.7 shows that the predictions by the direct forecast method is good.
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Figure 5.7: The 15 time steps prediction on the test set of Darwin sea level
data set is represented in dotted line and the true value is represented in
solid line

5.1.4 Conclusion

In this test, we compared two long-term time series prediction strategies:
direct and recursive forecasts.

MI is used to perform the input selection for both strategies. Though for each
time step, four input selection processes are performed and one parameter
needs to be selected using l-NN and LOO methods, it is still fast compared to
other input selection methods. The results show that this MI based method
can provide a good input selection, and it has been illustrated with the
experiments that the l-NN approximator and LOO method can be used to
tune the main parameter of the MI estimator.

Comparing both long-term prediction strategies, direct long-term prediction
is superior to recurrent prediction for all the time steps. But the former
strategy requires multiple models. Nevertheless, due to the simplicity of MI
based input selection method, direct prediction strategy can still be used in
practice. Thus, direct prediction and MI based input selection can be consid-
ered as an efficient approach for a long-term time series prediction. The main
advantage of this proposed approach is that it combines fast input selection
with accurate but com- putationally demanding non-linear prediction.

5.2 Comparison of three input selection methods

for long-term time series prediction

As discussed in Section 2.2.1, the filter input selection method selects a set
of features by optimizing a criterion over different combinations of inputs.
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The criterion computes the dependences between each combination of input
variables and the corresponding output. Various alternatives of these cri-
teria exist. This experiment is to compare three different criteria: mutual
information, nonparametric noise estimator and l-nearest neighbours.

Nonparametric Noise Estimator (NNE) is a technique for estimating the
variance of the noise, or the mean square error (MSE), that can be achieved
without overfitting [49]. NNE is a generalization of the approach proposed
in [49], which is basically based on the fact that the conditional expecta-
tion 5.3 approaches variance of the noise when the distance between the
data points tends to zero.

ǫ
〈

1/2(y′ − y)2|
∣

∣x′ − x
∣

∣ δ
〉

, as(δ→ 0). (5.3)

The best set of inputs is the one that minimizes the result of the Γ value
calculated by NNE. In NNE, there is also a parameter q which represents
the number of neighbours used in the calculation, and it can be also tuned
for different problems using l- NN and LOO methods as described before for
the MI based estimation, the q value will be tested from 2 to 15 here.

l-NN has been explained in Section 3.2.3, it can be also used in the input
selection. The best inputs subset is the one that minimizes the error after
l-NN approximation.

These three input selection approaches are used to select the best input
variables (from a set of possible variables). The input selection processes are
the same as introduced in Section 5.1, the only difference is that when using
NNE and l-NN methods, the inputs are selected by minimizing Γ value and
l-NN approximationerror, respectively, instead of maximizing MI value.

The experiments are performed on three different long-term time series in
order to show the level of efficiency of these three methods for the problem
of input selection. Again, the maximum time step is set to be 15. As it has
been shown that the direct forecast approach is better than the recursive one
in long-term time series prediction problem in the previous experiment, we
will use only the direct forecast method in this test. Also, LS-SVMs are used
to compare the performances in order to avoid the local minima problem.

5.2.1 Santa Fe Laser data set

Here, the regressor size is set to be 15. The selected k values in MI estimation
have been shown in Table 5.1, the selected q values for NNE are listed in
Table 5.8.

The corresponding selected inputs of the three methods are shown in Ap-
pendix B.1. It can be seen that the selected inputs from different methods
are different, and the nearest regressors are selected by most of the methods.
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Time step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
q 12 10 11 5 12 14 5 11 12 13 9 13 5 6 6

Table 5.8: Selected q of NNE method for Santa Fe Laser data set

Time Methods
step MI NNE l-NN
h MSE MAE MSE MAE MSE MAE
1 19.67 1.59 33.85 1.90 29.52 2.15

2 116.96 2.82 130.59 3.91 67.82 3.07

3 155.35 3.84 131.20 3.60 211.74 3.07

4 128.58 3.18 148.33 3.33 203.41 3.99

5 175.47 3.89 154.23 3.75 102.84 2.89

6 200.25 3.58 154.40 4.00 146.31 3.72

7 217.92 5.64 139.81 3.91 144.66 3.66

8 189.74 5.13 215.41 5.25 134.51 3.31

9 141.72 4.38 139.42 4.05 145.72 4.32

10 286.25 7.19 213.78 6.20 230.43 6.96

11 263.04 5.94 252.64 5.36 338.55 8.36

12 252.94 5.50 249.22 5.90 234.09 4.88

13 258.70 5.70 285.41 5.85 245.64 5.12

14 245.10 5.23 305.69 6.03 247.48 5.54

15 247.39 5.52 305.05 6.31 251.50 5.23

Table 5.9: MSE and MAE of the three input selection methods for 15 time
steps on test set of Santa Fe Laser data

Then, LS-SVMs are used for comparing the regressor selection performances.
10-fold cross-validation for model selection purposes has been applied. MSE
and mean absolute error (MAE) on the test set of data are used to compare
the performances. MAE is defined as:

MAE =
1

N

N
∑

i=1

|ŷ(t+ h) − y(t+ h)| , (5.4)

where N is the number of data points, ŷ(t+ h) is the prediction result and
y(t+ h) is the real value. The MSE and MAE values on the test set for the
three methods are presented in Table 5.9.

As illustration, the MSE on the test set are also plotted in Figure 5.8

It can be seen from the error that the error increases with the time step, and
the performances of the three input selection methods are quite similar.
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Figure 5.8: MSE values of 15 time steps on the test set of Santa Fe Laser
data of three input selection methods: solid line is from MI, dotted line for
NNE, dashed line is for l-NN

5.2.2 Poland Electricity data set

Here, the regressor size is also set to be 15. The selected k values in MI
estimation have been shown in Table 5.4, and the selected q values for NNE
are shown in Table 5.10.

Time step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
q 7 13 14 12 10 14 8 11 7 15 11 15 13 9 7

Table 5.10: Selected q of NNE method for Poland Electricity data set

The corresponding selected inputs of the three methods are presented in
Appendix B.2. It can be seen from Appendix B.2 that the selection results
are quite similar for the three methods.

Then, LS-SVMs are used as the prediction models. 10-fold cross-validation
approach has been applied for model selection purpose. The parameters γ
and σ are found and the MSE and MAE on the test set for the three methods
are presented in Table 5.11.

As illustration, the MSE values on the test set are also plotted in Figure 5.9

It can be seen from the error that the error increases with the time step,
and the performances of these three input selection methods are also quite
similar for this data set.
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Time Methods
step MI NNE l−NN
h MSE MAE MSE MAE MSE MAE

1 (×10−3) 2.16 26.19 1.59 23.42 1.73 24.01

2 (×10−3) 2.16 30.98 2.31 30.86 2.28 30.61

3 (×10−3) 2.80 32.44 2.88 32.76 2.62 31.54

4 (×10−3) 2.88 33.82 2.78 33.03 2.89 34.47

5 (×10−3) 3.03 35.04 2.91 33.96 3.01 35.28

6 (×10−3) 3.04 35.05 3.03 35.46 3.00 34.80

7 (×10−3) 3.16 35.51 2.87 34.66 3.34 36.95

8 (×10−3) 3.71 40.73 3.46 40.11 3.76 40.33

9 (×10−3) 4.45 43.96 4.37 44.71 4.31 44.81

10 (×10−3) 4.98 47.15 4.84 49.06 4.55 47.09

11 (×10−3) 4.93 47.60 4.69 47.39 4.69 48.76

12 (×10−3) 5.06 47.62 4.54 46.14 4.71 47.89

13 (×10−3) 4.97 46.51 5.31 47.81 4.73 48.15

14 (×10−3) 4.63 45.22 4.60 44.99 4.60 44.93

15 (×10−3) 5.11 50.58 5.90 52.46 5.40 52.56

Table 5.11: MSE and MAE of the three input selection methods for 15 time
steps on test set of Poland Electricity data set
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Figure 5.9: MSE values of 15 time steps on the test set of Poland Electricity
data of three input selection methods: solid line is from MI, dotted line for
NNE, dashed line is for l-NN

5.2.3 Darwin sea level data set

Here, the regressor size is set to be 30. The selected k values in MI estimation
have been shown in Table 5.6, and the selected q values for NNE are shown
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in Table 5.12.

Time step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
q 11 14 14 8 15 5 2 10 11 12 2 11 8 3 10

Table 5.12: Selected q of NNE method for Darwin sea level data set

The corresponding selected inputs of the three methods are shown in Ap-
pendix B.3. It can be seen from Appendix B.3 that the selection results are
similar for the three methods.

Then, LS-SVMs are used for comparing the regressor selection performances.
10-fold cross-validation is used for model selection. The parameters γ and
σ are found and the MSE and MAE values on the test set for the three
methods are listed in Table 5.13.

The MSE on the test set are also plotted in Figure 5.10
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Figure 5.10: MSE values of 15 time steps on the test set of Darwin sea level
data of three input selection methods: solid line is from MI, dotted line for
NNE, dashed line is for l-NN

It can be seen that the error increases with the time step, and the results of
the three methods are quite similar.

5.2.4 Computational time

The computational times for selecting the 15 time steps subsets of inputs for
each data set using the three different input seleciton methods are shown in
Table 5.14.

Comparing the times these three methods use to selecting 15 time steps
inputs, it can be seen that with the same number of data points, the com-
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Time Methods
step MI NNE l−NN
h MSE MAE MSE MAE MSE MAE
1 0.95 0.77 0.91 0.74 0.92 0.74

2 1.11 0.89 1.06 0.82 1.11 0.83

3 1.18 0.98 1.25 0.90 1.26 0.91

4 1.41 0.03 1.28 0.92 1.31 0.93

5 1.43 0.98 1.32 0.93 1.37 0.95

6 1.46 0.98 1.46 0.95 1.46 0.97

7 1.46 0.98 1.46 0.95 1.48 0.97

8 1.50 0.98 1.50 0.98 1.49 0.97

9 1.55 0.99 1.49 0.96 1.54 0.98

10 1.58 1.01 1.56 0.99 1.55 0.98

11 1.55 0.99 1.56 1.00 1.64 1.01

12 1.55 1.02 1.62 1.00 1.63 1.01

13 1.68 1.03 1.66 1.02 1.69 1.02

14 1.72 1.03 1.64 1.01 1.73 1.04

15 1.71 1.04 1.74 1.04 1.77 1.05

Table 5.13: MSE and MAE of the three input selection methods for 15 time
steps on test set of Darwin sea level data set.

Santa Fe Laser Poland Electricity Darwin sea level
MI 60.86 71.40 300.25

NNE 32.67 50.77 202.40
l-NN 1.30 2.01 7.16

Table 5.14: Computational time (in hours) of input selection process for
three data sets using different input selecion methods

putational time increases with the regressor size. For each data set, l-NN
method is the fastest one, NNE method requires around 25 times the com-
putaional time of l-NN method, and MI method is the slowest one, which
consumes about 40 times the computational time of l-NN method.

5.2.5 Conclusion

In this section, MI based input selection method is compared with other two
approaches: one is based on NNE, and the other based on l-NN technology.
Based on the experiments, the selected inputs from the three different meth-
ods are different, and the prediction results on the test set show that the
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performances of these three methods are quite similar. Hence, the one con-
suming least computational time is preferable. Based on the computational
time comparison, the l-NN method is proposed as an effective and efficient
input selection method in the case of this experiment.
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Conclusion

Input selection is an essential pre-processing stage in problems such as ma-
chine learning, especially when the number of observations is relatively small
compared to the number of inputs. The aim of the input selection method
is to reduce as much as possible the inputs in order to improve the quality
of the model built, and to improve the interpretability of the selected set of
input variables.

In this thesis, we propose a new mutual information based scheme to select
the salient inputs that are relevant to the corresponding output and not
redundant to the selected inputs. The MI has the property to be model-
independent and able to measure nonlinear dependencies at the same time.

To apply this MI based input selection strategy, first, an accurate and effi-
cient MI estimation method is needed. In this thesis, we have done a survey
of the most classic estimators and introduced two new estimation techniques,
which solve the problems appear in the high-dimensional data space case.
Moreover, for one of these two new approaches: the k-NN based MI estima-
tor, we developed a strategy to tune the main parameter of it for different
data sets and special problems. Then, a thorough comparison of the es-
timation methods were performed and we decided to use the k-NN based
estimator with respect to its superiority in the performance of comparative
results. The main advantage of this method consists in its ability to estimate
the MI between two variables in high-dimensional space.

After solving the problem of estimating MI, one must then consider how to
perform the actual input selection process. The aim is to select the best set
of inputs which is the one that maximizes the MI. Several ways of selecting
the best inputs subset are investigated and compared in this thesis. The
optimal technique is to do the exhaustive search, but the computational
time of it will increase dramatically with the regressor size, thus, it is not
possible to test all the combinations of inputs when regressor size is large. In
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this case, to ensure the performance, we propose to perform all of the other
input selection strategies except exhaustive search, and select the best one
which gives maximum MI value. This searching strategy is much faster than
the exhaustive one while also accurate enough.

Finally, we applied our method into the long-term time series prediction
problem. Two experimental results were demonstrated based on three differ-
ent time series. The experiments verified the potential power of the proposed
MI based input selection method. It has also been illustrated with the ex-
periments that the strategy introduced in this thesis for choosing the main
parameter of the k-NN based MI estimator is applicable and efficient. At the
same time, it has been presented that the simplicity of the MI based input
selection method can help to improve the performance of long-term time se-
ries prediction by applying the direct forecast. In addition, comparing with
other two input selection approaches: NNE method and l-NN method, it
has been shown that MI based method can give similar performance as the
other two methods, and the l-NN method is proposed in the experiment as
it consumes the least computational time.

In future, it would be interesting to see how this MI based input selection
method extends to other types of data sets and how to speed up this method.
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A.1 Santa Fe Laser data set

A.1.1 LOO errors versus different k values
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Figure A.1: Seleted k for MI estimator based on LOO error with 15 time
steps on Santa Fe Laser data set
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A.1.2 Predictions of direct forecast versus true values of

Santa Fe Laser data set
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ŷ
(t

+
12

)
ŷ
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Figure A.2: Prediction results of direct forecast versus true values for each
time step on test set of Santa Fe Laser data
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A.2 Poland Electricity data set

A.2.1 LOO errors versus different k values
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Figure A.3: Seleted k for MI estimator based on LOO error with 15 time
steps on Poland Electricity data set
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A.2.2 Predictions of direct forecast versus true values of

Poland Electricity data set
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ŷ
(t

+
11

)

ŷ
(t

+
12

)

ŷ
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Figure A.4: Prediction results of direct forecast versus true values for each
time step on test set of Poland Electricity data
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A.3 Darwin sea level data set

A.3.1 LOO errors versus different k values
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Figure A.5: Seleted k for MI estimator based on LOO error with 15 time
steps on Darwin sea level data set
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A.3.2 Predictions of direct forecast versus true values of

Darwin Sea Level data set
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ŷ
(t

+
12

)
ŷ
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Figure A.6: Prediction results of direct forecast versus true values for each
time step on test set of Darwin sea level data
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B.1 Selected inputs for Sata Fe Laser data set.
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Table B.1: Selected inputs for Santa Fe Laser data: The numbers in the first
row and first column represent time steps and regressor index. Symbol X
is for MI selected inputs, O represents NNE selection results, ∆ is for l-NN
selected results
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B.2 Selected inputs for Poland Electricity data set
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Table B.2: Selected inputs for Poland Electricity data set: the numbers
in the first row and first column represent time steps and regressor index.
Symbol X is for MI selected inputs, O represents NNE selection results, ∆
is for l-NN selected results
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B.3 Selected inputs for Darwin sea level data set
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Table B.3: Selected inputs for Darwin sea level data set: the numbers in the
first row and first column represent time steps and regressor index. Symbol
X is for MI selected inputs, O represents NNE selection results, ∆ is for
l-NN selected results


